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1. Introduction     

In recent two decades, research of underwater microrobots developed at a high speed. They 
can be widely applied in the field of underwater monitoring operations including pollution 
detection, video mapping, and exploration of unstructured underwater environments. 
Based on the underwater monitoring, this kind of microrobot is of great interest for cleaning 
the micro pipeline in the radiate area, getting samples from the seabed for archeology or 
mining, and so on (Kim et al., 2005; Behkam & Sitti, 2006; McGovern et al., 2008). For 
example, some underwater robots with screw propellers have been developed. However, 
the electromagnetic structure of traditional motors is difficult to shrink. So, motors are rarely 
found in this sort of application (Zhang et al., 2006a; Wang et al., 2008), and special actuator 
materials are used instead. As a result, many kinds of smart materials, such as ionic polymer 
metal composite (IPMC), piezoelectric elements, pneumatic actuator, shape memory alloy, 
which can be used as artificial muscles, have been reported (Heo, 2007; Park et al., 2007). 
Although problems such as electrical leakage, water safety, physical bulk, and high stiffness 
persist in real applications, these smart materials have been widely used as actuators to 
develop new type of microrobot. 
Ionic polymer metal composite (IPMC) is an innovative material made of an ionic polymer 
membrane chemically plated with gold electrodes on both sides. Its actuation characteristics, 
such as suitable response time, high bending deformation and long life, have significant 
potential for the propulsion of underwater microrobots. Flexible IPMC propulsion blades 
operating at low driving voltages provide many new possibilities for underwater 
locomotion applications (Lee & Kim, 2006; Nakadoi & Yamakita, 2006; Dogruer et al., 2007; 
Punning et al., 2007; Liu et al., 2008). They have been widely used on soft robotic actuators 
such as artificial muscles, as well as on dynamic sensors (Guo et al., 2008b; Ye et al., 2008). 
Now, many kinds of underwater microrobots have been developed using IPMC actuators as 
artificial muscles to propel the robots back and forth. They are widely used in swimming 
microrobots as oscillating or undulating fins where fast response is required (Jung et al., 
2003; Guo et al., 2004; Kamamichi, 2006; Guo et al., 2007; Brunetto et al., 2008). IPMC 
actuators are also used for underwater bipedal walking microrobots (Kamamichi et al., 2003; 
Guo et al., 2006; Yim et al., 2007), and a kind of ion-conducting polymer gel film microleg 
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with two DOF has been developed (Zhang et al., 2006c). In addition, a six-legged insect-
inspired underwater walking microrobot has also been described (Zhang et al., 2006d). For 
the six-legged one, the driving forces on the left and right sides are different because of the 
device’s asymmetry. It has difficulty maintaining a straight path when walking forward. 
Because its centre of gravity and centre of rotation are not the same, it cannot be positioned 
precisely, and it consumes a lot of energy while rotating. In addition, the six-legged device 
cannot perform the movements required to dive or surface. With the aim of creating a 
compact structure with efficient and precise locomotion, we first developed a biomimetic 
underwater microrobot with eight IPMC actuators as legs to provide better performance in 
walking and rotating.   
The remainder of this paper consists of five parts. Firstly, we described the design of the 

biomimetic leg shown in Figure 2. Secondly, we proposed a new type of microrobot with 

three DOF shown in Figure 4, including its walking, rotating, and floating mechanisms. 

Thirdly, we evaluated the mechanical behavior of the IPMC actuator, analyzed the forces 

applied to the four driving legs and simulated the walking speed. Fourthly, we developed 

the prototype microrobot and carried out experiments to measure its walking and rotating 

speeds on underwater flat. And the last is our conclusions. 

2. The biomimetic locomotion 

Each leg of a stick insect is composed of a coxa, a femur, a tibiae, and a tarsus. The tarsus is 

also called foot, and does not contribute to the movements. The coxa offers the foot one DOF 

motion in the direction of movement. The femur and the tibiae offer the foot a 2-DOF 

motion to enable it to find a reliable foothold together in the swing-search phase and touch 

the ground and support the body while moving in the stance phase, as shown in Figure 1. 

(Zhang et al., 2006a; Zhang et al., 2006b; Zhang et al., 2006d) 

Based on the walking motion of the stick insect, a stick insect inspired biomimetic 

locomotion prototype using two IPMC actuators is developed, as shown in Figure 2. The 

actuator in vertical direction is called the driver. The actuator in the horizontal direction is 

called the supporter. The free end of the driver is the foot. The driver and supporter are 

controlled by two channels of square wave signals, with the same frequency. The driver and 

supporter can bend along Tra.2 and Tra.1 respectively. The phase of supporter is 90 degrees 

delayed than that of driver, so that driver and supporter can cooperate with each other in 

clawing motion as shown in Figure 3, where the swing-search phase is from (a) to (d) and 

the stance phase is from (d) to (e) (Zhang et al., 2006c; Zhang et al., 2006d). 

 

 
 

Fig. 1. Two phases in stick insect walking 
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Fig. 2. The prototype of the biomimetic locomotion 
 

 

Fig. 3. One step cycle of the biomimetic locomotion 
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3. Proposed Eight-legged Microrobot 

3.1 Proposed Eight-legged Microrobot Structure 

Using this locomotion, we had previously developed several microrobots (Zhang et al., 

2006a; Zhang et al., 2006d). As shown in Figure 4, both of them have six IPMC actuators on 

plastic film body, which are divided into two groups, the drivers are from A to C, and the 

supporters are the others. 

Walker-1 can not only walk in 3 straight lines, but also rotate around its symmetric axis. Its 

disadvantage is that its moving motion is inefficient because one driver always resists 

forward moving limited by its structure(Zhang et al., 2006d). For the Walker-2, the drivers 

and the supporters are on both sides of a rectangle film body. However, the driving forces 

on the left and right sides are different because of the device’s asymmetry. So, it has 

difficulty maintaining a straight path when walking forward. Because its centre of gravity 

and centre of rotation are not the same, it cannot be positioned precisely, and it consumes a 

lot of energy while rotating. In addition, it cannot perform the movements required to dive 

or surface with a stable gesture for its asymmetry. 

 
 

    
 

                            Walker-1                                                           Walker-2 
 

Fig. 4. Photos of previously developed six-legged biomimetic microrobots 

To inherit the advantages of previously developed microrobots and overcome their 

disadvantages, we proposed a new biomimetic microrobot with a centrosymmetric structure 

around which the eight legs are symmetrically distributed, as shown in Figure 5 and Figure 

6. It is 33 mm long, 56 mm wide, and 9 mm high. It has eight IPMC actuators designated A 

through H. Actuators A, B, C, and D are the drivers, and their bending directions are shown 

in Figure 7. The other four actuators are supporters. The actuators are all 11 mm long, 3 mm 

wide, and 0.2 mm thick. The distance between two adjacent drivers or between a driver and 

a supporter is 10 mm (Guo et al. 2008a; Guo et al. 2009). 

The biomimetic microrobot is capable of walking, rotating, and floating. Table 1 lists the 

control strategies for crawling.  
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Fig. 5. Proposed eight-legged biomimetic microrobot 

 

 

Fig. 6. Proposed microrobot structure 

 

 

Fig. 7. Bending directions for the four drivers 
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Motions A B C D 

Walking forward + + + + 

Walking backward - - - - 

Rotating in clockwise + + - - 

Rotating in counter clockwise - - + + 

A, B, C, and D stand for the drivers, as shown in Fig. 7. “+” and “-” mean the drivers bending forward 
and backward, respectively. 

Table 1.  Control strategies for crawling locomotion 

3.2 Crawling motion mechanism 

The drivers and supporters are driven at the same oscillating frequency. When crawling, the 
phase of the supporters lags that of the four drivers by 90°. Each step cycle of the walking 
motion can be separated into four periods as shown in Figure 8: 
1. From d to a, the supporters lift the body up, and the drivers are off the ground. 
2. From a to b, the drivers bend forward. 
3. From b to c, the supporters bend upward far enough so that they are off the ground, 

while the drivers in contact with the ground support the body. 
4. From c to d, the drivers bend backward in the propulsion stroke, and the body is 

pushed forward (Guo et al., 2008a). 
During periods (1), (2), and (3), the drivers are off the ground and move to another foothold 
point with the help of the supporters. In period (4), the drivers push the body forward.  
The walking speed is determined by the displacement of the drivers and the frequency of 
the control signal. Because the four drivers are distributed symmetrically on both sides of 
the structure and they have the same size and mass, the four drivers support equivalent 
loads and drag forces. Therefore, the four drivers experience the same displacement for the 
same applied input voltage. The deflections of all the drivers are equal, and they experience 
the same displacement in each step. The walking speeds on each side of the structure are the 
same. Suppose that the displacement of the actuator without a payload is d0, and the 
microrobot can move forward with a displacement of d in one step cycle. Because of the 
payload or water resistance, a decrease Δd in the displacement of the drivers cannot be 
ignored. Equation (1) describes the relationship between d0 and d, and Eq. (2) describes the 
walking speed, where v is the average speed and f is the frequency of the input signal. 

 0d d d= − Δ  (1) 

 0( )v d d f= − Δ ×  (2) 

 

Fig. 8. One step cycle of walking forward. The ● marks indicate which legs contact the 
ground. 
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3.3 Rotating motion mechanism 

Figure 9 shows the example of counter-clockwise rotation. From c to d, the drivers push the 
body to rotate. In the other periods, the drivers are pushed up by the supporters to prepare 
for the next stroke (Guo et al., 2008b). 

 

Fig. 9. One step cycle of the rotating motion. The ● marks indicate which legs contact the 
ground. 

The speed of the rotating motion is determined by the angle of the driver in one cycle and 
the frequency of the step, as shown in Figure 10 (a). The device can rotate by an angle of θ in 
one step cycle, as shown in Eq. (3). 

 
2L L

R D
θ = =   (3) 

Where L is the length of the rotating arc, R is the radius of the rotating rotundity, and D is 
the diameter, as shown in Figure 10 (a) and Figure 10 (c). The diameter D could be 
calculated using Eq. (4).  

 2 2(10 ) (56 2 )D d l= + + − Δ   (4) 

Where d is the displacement of the driver in the stance phase and Δl stands for the 
displacement decrease of the IPMC actuator, as shown in Eq. (5). 

 sl l lΔ = −  (5) 

Where l is the length of IPMC actuator, l and ls are shown in Figure 10 (b). Based on the 
geometry theorem, we can get the Eq. (6).  

 AN BN CN DN× = ×   (6) 

From the Figure 10 (b), r is the bending radius of the IPMC actuator, |AN|=|BN|= ls, 
|CN|=d/2, |DN|=|2r-d/2|, so ls can be calculated as shown in Eq. (7).   

 2
2 2

s

d d
l r= × −   (7) 

According to Eq. (3), Eq. (4), Eq. (5), and Eq. (7), the device can rotate by an angle of θ in one 
step cycle, as shown in Eq. (8). 

 
2

2

2 2

(10 ) 56 2 2
2 2

L L L

R D
d d

d l r

θ = = =
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ + − − ⋅ −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (8) 
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Equation (9) gives the rotating speed. Here, because the rotating arc L ≈ d, we can 
approximate L by d in Eq. (9). The ω and f are the rotating speed and the frequency, 
respectively. Figure 10 (a) shows that the structure’s centre of rotation is at point O, which is 
also the structure’s centre of symmetry. Because the eight legs are symmetrically distributed 
around the centre of symmetry of the centrosymmetric structure and because the eight legs 
have the same size and mass, the centre of symmetry is also the centre of gravity. Thus, the 
centre of rotation of the microrobot is its centre of gravity. In addition, because the 
oscillating directions of the four drivers are close to perpendicular to the radius of rotation, 
the eight-legged device has a larger torsion angle than did the previous six-legged version.  

 0

2

2

2( )
*

(10 ) 56 2 2
2 2

d d
f f

d d
d l r

ω θ − Δ
= =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ + − − ⋅ −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (9) 

3.4 Floating motion mechanism 

The water around the surface of the IPMC actuators is electrolysed by decreasing the 
frequency of the applied voltage to 0.3 Hz. The buoyancy of the microrobot can be 
controlled by the resulting change in volume to make it float upwards, remain neutrally 
buoyant, or sink downwards. Table 2 lists the control strategies for the floating motion. 
 

Conditions Floating motions 

ρg(V + ΔV) < mg sinking downward 

ρg(V + ΔV) = mg suspended 

ρg(V + ΔV) > mg floating upward 

ρ is the density of water, g is the acceleration of gravity, V is the volume of the microrobot, ΔV is the 
volume of the bubbles, and mg is the weight of the microrobot. 

Table 2. Control strategies of floating locomotion 

4. Theoretical dynamic performance analysis 

4.1 Tip displacements of IPMC without payloads 

Figure 8 shows one step cycle for forward motion. The microrobot can move a distance of d 

during one step cycle. We measured the displacement of one IPMC actuator by applying 

different signals to simulate the theoretical crawling speed of the microrobot as shown in 

Figure 11. The IPMC actuator was 14 mm long, 3 mm wide, and 0.2 mm thick. The actuator 

was driven by a PC equipped with a digital-to-analogue converter card, and the deflection 

of the IPMC was measured by a laser displacement sensor. The laser sensor was used to 

translate the displacement to a voltage, and then the voltages were recorded and translated 

to the PC using an oscilloscope. 

Because the actuator was designed for use in a water tank, the relationship between the tip 

distance and the laser senor voltage was different from that relationship in air. This means 

that the laser sensor must first be calibrated for use in water (Guo et al, 2009). Figure 12 
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shows the tip displacements of the actuator recorded experimentally for different 

frequencies and voltages. These results show that the tip displacement decreased as the 

frequency increased. Therefore, the microrobot had a top walking speed, and the theoretical 

walking speed could be calculated using equation (2). 

 
 

 

 
 

(a) 
 

   
 
 

(b)                                                                                 (c) 
 

Fig. 10. Efficiency of the driver during rotating motion 
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Fig. 11. Displacement measuring system 
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Fig. 12. Tip displacements (d0) of the IPMC actuator 

4.2 Equivalent beam modeling 

The IPMC beam actuator can be modelled as a supported cantilever beam as shown in 

Figure 13 (Cilingir et al., 2008; Pugal et al., 2008; Stoimenov et al., 2008; Mbemmo et al., 

2008). When the microrobot crawling, the forces applied to one leg are shown in Figure 14, 

where q is the surface tension of the IPMC actuator and F is the resultant force of friction 

and water resistance to one leg. According to the cantilever beam theory, the relationship 

between the deformation curvature 1 ρ(x)  and mechanical moment M is shown in the 

equation (10). 

Oscilloscope

Amplifier 

Laser 
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Computer and DAQ/ADC
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1 M(x)

ρ(x) EI
=  (10) 

Where E is the elastic modulus for IPMC in hydrated conditions and I is the moment of 

inertia for the equivalent cantilever beam. Mechanical moment M, produced duo to IPMC 

bending is a function of applied forces. 

Also, according to curvature equation (11) of deflection curve, we can get the equation (12).  

 

2

2

3
2

2

1

1

d w

dx
ρ(x) dw

( )
dx

= −
⎡ ⎤+⎢ ⎥⎣ ⎦

 (11) 

 

2

2

3
2

21

d w
M(x)dx

EIdw
( )

dx

= −
⎡ ⎤+⎢ ⎥⎣ ⎦

 (12) 

For the small deflection, equation (12) is simplified as shown in equation (13), which is 
approximately expressed.  

 
2

2

d w M(x)

EIdx
= −   (13) 

The tip displacement generated by the surface tension q in one direction, can be defined as 

wq. So, the tip displacement in two directions 0 2 qd w= can be calculated in equation (14).  

 
2 4 4

2 2
0 2 2 ( 4 6 ) 2

24 8 4
q

qx ql ql
d w lx l x

EI EI
= × = × − + + = × =  (14) 

The tip displacement generated by the resultant force F in one direction, can be defined as 

Fw . So, the tip displacement in two directions F2d wΔ =  can be calculated in equation (15). 

As a result, the resultant deflection d can be obtained from equation (16). 

 
3 2 32

2 2 ( )
6 2 3

F

Fx Flx Fl
d w

EI EI EI
Δ = × = × − + =  (15) 

 
3

0 0

2
2 ( )

3
q F

Fl
d d d w w d

EI
= − Δ = × − = −  (16) 

In order to calculate the Fw , the IPMC bending stiffness EI can be calculated from 

experiments and equation (17) respectively.  

 
3

12

b h
I

⋅
=  (17) 
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The elastic modulus E for IPMC in hydrated conditions is measured with the value of about 

83 MPa (Park et al., 2007). With cross dimension of 0.2×3mm, the moment of inertia for the 

IPMC can be obtained about 2.0×10-3 mm4. Then the bending stiffness is calculated as 166.0 

mN·mm2. For one leg, the force F is the friction, as shown in equation (18).  

 sF Nμ=   (18) 

Where N is the positive pressure between the leg and the bottom of water tank, and μs is the 

static friction coefficient. According to the materials of IPMC and the hard steel bottom, we 

choose μs=0.30 in our experiments. With the weight of 1.63 g in air and cubage of 0.79 cm3, 

the weight of the microrobot in water can be calculated as 0.84 g, N=0.84 g. So, the force F of 

one leg can be obtained about 8.232 mN. With the length of leg l=11 mm, the force F= 0.6175 

mN, and the bending stiffness of the leg EI=166.0 mN·mm2, the displacement decreases of 

IPMC drivers dΔ can be evaluated as 3.301 mm and the walking speeds can be calculated by 

equation (2). The simulated results are shown in Figure 15. 
 

 
 

 
 
 

Fig. 13. Equivalent cantilever beam for an IPMC actuator 

 
 
 

 
 
 

Fig. 14. Forces and deflection of IPMC actuator in w direction 
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Fig. 15. Theoretical walking speed (10 V) 

5. Prototype microrobot and experiments 

5.1 Prototype eight-legged microrobot 

Figure 16 shows the prototype of the eight-legged microrobot. It has eight actuators fixed on 

a film body with wood clips. The control signals are transmitted by enamel-covered wires 

300 mm long with a copper diameter of 0.03 mm. The wires are soft enough that the 

resistance can be ignored. 

 

 

Fig. 16. Prototype eight-legged underwater microrobot 
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5.2 Walking experiment on underwater flat surface 

To evaluate walking locomotion, we carried out an experiment on an underwater plastic 

surface. We recorded the times required to walk a distance of 50 mm using different applied 

signal voltages and frequencies. The experiment was repeated 10 times for every set of 

control signals to determine the average speed on the flat surface. The experimental results 

described in Figure 17 show that the walking speed was nearly proportional to the input 

voltage, and a top speed of 8.3 mm/s was obtained with a control signal of 10 V and 5 Hz. 

We compared the experimental value with the theoretical value with a control signal of 10 

V, as shown in Figure 18. From the comparison, we could see that the experimental results 

approached the theoretical results very well. The displacement of the IPMC actuator would 

be less in real applications due to slippage and short response time at high frequencies. 

Therefore, some differences between the theoretical and experimental results still exist. 

5.3 Rotating experiment on underwater flat surface 

We also investigated the rotating motion on the same underwater plastic surface. We 

recorded the times for rotating through 90° under the influence of different voltages and 

frequencies of the control signal, and calculated the average angular velocity for 10 

repetitions of the same experiment. The experimental results described in Figure 19 show 

that the angular velocity was nearly proportional to the input voltage, and a top angular 

rotation speed of 11.86°/s was obtained for a voltage of 10 V and a frequency of 5 Hz.  

5.4 Floating experiment 

To test floating locomotion, we set the frequency of the applied voltage to 0.15 Hz to 

electrolyse the water around the IPMC surface. When the input voltage was cut off while the 

microrobot was floating upward, the microrobot gradually stopped moving upward and 

then started to sink. The maximum upward floating speed was 4 mm/s with a voltage of 10 

V as shown in Figure 20. 
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Fig. 17. Experimental walking speed results (10 V) 
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Fig. 18. Relationship between theoretical and experimental walking speeds (10 V) 
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Fig. 19. Experimental angular velocity results during rotation 
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Fig. 20. Floating motion of the eight-legged microrobot 

6. Conclusions 

To resolve the problem of the asymmetry in previous six-legged microrobots, we proposed a 
new type of underwater microrobot with eight IPMC actuators distributed symmetrically 
around the microrobot’s centre of symmetry. We evaluated the walking, rotating, and 
floating mechanisms of this proposed robot. Then, we evaluated the mechanical behavior of 
the IPMC actuator, analyzed the forces applied to the four driving legs and simulated the 
walking speed. We also constructed a prototype of the eight-legged microrobot and 
conducted experiments to measure its walking speed and angular velocity without 
payloads. Its walking and rotating speeds were faster than those of the previous six-legged 
version. We also made the microrobot dive and surface by electrolysing the water around 
the IPMC surface. Controlling the electrolysis process and thus the buoyancy of the 
microrobot was difficult, so the vertical motion of the device could not be controlled very 
well. In the following research, we developed a jellyfish-type microrobot to improve the 
floating motion. 
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