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1. Introduction     

Soybean (Glycine max L. Merr.) is an Asiatic leguminous plant cultivated in many parts of 
the world for its oil and proteins, which are extensively used in the manufacture of animal 
and human foodstuffs (FAO, 2004a; Hepperly, 1985). The production reached 47.5 million 
tons during the 2006/2007 harvest season ranking Argentina third as soybean producer in 
the world. In Argentina, during the last quarter of the century, soybean production has 
increased at an unprecedented rate from a cultivated area of 38.000 hectares in 1970 to 16 
million hectares today. Around 70% of the soybean harvested is processed, providing 81% 
and 36% of the world's exported soybean oil and meal, respectively (SAGPyA, 2010). 
Soybean is often attacked by fungal infections during cultivation, or post-harvest (in transit 
or in storage), significantly affecting its productivity. Seeds and infected harvest debris are 
the main sources of primary infections, and the level of seed damage depends on 
environmental conditions such as high relative humidity, dew, and temperatures above 25 
ºC. These species can be potential mycotoxin producers. Mycotoxins (from “myco” fungus 
and toxin) are relatively low-molecular weight, fungal secondary metabolic products that 
may affect exposed vertebrates such as animals in a variety of ways. Mycotoxins are 
considered secondary metabolites because they are not necessary for fungal growth and are 
simply a product of primary metabolic processes. The functions of mycotoxins have not 
been clearly established, but they are believed to play a role in eliminating other 
microorganisms competing in the same environment. They are also believed to help 
parasitic fungi invade host tissues. The amount of toxins needed to produce adverse health 
effects varies widely among toxins, as well as within each person’s immune system (Brase et 
al., 2009). 
Some mycotoxins are carcinogenic, some are vasoactive, and some cause central nervous 
system damage. The mycotoxins can be acutely or chronically toxic, or both, depending on 
the kind of toxin, the dose, the health, the age and nutritional status of the exposed 
individual or animal, and the possible synergistic effects between mycotoxins. The most 
frequently studied mycotoxins are produced by species of Aspergillus, Penicillium, Fusarium 
and Alternaria. 
There is an increasing world consumer demand for high quality and inocuous food and 
drink products with the lowest possible level of contaminants such as mycotoxins. As a 
result, the food industry in the developed world demands raw ingredients of the best 
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quality and that conform to statutory limits where these have been set for mycotoxins. 
Because the mycotoxins are unavoidable, it is important to know how the concentrations of 
mycotoxins present in raw materials change through the food and feed chains. The 
development of prevention strategies today has been predominantly based on using the 
HACCP approach and to identify the critical control points in the pre- and post-harvest food 
chain. This approach enables strategies for minimizing consumer exposure to be developed 
through appropriated management of the products (Sanchis & Magan, 2004; Scudamore 
2004). 

2. Fungal and mycotoxin contamination in soybean at preharvest stages 

2.1 Fusarium species dynamic and their mycotoxins at different soybean reproductive 
growth stages   

The occurrence of fungi in soybean seeds has received far more attention than the 
occurrence of fungi in pods and flowers. This is understandable from a practical standpoint: 
infected seeds and infected seedlings developing from them represent greater economic 
risks in soybean production, and seed contamination with mycotoxins represents a health 
risk to human and animals (Roy et al., 2001). 
The mycoflora of soybean seed may be affected by environmental factors, geographic 
location, cultural practice and degree of host susceptibility to pathogens (Villaroel et al., 
2004) Previous studies carried out in Argentina evaluated the fungal contamination on 
freshly harvested soybean or soybean seeds under storage (Boca et al., 2003; Broggi et al., 
2007). However, other studies have demonstrated that the isolation frequency of fungi from 
living plant tissues differs from those of senescing or dead tissues of soybean plants. For this 
reason, three reproductive stages of soybean development and samples of flowers, pods and 
seeds were examined. The flowers were obtained during R2 growth stage (full bloom), 
while pods and seeds were recovered during R6 (full seed) and R8 (full maturity) growth 
stages. The mycoflora isolated from flowers, pods and seeds were dominated by two genera: 
Alternaria and Fusarium, at similar levels across all the stages. Among Fusarium isolates, 45% 
were isolated from pods, 38% from seeds and 17% from flowers. Fusarium contamination 
across different stages showed that the high isolation frequency was found in pods and 
seeds at stage R6 (full seed), being the aw of immature seeds 0.992. At stage R8 (full 
maturity), the water content of the seeds dropped dramatically to 0.70 and the percentage of 
Fusarium spp. also diminished compared to stage R6. Villarroel et al. (2004) showed that 
Fusarium spp. isolated at R6 and R8 growth stages from pods and seed tissues were 
significantly greater on conventional than on transgenic cultivars. In our study, a transgenic 
cultivar with tolerance to glyphosate was used since more than 90% of the planted area in 
Argentina belonged to this category (Lopez et al., 2008). The Fusarium species identified are 
showed in the Fig. 1, being F. equiseti the most frequently recovered from flowers, pods and 
seeds (40% of isolates), followed by F. semitectum (27%) and F. graminearum (11%). The 
distribution of Fusarium species was similar in the three parts of the plants and the 
reproductive stages evaluated. 
Members of Fusarium genus are known to produce a broad spectrum of toxins including 
trichothecenes of A- and B-types. Among B-type trichothecenes, deoxynivalenol (DON) and 
nivalenol (NIV) are important mycotoxins produced by members of the F. graminearum 
species complex (Fg complex). DON is the most distributed Fusarium mycotoxin and occurs 
world-wide in crops from temperate regions. NIV also occurs in cereals and has been 
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Fig. 1. Fusarium species distribution at different soybean reproductive stages of development. 

extensively found in Japan and Korea, and at relatively low levels in samples from Europe, 
Southern Africa and South America (Placinta et al., 1999). DON is associated with feed 
refusal, vomiting and suppressed immune functions (WHO, 2001), and NIV is more toxic to 
humans and domestic animals than DON (Ryu et al., 1988). Due to their toxicity, 
international regulations limit the content of DON in the food chains (FAO, 2004a; 
Verstraete, 2008).  Trichothecenes also are potent phytotoxins (Eudes et al., 2000), with DON 
being more phytotoxic than NIV (Desjardins et al., 2006).  
In our study, soybean seed samples from each reproductive stage (R6 and R8) were 
evaluated for DON and NIV contamination. Out of 40 samples, two were contaminated with 
DON at levels of 1.6 µg/g (R6 stage) and 0.9 µg/g (R8 stage). Only one sample at stage R8 
showed T-2 toxin contamination at level of 280 µg/kg. Neither NIV nor  HT-2 were detected 
(Barros et al, 2008b). These results demonstrate that the soybean could be contaminated with 
mycotoxins at low levels and the presence of Fusarium species potentially toxigenic might be 
considered for further studies on natural contamination. Generally, grains with a moisture 
content equivalent to less than 0.70 aw (<14.5% moisture by weight) will not be subject to 
fungal spoilage and mycotoxin production (Aldred and Magan, 2004). In the present study, 
similar aw was observed in seeds at stage R8, this fact suggest that the mycotoxin 
contamination occurred between stages R6 and R7 were the level of aw was around 0.99. 
Other studies have analyzed the importance of soybean pathogens such as 
Diaporthe/Phomopsis complex and Cercospora spp. in tissues prior to harvest maturity (Baird et 
al., 2001; Ploper et al., 1992; Roy et al., 2001; Villarroel et al., 2004). However, this is the first 
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report to analyze the Fusarium species diversity and densities and mycotoxin contamination 
during the soybean grain ripening.  

2.2 Chemotype and genotype within Fusarium graminearum species complex 

Based on the DON contamination on soybean seeds at stages R6 and R8, we considered 
interesting to investigate the toxigenic ability of isolates belonging to F. graminearum species 
complex. Strains of F. graminearum usually express one of three sets of trichothecene 
metabolites either: (i) nivalenol and acetylated derivatives (NIV chemotype), (ii) 
deoxynivalenol and 3-acetyldeoxynivalenol (3-ADON chemotype), or deoxynivalenol and 
15- acetyldeoxynivalenol (15-ADON chemotype) (Ward et al. 2002). Surprisingly, Fusarium 
isolates that produce both DON and NIV (NIV/DON chemotype) have been reported and 
described as “unknown” chemotypes (Quarta et al., 2006; Ward et al., 2002).  
The 15-ADON chemotype is predominant in North America and the 3-ADON chemotype is 
predominant in same areas in Asia, including China, Australia, and New Zealand (Guo et 
al., 2008). Due to the toxicological differences between NIV and DON (Desjardins and 
Proctor, 2007), it is important to determine the chemotypes of strains present in a given 
region on different crops. With the identification of the genes responsible for trichothecene 
biosynthesis, PCR assays have been developed to distinguish the toxin producing genotypes 
(Chandler et al., 2003; Jennings et al., 2004; Lee et al., 2001; Waalwijk et al., 2003).  Primers 
based on the sequences of alleles at Tri3, Tri5 and Tri7 have been designed to differentiate 
the three toxin genotypes (Quarta et al., 2005, 2006). 
Examination of trichothecene profile among the strains isolated from the soybean 
agroecosystem revealed that the 15-ADON was the dominant chemotype identified by 
chemical and PCR analysis (Barros, personal communication). Similar results were obtained 
in previous studies that evaluated the toxigenic potential of F. graminearum isolates from 
wheat in Argentina (Alvarez et al., 2009; Reynoso et al., 2011) and South of Brazil (Scoz et al., 
2009). However, a 12% of the isolates showed an unusual pattern of trichothecenes with a 
simultaneous DON and NIV production. The finding of isolates with an unusual pattern of 
trichothecenes production (DON and NIV producers) in this study agree with previous 
reports by Reynoso et al. (2011) and Fernandez Pinto et al. (2008) who identified this type of 
strains from wheat in Argentina. This fact is not surprising since e regular crop rotation is 
soybean/wheat and the pool of strains could move through one to another agroecosystem.  
Several reports examined the trichothecene production by strains of F. graminearum isolated 
from cereals in Argentina based on chemical analyses (Alvarez et al., 2009; Faifer et al., 1990; 
Fernandez Pinto et al., 2008; Lori et al., 1992; Molto et al., 1997). However, this is the first 
report on determine trichothecene chemotype and genotype among the Fg complex isolated 
from soybean in Argentina. Although a good relation between multiplex PCR (genotype) 
and chemical analysis (chemotype) was observed, more studies are necessary to evaluate 
variations within the field populations on soybean. For example, in North America the 15-
ADON chemotype is predominant, but recent molecular surveillance has shown that 3-
ADON chemotype is replacing 15-ADON from eastern to western Canada (Ward et al., 
2008). 
The Fg complex is composed of at least twelve lineages (O’Donnell et al., 2008). F. 
graminearum populations from wheat in Argentina are genotypically diverse, and belong to 
F. graminearum lineage 7 (Ramirez et al., 2006, 2007) also termed F. graminearum sensu stricto 
(O’Donnell et al., 2000, 2004). Further studies using molecular markers and sequence 
analysis on the F. graminearum species complex population isolated from soybean 
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agroecosystem are in progress, these results will allow us to know the isolates characteristics 
such as genotype, genetic diversity, lineage and pathogenicity. 

3. Alternaria species and their mycotoxins on soybean at harvest time 

A diverse group of saprophytic and parasitic fungi can colonize and infect soybean pods 
and seeds prior harvesting (Villarroel et al., 2004). Alternaria and Fusarium species are the 
most commonly isolated fungi from soybean in Argentina and in others regions of the world 
(Boca et al., 2003; Broggi et al., 2007; Gally et al., 2006; Roy et al., 2001). The most common 
Alternaria specie found on soybean seeds is A. alternata.  
From a survey done on Alternaria species contamination on soybean samples (n=50) harvested 
in two provinces of Argentina during two harvests seasons (2006-2007 and 2007-2008) years. 
We observed that around 80% of the samples presented Alternaria spp. contamination at levels 
ranging from 2 to 84%. One hundred and forty strains were morphologically indentified at 
species level according to Simmons (1992, 2007) based mostly on the three-dimensional 
sporulation patterns. Seventy five strains were identified as A. alternata, 65 as A. infectoria, 8 as 
A. oregonensis, 5 as A. graminicola and 1 as A. tritimaculans, respectively. These results were 
noticeable, considering that except A. alternaria, all the other strains were members of the A. 
infectoria (morphological) group and also all belonged to the infectoria species-group, which is 
genetically distinct and phylogenetically distant from the other species-group (brassicola 
species-group and the alternata species-group). The A. infectoria group comprises at least 30 
known species (Andersen et al., 2009). Morphologically the A. infectoria group differs from 
others Alternaria species-groups in the three dimensional sporulation pattern (Simmons and 
Roberts, 1993). The mains characteristic for the A. infectoria group is the production of small 
conidia in branched chains with long, geniculate multilocus secondary conidiophores between 
conidia (Simmons, 2007). This data were the first report on the presence of member of species 
belonging to the A. infectoria group on soybean. Recently, A. infectoria have also been isolated 
in high frequency on wheat probably due to changes in cropping systems in most of the 
different agroclimatic zones in Argentina (Ramirez et al., 2005). Also, Perello et al. (2008) have 
associated A. infectoria as the ethiological agent of black point in wheat grains in Argentina. We 
explain the presence of A. infectoria and A. infectoria group on soybean as a consequence of the 
practice of double cropped soybean cultivation widely used in our country, which consist of 
sowing the soybean immediately after harvesting a wheat crop. 
Most Alternaria species are saprophytes that are commonly found in soil or on decaying 
plant tissues. Some species are opportunistic plant pathogens that, collectively, cause a 
range of diseases with economic impact on a large variety of important agronomic host 
plants including cereals, ornamentals, oil crops and vegetables. Alternaria species are also 
well known as post-harvest pathogens. Some Alternaria species are well known for the 
production of toxic secondary metabolites, some of which are powerful mycotoxins that 
have been implicated in the development of cancer in mammals (Thomma, 2003). Among 
these metabolites with mammalian toxicity are alternariol (AOH), alternariol monomethyl 
ether (AME) (Logrieco et al., 2003; Ostry, 2008). Recently have been reported that AOH and 
AME posses cytotoxic, genotoxic and mutagenic properties in vitro (Brugger et al., 2006; 
Fehr et al., 2009; Lehmann et al., 2006; Wollenhaupt et al., 2008), and there is also some 
evidence of carcinogenic properties (Yekeler et al, 2001). Tenuazonic acid (TA) is a 
mycotoxin and phytotoxin, produced primarily by A. alternata, but also by other 
phytopathogenic Alternaria species (Logrieco et al., 2003). This toxin is considered as a 
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possible causal factor of Onyalai, a human hematological disorder (Ostry, 2008). TA also 
exhibits phytotoxic, insecticidal, zootoxic, cytotoxic, antibacterial and antiviral activity. TA 
has been shown to be more toxic than other mycotoxins produced by Alternaria species such 
as altenuene (AE), alternariol (AOH) and alternariol monomethyl ether (AME) (Ostry, 2008). 
These mycotoxins have been demonstrated to be produced by Alternaria species on wheat, 
tomato, sorghum, pecans, sunflower and on cotton (Scott, 2001; Ostry, 2008). 

3.1 Ecophysiology of Alternaria alternata on soybean based media 

Fungal growth and mycotoxin production result from the complex interaction of several 
factors and, therefore, an understanding of each factor involved is essential to 
understanding the overall process and to predict and prevent mycotoxin development 
(Chamley et al., 1994). Temperature and water activity (aW) are the primary environmental 
factors that influence growth and mycotoxin production by several Alternaria species in 
cereals and oil seeds (Etcheverry et al., 1994; Magan & Baxter, 1994; Magan & Lacey 1984; 
Torres et al., 1992; Young et al., 1980).  
Prevention of mycotoxin contamination of food raw materials is now considered more 

effective than subsequent control. Thus, hazard analysis critical control point (HACCP) 

approaches are being developed to examine the critical control points (CCPs) at which 

mycotoxigenic fungi and mycotoxins may enter a range of food and feed chains (Aldred & 

Magan, 2004). Therefore, accurate information is needed on the impact of key environmental 

factors such as aW, temperature and their interactions, and on identifying marginal and 

optimum conditions for growth and toxin production. Few studies have attempted to build 

two-dimensional profiles for growth and mycotoxin production by Alternaria species 

(Sanchis & Magan, 2004). Due to the lack of information on Alternaria growth and toxin 

production on soybean or culture medium based on soybean, we decided to evaluate the 

effect of water activity (aW; 0.995, 0.98, 0.96, 0.94, 0.92 and 0.90), temperature (5, 18, 25 and 

30°C), incubation time (7-35 days) and their interactions on mycelial growth and AOH, 

AME and TA on soybean extract agar by two A. alternata strains isolated from soybeans in 

Argentina. Maximum growth rates were obtained at the highest aW (0.995) and 25°C with 

grow decreasing as the water availability of the medium was reduced. Maximum amount of 

AOH was produced at 0.98 aW and 25 °C for both strains. Maximum AME production was 

obtained for both strains at 30 ºC, but a different aW 0.92 and 0.94 for the strains RC 21 and 

RC 39 respectively. Maximum TA production was obtained for both strains at 0.98 aW, but at 

30 and 25 ºC for the strains for RC 21 and RC 39 respectively. The concentrations range of 

three toxins varied considerably depending on aW and temperature interactions assayed. 

Further, the three metabolites were produced over the temperature range from 5 to 30 ºC 

and aW range from 0.92 to 0.995. Although at 5 and 18 ºC little of any mycotoxin was 

produced at aW lower than 0.94. Two-dimensional profiles of aW x temperature were 

developed from these data to identify areas where conditions indicate a significant risk from 

A. alternata growth and mycotoxin accumulation on soybean (Fig. 2) (Oviedo et al., 2009a, 

2010). All the conditions of aW and temperature were maximum production of the three 

toxins are those found during soybean development in the field. Thus, field conditions are 

likely to be conducive to optimum grow and toxin production of this specie. 

Taking in to account these results, it appears that different combinations of aW and 
temperature are necessary for optimal production of these 3 toxins by A. alternata and that 
the limiting aW for detectable mycotoxin production is slightly greater than that for growth. 
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Fig. 2. Comparison of profiles for growth and different mycotoxins by Alternaria alternata on 
soybean based media.  

In the present study, the knowledge of interacting environmental conditions provides very 
useful information for predicting the possible risk factors for AOH, AME and TA 
contamination of soybean. The aW and temperature range used in this study simulate those 
occurring during grain ripening. Also, the data demonstrated the contrasting impact of aW, 
temperature and incubation time on growth and AOH and AME production by the two 
strains examined. The knowledge of AOH, AME and TA production under marginal or sub-
optimal temperature and aW conditions for growth can be important since improper storage 
conditions accompanied by elevated temperature and moisture content in the grain can 
favour further mycotoxin production and lead to reduction in grain quality. 

3.2 Natural contamination of Alternaria mycotoxins on soybean seeds 

Alternaria toxins have recently received much attention, both in research programs and in 
risk assessment studies. At present, no statutory or guideline limits set for Alternaria 
mycotoxins have been set by regulatory authorities (FAO, 2004b). Current data on the 
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natural occurrence of Alternaria toxins point to low human dietary exposure. Further studies 
are necessary to develop strategies for safe food and feed supplies by developing detection 
methods, identifying Alternaria mycotoxins risk in the production chain, determining the 
critical control points, and developing preventive measures. 
Numerous methods have been developed for AOH and AME determination in different 
agricultural commodities (Logrieco et al., 2009; Ostry, 2008; Scott, 2001); however there was 
no an available technique for determining these mycotoxins in soybean. Solid-phase 
extraction columns have been used for extraction and clean-up of AOH and AME in apple 
juice and wheat. The natural occurrence AOH and AME on soybean seeds harvested in 
Argentina was evaluated. Both toxins were simultaneous detected by using HPLC analysis 
coupled with a solid phase extraction column clean-up. Characteristics of this in-house 
method such as accuracy, precision and detection and quantification limits were defined by 
means of recovery test with spiked soybean samples. From a survey of 50 soybean seed 
samples evaluated for AOH and AME contamination, it was found that 44% of them were 
contaminated with AME. AME was found in levels ranging from 62 to 1,153 ng/g. Although 
a limited number of samples were evaluated, this data were the first report on the natural 
occurrence of Alternaria toxins in soybean seeds and is relevant from the point of view of 
animal public health (Oviedo et al., 2009b). Also the results showed that AOH and AME are 
produced on soybean seeds at harvest time. This data agree with previous studies (Oviedo 
et al., 2009a, 2010) in which we have demonstrated that the environmental conditions (aW 

and temperature) optimum for growth and mycotoxin production by A. alternata on 
soybean-base media were similar to those occurring during soybean development in the 
field until harvest.  
During the last five years numerous studies dealing with AOH and AME toxicity have been 
published. Both mycotoxins have been reported to have genotoxic, mutagenic and 
carcinogenic effects (Ostry, 2008; Logrieco et al., 2009). Also, have been suggested that, the 
mutagenicity of AOH may have bearing on the carcinogenicity of this mycotoxin. Recently 
Tiemann et al. (2009) have demonstrated that AOH and AME, at similar concentration levels 
found in the present study, negatively affected progesterone synthesis in porcine granulosa 
cells in vitro. In view of the fact that granulosa cells directly influence the metabolic and 
structural growth of the oocyte (Albertini  et al., 2001), exposure to AOH or AME may 
eventually affect reproductive performance by interfering with follicular development in 
swine and possibly other mammalian species. Feedstuff should therefore be carefully 
controlled for Alternaria toxins content. 

4. Fate of fungal and mycotoxin contamination during soybean meal 
production process 

Soybean production and its by-products (oil and meal) form one of the most important 
economic activities in Argentina.  At present, Argentina is the world´s first exporter of 
soybean meal and oil and the third producer of soybean, behind USA and Brazil (Lopez et 
al., 2008). Hygienic safety of soybean and by-products depends on fungal contamination 
among other microorganisms. However, with European Union legislation imminent, the 
consideration of mycotoxins is becoming increasingly important. 
The fungal and mycotoxin contamination on soybean used in the soy meal production was 
examined, in order to identify critical control points (CCPs) in the process. Respect to fungal 
contamination, the levels of fungal propagules in all points of the process were no higher 
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than 104 cfu/g, value considered safe by GMP14 normative. However several potential 
toxigenic fungi were detected, especially species belonging to the genera Fusarium and 
Aspergillus. Among Fusarium species, F. verticillioides was most frequently recovered (60% of 
isolates), followed by F. oxysporum, F. subglutinans, F. proliferatum, F. semitectum and F. 
graminearum. The genus Aspergillus was the second most frequent genus isolated and the 
dominant Aspergillus species identified belong to the section Flavi (A. flavus) and section 
Nigri (A. niger aggregate). According to the species identified, the natural occurrence of 
aflatoxins (produced mainly by A. flavus), fumonisins (produced by F. verticillioides and F. 
proliferatum) and deoxynivalenol (DON) and zearalenone (produced mainly by F. 
graminearum) were analyzed at six points in soybean meal production process. Previously, in 
order to evaluate the natural occurrence of these mycotoxins, adequate methodologies for 
their determination on soybean and soy meal by using HPLC analysis were optimized 
(Barros et al., 2008a, Barros personal communication).  
Aflatoxin B1 and fumonisin B1 were detected in a few samples at low levels and no 
zearalenone contamination was observed. DON showed higher incidence than aflatoxins 
and fumonisins and was detected in different points of the process at ppm levels. However, 
F. graminearum, the main responsible for cereal contamination with DON in Argentina, was 
recovered at very low frequency. This result showed that DON contamination of soybean 
seed occurred at field stage previous to harvest. For this reason, the dynamics of Fusarium 
populations at field stage and specifically in the reproductive growth stages where the 
soybean seed is developed was evaluated. 

5. Conclusion 

This chapter summarizes new information on toxigenic fungi and mycotoxin contamination 
on soybean at preharvest, harvest and processing stages. Also data on ecophysiology of the 
most important genus and species isolated are provided. Although, Alternaria mycotoxins 
are not yet regulated, their toxicity is at present under revision. Fusarium mycotoxins are 
regulated both in food and feedstuff. All the presented information are relevant from the 
point of view of food safety, since mycotoxins are natural contaminants and their presence is 
unavoidable. It is important to reduce their presence and optimized prevention strategies at 
all stages of food and feed chains.  
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