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1. Introduction 

Biomimetic membrane arrays that mimic biological cell membranes, with the ability to 

support membrane protein or peptide reconstitutions, are increasingly being recognised as 

an important platform for biomedical applications. High-throughput screening (HTS) 

systems based on membrane arrays may become an important alternative to cell-based 

screening of potential drug candidates on membrane protein targets (Fang et al., 2006). The 

advantages of such membrane arrays are the ability to address specific drug-on-target 

interactions and to identify potential unintended effects on cell membrane properties or 

interactions with secondary unwanted proteins. The transport properties of channel 

proteins or peptides may also be utilized in novel sensor based platforms such as stochastic 

sensors for detection of organic molecules in solutions for use in medicine or environmental 

monitoring (Ashkenasy et al., 2005; Capone et al., 2007; Gu et al., 1999; Nikolelis & Siontorou, 

1996).       

Provided that the effective membrane area can be scaled sufficiently, protein channel-based 

membrane arrays may be applied in larger scale biomedical applications. An example is 

aquaporins, which are water selective proteins that function to filter water, for example in 

the mammalian kidney. Aquaporin-based large scale biomembranes may be envisaged as 

the new generation hemodialysis systems for kidney patients, or be applied in general water 

purification systems. 

Biomimetic membrane peptide or protein based arrays are however not currently applied in 

commercial biomedical or biotechnological applications. While creation of a single lipid 

bilayer membrane across a Teflon aperture is a well-established technique, the creation of 

biomembrane arrays comprises a relatively new concept in the scientific field of 

biomimetics. The reasons are amongst others associated with the inherent difficulties of 

reproducible creating planar suspended membranes and a generally low stability of 

established biomembranes. Moreover, amongst the general challenges in biomimetic 

membrane design is scale up of membrane effective areas to create stable and addressable 

membrane arrays with long lifetimes (> days).  

This chapter will give an overview of recent advances in the development of planar 

biomimetic membrane arrays, and will discuss strategies and general challenges for creating 

stable and scalable biomembranes for use in biomedical applications.  
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2. Biomimetic membrane design 

Current planar membrane designs include vertically and horizontally positioned arrays in a 
chamber or device, which typically relies on membrane arrays being established either by 
manual, robotics or microfluidic techniques. The choice of design may depend on the nature 
of the membrane molecule to be incorporated (peptide or protein) and the biomedical 
application in question. 

2.1 Membrane array scaffolds  
The fabrication method as well as membrane array geometries are important parameters to 

consider when designing chambers and devices for sensor and separation applications 

based on biomimetic membrane arrays.  

Membrane proteins function among others to facilitate passive-mediated or active transport 

of small molecules and substances across the membrane, or function as receptors mediating 

intracellular signal transduction pathways upon extracellular ligand binding to the receptor. 

To utilize membrane protein function in model membrane designs, suspended membranes 

may be created that allow for transport processes to take place across the artificially made 

membranes. A membrane scaffold supporting planar suspended membrane array 

formations is illustrated in Fig. 1A.  

To create medical screening platforms or microarray assays, the multi aperture scaffold 

may further be embedded in a polymer-matrix to create individually well-defined wells 

as is known from microtiter plates or immobilized soluble protein dot-blot microarrays. 

The design illustrated in Fig. 1B shows a composite half-sandwich scaffold design with 

well-defined wells. The matrix may be designed to be porous to maintain ion and solute 

diffusion across the established membranes. This is necessary if electrophysiological 

measurements of receptor or protein channel properties are included in the design as a 

read-out parameter.  

 

 

Fig. 1. Biomimetic membrane array designs using micro-structured ethylene 
tetrafluoroethylene (ETFE) as scaffold. A) ETFE membrane scaffold for freely suspended 
planar membrane arrays. B) Composite half-sandwich membrane scaffold consisting of an 
ETFE partition partly embedded in a porous support structure to create individually well-
defined wells (grey). C) Complete composite scaffold sandwich structure. Shown in the 
illustrations are the ETFE membrane scaffold (green), surface modifications of the ETFE 
scaffold (yellow), biomimetic membranes (red), proteins (white), aqueous layers or hydrogel 
polymers (transparent) and porous supportive structures (grey).  
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To support applying a hydrostatic or an osmotic pressure across the membrane, separation 
applications based on protein channel properties require that the established biomimetic 
membrane arrays are stabilized by a complete sandwich composite structure (Fig. 1C). As 
illustrated in Fig. 1, the membrane array scaffold can be created as a modular design based 
on the actual aperture scaffold and from this design multi composite/encapsulated scaffolds 
may be created depending on the design criteria.           
Single aperture partitions can be created by various mechanical methods such as micro 

drilling, needle puncturing (Ginsburg & Noble, 1974), heated wire (Benz et al., 1975; Montal 

& Mueller, 1972; Wonderlin, Finkel & French, 1990) or electrical sparks (Minami et al., 1991). 

However, common for these methods are that they are generally not suitable for fabricating 

scaffolds comprising an array of apertures. The reasons are that these methods cannot 

produce consistent aperture sizes and position the produced apertures closely and precisely, 

and moreover these techniques have tendencies to create groin and burr edges that do not 

support stable membrane formations.  

Methods described suitable for the fabrication of membrane scaffold arrays include hot 

embossing of silicon wafers (Heyderman et al., 2003), lithography techniques (Le Pioufle et 

al., 2008; Mayer et al., 2003; Suzuki, Le Pioufle & Takeuchi, 2009), UV excimer laser ablation 

(O'Shaughnessy et al., 2007; Sandison & Morgan, 2005) and CO2-laser ablation (Vogel et al., 

2009). The ability to produce consistently sized and closely positioned apertures are 

important parameters to enable successful formation of stable membranes in array. Of the 

three mentioned techniques for creating highly defined aperture arrays, the CO2 laser 

ablation technique is likely the most versatile and cost efficient technique. It has the ability 

to ablate Teflon films with different thicknesses (micrometers to >1 mm), enable fast scaffold 

production times (milliseconds-seconds) and support easy scale up. Fig. 2 shows rectangular 

and hexagonal aperture scaffolds, respectively, micro-structured with the CO2 laser ablation 

technique.    
 

 

Fig. 2. Scanning electron microscopy images of CO2 laser fabricated ETFE multi-aperture 
scaffolds. Images show middle sections of A) Rectangular 8×8 aperture array and B) 
Hexagonal 8×8 aperture array. EFTE micro structuring was performed as described by 
Vogel et al.  (Vogel et al., 2009). 

2.2 Chamber designs for membrane array formation 
There exist numerous chamber designs to encompass a membrane array scaffold, albeit 

there are common features relating to the strategy of membrane formation. Fig. 3 

schematically illustrates some of the chamber design strategies recently developed in our 

laboratory, and we will discuss current trends and common features in chamber designs 

from these examples.  
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The vertical chamber design strategy (Fig. 3A, D) is a classical chamber design approach 
originally described for painting or folding a lipid bilayer across a Teflon partition aperture 
(Montal & Mueller, 1972; Mueller & Rudin, 1969). This design provides easy access to the 
chambers via wells from the top of the chamber and to each side of the established 
membranes. This allows for addition of solutes (e.g. creation of osmotic gradients), 
substances (e.g. ligands), transmembrane peptides, membrane proteins, liposomes or 
proteoliposomes close to established membranes. At the same time it allows for sample 
collecting via the accessible top chamber wells. In this manner, the horizontal chamber 
design has, among others, been applied to characterize vesicle fusion events with planar 
artificially made membranes (Kendall & MacDonald, 1982; Perin & MacDonald, 1989; 
Woodbury & Hall, 1988a; Woodbury & Hall, 1988b; Zimmerberg, Cohen & Finkelstein, 
1980b). The hydrophilic dye calcein was used as a traceable marker that was encapsulated 
into lipid synaptic vesicles and added to one side of the membrane (Zimmerberg, Cohen & 
Finkelstein, 1980a). Membrane fusion events with the established planar membrane resulted 
in calcein release to the other side of the membrane, which could subsequently be sampled 
and the fluorescent calcein content quantified (Zimmerberg et al., 1980a). 

 

 

Fig. 3. Chamber designs for creating biomimetic membrane arrays A), D) Automation 
technique chamber design strategy for establishing vertically oriented membrane arrays 
(Hansen et al., 2009b). B), E) Horizontal chamber design that supports combined optical–
electrical measurements of established biomimetic membranes (Hansen et al., 2009a). C), F) 
Automated microfluidic chamber design for microfluidic filling and establishment of 
biomembrane arrays (Kamila Pszon-Bartosz et al., manuscript in submission).  
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We recently developed a vertical chamber based on the classical design (Fig 3A, D), where 
the membrane formation strategy was modified to comprise a novel membrane array 
formation technique; the so called automation technique for the establishment of vertically 
positioned membrane arrays (Hansen et al., 2009b). Electrophysiological recordings across 
the membrane demonstrated that functionally membrane arrays were created in this design. 
Moreover, this technique supported membrane formations of 5×5, 8×8 and 30×21 arrays 
having average aperture diameters of 300 μm (Hansen et al., 2009b).  
In general, the vertical chamber design allows for electrophysiological recordings across the 
membrane, but the simultaneous visualization of established membranes by surface 
sensitive techniques such as fluorescence microscopy is not straightforward in this design.  
Therefore, the current trends in chamber design are directed towards the development of 
horizontal chambers that fit, or can be adapted, into modern array scanners (Le Pioufle et al., 
2008; Suzuki et al., 2009) or fluorescent microscope stages (Hemmler et al., 2005; Wilburn, 
Wright & Cliffel, 2006). Such designs are typically created to support more than one read-
out parameter such as having voltage-clamp read-outs combined with optical imaging.    
Membrane array formation in horizontal chambers is typically carried out manually by 
painting the membrane array across the scaffold or by applying microfluidic techniques to 
establish fully automated membrane formations. The rationale behind manually painting 
membranes onto scaffold arrays is that it may be adapted to robotic-based membrane 
deposition techniques, such as robotic array spotters or printers, or be re-designed to 
include microfluidic membrane formation techniques.  
The chamber fabrication time and the material costs are important parameters to ensure that 
biomimetic membrane based arrays are made economically feasible for the pharmaceutical 
industry or creating commercially available medical point-of-care microdevices. Therefore, 
preferred biomimetic membrane designs comprise single-use chambers or microarray 
devices that are based on low-cost materials, easy to produce and which are easy and 
efficient to handle. Our suggestions of how to meet these design criteria are illustrated in Fig 
3B-F. Fig 3B, 3E illustrate a single-use chamber design based on clamping membrane 
scaffold arrays between 35-mm and 50-mm culture dishes, whereas Fig. 3C, 3F show a fully 
automated and closed microfluidic device based on poly(methyl methacrylate) (PMMA), in 
which all materials are cut and micro structured by CO2 laser ablation.  

2.3 Considerations of membrane design criteria 
Membrane design criteria should preferably be defined on the basis of the biotechnological 
application in question. A commonly accepted membrane quality criterion is that 
established membranes should exhibit >1 Giga-Ohm sealing resistance in order to achive 
low ion leakage. (Reimhult & Kumar, 2008). This is however a somewhat misleading 
membrane quality criterion. Ohmic sealing that may be obtained for a given membrane is 
inversely related to the effective membrane area, meaning that >1 Giga-Ohm seals cannot 
practically be achieved with large membrane arrays. Instead, for large biomimetic 
membrane arrays it therefore makes more sense to define membrane quality as membranes 
having a large effective area as evidenced by a large value for the electrical capacitance and 
low ionic permeability as evidenced by a low value for the electrical conductance compared 
to the effective membrane area. 
Another important design criterion for biotechnological/pharmacological applications may 
be peptide or protein reconstitution yield, because this likely depend on the application. 
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Less peptides or proteins are likely needed to create a sensitive screening platform in drug 
discovery compared to creating a membrane based separation technology. Thus when 
setting up design criteria, strategies and goals for the peptide or protein reconstitution yield 
need to be taken into consideration.  
Additional design criteria for HTS systems or mass transfer flow applications may include a 
high perforation level of the membrane scaffold material so that the artificial membrane 
platform is scalable to meet various requirements for individual technical applications 
(Hansen et al., 2009b). For example functional membrane units can be arranged in arrays to 
facilitate rapid screening (e.g. by microplate readers). 
Membrane stability is a key parameter to be considered for biomimetic membrane based 
devices. There is a general consensus that biomimetic membranes should have lifetimes for 
> 1 day (Reimhult & Kumar, 2008). This will also depend on the application in question and 
on whether a membrane-based assay relies on the end user to create the membrane arrays as 
a step in the assay protocol, or if the membranes will be fully assembled in ready-to-use 
devices before reaching the end user. In addition, the membranes or precursor membrane 
solutions should exhibit transportation robustness and be storable for defined time periods.  
The methodology for membrane formation should be considered during the design of novel 
biomimetic sensor and separation platforms. This may also relate to cost efficiency and 
feasibility to enter a competitive market. Membrane formations by robotic spotting 
techniques is likely more expensive than microfluidic-based membrane formations, but 
robotic deposition techniques may be designed for an application where the total cost would 
still allow for a competitive product. Thus biomimetic membrane device fabrication 
processes and materials costs should be considered as a whole during product development.   

3. Formation of functionally stable and scalable membrane arrays 

Although, it is straightforward to set up specific design criteria for a given biomimetic based 
platform technology, there are several inherent challenges of biomimetic membrane 
formations that tend to make it difficult or challenging to meet defined design criteria in 
practice. Challenges with poor membrane stability, limited scalability and low membrane 
formation reproducibility must be solved in order to create a general commercially available 
biomimetic membrane based platform technology.  

3.1 Biomimetic membrane stability 
Poor membrane stability is a recognized challenge with artificially made membranes. This is 
an even more pronounced general challenge when working with arrays of biomimetic 
membranes. To understand why poor membrane stability is a general challenge, it is 
necessary to realize the properties and dimensions that apply for artificial biomimetic 
membranes. 
The lipid bilayer is only a few nanometers thick and varies with the acyl chain length from 
4-10 nm for natural occurring phospholipid species (Lewis & Engelman, 1983; White & 
Thompson, 1973). The partition scaffold is typically in the range of 20 to 50 micrometers in 
thickness, meaning that the aperture scaffold is thousand times thicker than the lipid 
bilayer. Lipid bilayers established across partition apertures are therefore surrounded by an 
annulus of thick parent lipid solution to compensate for the dimension differences between 
scaffold and bilayer thickness (White, 1972) (Fig. 4). Solvents such as alkanes (e.g. n-decane) 
are typically used to precondition the scaffold to membrane formations; so called partition 
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prepainting. It is believed that the solvent of the preconditioning step and/or the solvent 
present in the lipid bilayer slowly diffuses from the annulus, resulting in membrane 
destabilization and eventually membrane collapse (Malmstadt, Jeon & Schmidt, 2008).   
 

 

Fig. 4. Schematic illustration of typical dimensions of a lipid bilayer and partition aperture. 
Typical lipid bilayer thicknesses are 4-10 nanometers (nm), whereas partition thicknesses 
generally range from 20 to 50 micrometers (μm). The figure is not drawn to scale. 

Malmstadt et al. showed that membrane stability may be significantly increased (> days) by 
stabilizing the membrane surroundings by hydrogel encapsulation, which was explained to 
result from a slowing down of the solvent diffusion out of the annulus, thereby prolonging 
the membrane lifespan (Malmstadt et al., 2008). This approach is promising and may also be 
crucial for creating stable and portable devices.  
We noticed that the typical partition preconditioning step resulted in inhomogeneous 
coverage of the preconditioning solution on the partition. Since the membrane stability is 
dependent on sufficient hydrophobic interactions between the bilayer forming solution and 
the partition scaffold we speculated that a more homogenous surface pretreatment coverage 
could result in increased membrane stability (Hansen et al., 2009b). To investigate this, we 
developed an airbrush technique to homogenously cover the partition with preconditioning 
solution. This resulted in a markedly increased reproducibility in membrane formation, but 
did not increase the membrane lifetimes correspondingly (Hansen et al., 2009b).   
Ries et al. showed that the membrane electrical characteristics, dynamics of membrane 
formation and the membrane stability are strongly dependent on the partition substrate 
(Ries et al., 2004).  Inspired by this, we studied the effect of covalently modifying the 
partition substrate using surface plasma polymerization (Perry et al., submitted). By this 
technique we were able to increase the membrane stability significantly. Using double-sided 
n-hexene partition surface modifications we were able to increase membrane lifetimes from 
an average of 100 min (Hansen et al., 2009b) to average membrane lifetimes of approx. 70 
hours, while 20% of established membranes lasted  140 hours (Perry et al., submitted). These 
results underline that long term stability of established biomimetic membranes is critically 
dependent on a sufficient interaction with the hydrophobic surface of the partition and the 
bilayer forming solution. 
Another approach to increase membrane stability has been based on biomimetic membranes 
consisting of semi-synthetic or synthetic biomimetic polymers. It was recently demonstrated 
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that 8×8 arrays of triblock copolymers could successfully be established by the automation 
technique for creating biomimetic membrane arrays (Gonzalez-Perez et al., 2009). Membrane 
stability could be achieved with lifetimes up to 23 hours. Also cross-linkable lipids have 
been suggested to being able to increase membrane stability (Benz, Praß & Ringsdorf, 1982; 
Daly et al., 2006; Shenoy et al., 2005), but more work is needed to show if this strategy may 
sufficiently increase membrane lifetimes. 
Besides the membrane annulus and the biomimetic membrane composition, the aperture 
diameter is also a crucial determining factor for membrane stability. The membrane 
stability generally increases with decreasing aperture diameters. This has motivated 
designs based on nano-sized biomimetic membrane arrays (Han et al., 2007; Hemmler et 
al., 2005; Studer & Tiefenauer, 2007). The nano-sized aperture diameters should in 
principle favour long lived membranes, but they may also increase the risk of creating 
non-functional membranes, because the nanoscale aperture diameter may preclude 
sufficient membrane thinning. 
An impressive silicone nitride chip array comprising 960,000 nano-membranes has been 
developed (Han et al., 2007). The membrane lifetimes achieved using this technique were up 
to 144 hours. These lifetimes are comparable to our best membrane array lifetimes using 
plasma polymerization as pretreatment. In comparison the total membrane effective area of 
0.045 cm2 for the previously described 8×8 arrays is about 150 times larger than the total 
membrane area in the silicon nano-membrane chip array. Practical use of small nano-sized 
chip arrays could be in microelectronic devices or novel nanotechnology applications. 
While membrane stabilities of > 1 day can be achieved with recent advances in biomimetic 
membrane research, it is still difficult to create storable and transportable biomimetic 
membrane devices. However, recent developments in membrane encapsulation strategies 
suggest that robust portable biomimetic membranes may be created (Jeon, Malmstadt & 
Schmidt, 2006; Kang et al., 2007; Malmstadt et al., 2008; Oliver et al., 2008; Uto et al., 1994). 
Efforts are none the less still required to create a general stable and transportable biomimetic 
membrane design.  

3.2 Membrane array scalability 
A general biomimetic membrane platform supporting different biotechnological applications 

would preferably be scalable to meet various application requirements. Fig. 5 illustrates 

scalability in biomimetic design. Biomimetic membrane scalability is not straightforward, and 

also represents a new concept in formation of biomimetic membrane arrays. The tendency in 

biomimetic membrane work has actually been to scale down the designs. The reason is likely 

related to the inherent membrane instability, but recent advances in membrane stability (as 

discussed in section 3.1) have led to the acceptance that scaling up the arrays may indeed be 

practically feasible. In this relation, we recently demonstrated that scaling up from rectangular 

8×8 arrays (64 membranes) to rectangular 24×24 (576 membranes) or hexagonal 24×27 (648 

membranes) arrays may actually provide an overall higher membrane stability evidenced by 

significant longer lifetimes (Hansen et al., 2009a). 

An emerging concept, relying on a high degree of membrane scalability, is novel separation 
technologies based on reconstitution of functional membrane protein channels. A study of 
the solute transport characteristics and permeability of aquaporin water selective channels 
incorporated into polymer vesicles indicated that the water permeability and salt rejection of 
aquaporin based biomimetic membranes would potentially represent a novel separation 
 

www.intechopen.com



Creating Scalable and Addressable Biomimetic Membrane Arrays in Biomedicine   

 

219 

 

Fig. 5. Illustration of scalability of biomimetic membranes A) Schematic presentation of 
scalable aperture scaffolds with 300 µm diameter apertures supporting establishment of 
suspended biomembranes. B) Fluorescent images of established membranes in ETFE 
microstructured scaffolds corresponding to panel A). Established lipid membranes of 1,2-
diphytanoyl-sn-glycero-3-phosphocholine were doped with the fluorescent lipid analogue 1-
oleoyl-2- [6-[ (7-nitro-2-1, 3-benzoxadiazol-4-yl) amino]hexanoyl]-sn-glycero-3-
phosphocholine (NBD-PC) for visualization. Membranes shown in panel B) were 
established in the chamber design depicted in Fig. 3B and 3E. The membranes of panel B) 
are not shown to scale. 

technology that would be able to exceed current reverse osmosis and forward osmosis 
membranes in performance (flux and salt-rejection) (Kumar et al., 2007). Novel membrane 
protein based separation technologies may be explored, provided that the biomimetic 
membrane effective area can be scaled sufficiently. Extended research activities in 
biomimetic membrane scalability is therefore required to produce first generation 
biomimetic membrane based separation technologies. 

3.3 Membrane addressability in membrane arrays 
Biomimetic membrane arrays offer a platform for generating large membrane protein 
arrays, where a lot of information can be achieved with extremely low sample volumes 
(Suzuki & Takeuchi, 2008). A unique feature of biomimetic membrane arrays is that it offers 
the opportunity of multiplexed measurements on several levels within the same technology 
platform.  
The trend in biomimetic membrane design is to create chambers that support electrical 
recordings of membrane, protein or peptide electrical properties combined with 
fluorescence microscopy. The most straightforward designs include voltage-clamp 
measurements of an entire array to ensure that functional membranes are established 
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(Hansen et al., 2009a; Hemmler et al., 2005; Wilburn et al., 2006). In principle the electrical 
voltage clamp recordings could be adapted to individually address the membrane electrical 
properties of a membrane array. The concept of multiplexed electrical recordings was 
explored in a proof-of-concept study by Suzuki et al., demonstrating that each well of a 96-
wells microplate format could be electrically addressed (Suzuki et al., 2009). Each well of the 
96-wells plate however comprised a membrane array of 3×3 membranes, and individually 
membrane addressability was not addressed in this study, but would in principle be 
achievable in the presented design.  
A solution to enable individual addressability of membranes of a biomimetic membrane 
array could be achived by creating a microelectrode array that would be positioned beneath 
the membrane scaffold. A microelectrode array has been successfully created for 
electrochemical detection of soluble enzyme activities (Lin et al., 2008). Although the 
microelectrode array was demonstrated using immobilized soluble proteins, there is no 
principal hindrance in adapting this concept to biomimetic membrane array designs. Fig. 6 
schematically illustrates how such microelectrode arrays may be envisaged to be adapted in 
biomimetic membrane designs in order to create individually addressable membranes.  
 

 

Fig. 6. Schematic illustration of how electrical multiplexing of biomimetic membrane arrays 
may be designed. Shown are the aperture partition (green), biomimetic membranes (red), 
electronic grid (black and yellow lines). The yellow lines show the individually addressed 
membrane of the array (where line E crosses line 4).  

Electrical membrane array multiplexing using microelectrode arrays combined with in situ 
fluorescence assays would offer results read-out on two levels. The latter has been 
demonstrated on solid supported protein immobilized G-protein coupled receptor (GPCR) 
microarrays, where receptor-ligand interactions could be detected using fluorescently-
labelled ligands (Fang, Frutos & Lahiri, 2002; Fang, Lahiri & Picard, 2003). 
A third level of biomimetic membrane readouts could be created by detection of small 
solutes, ions or other substances transported across the membrane facilitated by proteins or 
peptides reconstituted into the biomimetic membrane arrays. Hemmler et al. demonstrated 
this principle in practice by visualizing transport of the aqueous calcein fluorescent dye 
across individual membranes reconstituted with ǂ-hemolysin membrane protein pores 
(Hemmler et al., 2005). Next generation of individually addressable membrane arrays could 
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be envisaged to comprise ligand-receptor assays, where extracellular binding of ligand to 
receptors would lead to a secondary signaling pathway on the other side that subsequently 
would lead to a fluorescent or colorimetric signal, which could be quantified.  For 
microfluidic devices the chamber outlets could be connected in line with fluorescence or 
absorbance detection, or alternatively connected to HPLC instruments for quantifying 
solutes or molecules. Functional demonstration of such novel conceptual ideas are however 
still to be proven in practice. 
To sum up, a lot of information may be achieved with extremely low sample volumes from 
a single biomimetic membrane array by designing platforms that enable multiple results 
read-out. Such design strategies may aim at combining microelectrode multiplexing, in situ 
fluorescence assays and quantification of transport processes across the membranes by 
sample collecting followed by solute determination or concentration measurements.  

3.4 Incorporation of membrane peptides and proteins into membrane arrays 
Functional incorporation of membrane molecules into biomimetic membranes is essential to 
create peptide or membrane protein based sensor or separation applications using 
biomimetic membrane arrays.  
Small fusiogenic membrane spanning depsipeptides or peptides generally insert 
spontaneously into established membranes, and may in many instances be dissolved in 
aqueous buffers, or other solvents (e.g. alcohols), that can be added directly to established 
membranes (Zagnoni et al., 2007). The ease of incorporation is one of the main reasons why 
they are often used to demonstrate that functional biomimetic membranes have been 
successfully established. In this sense incorporation of small fusiogenic peptides constitute a 
quality control parameter for functional biomimetic membrane formation. Moreover, some 
fusiogenic peptides may be relevant in biotechnological and biomedical applications such as 
for creation of ion-sensing electrodes or biosensors for detection of small solutes and analyte 
molecules (Borisenko, Zhang & Woolley, 2002; Capone et al., 2007; Frant & Ross, 1970; 
Nikolelis & Siontorou, 1996; Schar-Zammaretti et al., 2002). 
In contrast, medium to large membrane proteins (35-500 kDa), especially ǂ-helical 
membrane proteins, do generally not readily self-insert into pre-established membranes 
(Zagnoni et al., 2007). Although, the light-driven ǂ-helical proton-pump bacteriorhodopsin 
(BR) as well as several E. coli outer membrane (ǃ-barrel) porins (e.g. OmpA, OmpF and 
FomA) may be reconstituted into planar membranes directly from a detergent solubilized 
state (Arora et al., 2000; Pocanschi et al., 2006; Schmitt, Vrouenraets & Steinem, 2006), this is 
general not applicable for most membrane proteins. Therefore, a general reconstitution 
methodology is required for incorporation of membrane proteins into biomimetic 
membranes preserving correct protein function (e.g. ensuring correct orientation in the 
membrane).  
Another, largely unresolved challenge is how to reconstitute different proteins into 
individual membranes to create large membrane protein microarrays, as is known from 
commercially available DNA microarrays or immobilized protein dot-blot arrays. 

4. Biomedical application of biomimetic membranes  

The function of a biomimetic membrane array depends not only of successful reconstitution 
of membrane proteins in stable host lipid/polymer membranes. Also the sensitivity or 
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signal-to-noise ratio in the output-signal of the device must be high in order to allow for 
detection of analyte concentrations down to the single-molecule level. Thus sufficient 
amplification of the signal is vital for biomedical application of biomimetic membrane 
devices. This amplification generally arises as an intrinsic amplification in the biomimetic 
membrane material per se combined with external amplification. 
Due to the relative ease by which pA currents can be resolved many biomimetic membrane 
based sensor platforms have built on incorporation of ion channels (Nielsen, 2009). The 
linear gramicidins present a versatile system that can be easily engineered. The preferred 
conformation of gramicidin in lipid bilayers is a  ǃ6.3 helical fold of the pentadecapeptide. 
Upon dimerization of two gramicidin monomers from each opposing lipid monolayers an 
ion conducting dimer permeable to monovalent cations is formed. This system has revealed 
many basal features of ion channel function, for reviews see (Andersen & Koeppe, 2007; 
Koeppe & Andersen, 1996). In a freestanding bilayer gramicidin monomers diffuse 
randomly in each monolayer leaflet and dimerization is a random process. When a 
transmembrane potential is applied over a membrane separating two aqueous electrolyte 
compartments dimerization is evident as discrete amplitude changes in the recorded 
current-trace corresponding to appearance and disappearance of ion conducting dimers. 
Sensors based on matrices with engineered gramicidin channels have been presented 
(Cornell et al., 1997; Wiess-Wichert et al., 1997). These sensors operate by changing the 
conformational equilibrium between gramicidin monomers and dimers. Concretely the 
sensors are built with a lower lipid monolayer tethered to an electrode and a mobile upper 
lipid monolayer where each monolayer leaflet contains engineered gramicidins. The 
gramicidins in the lower monolayer are covalently tethered to the electrode substrate 
whereas the upper monolayer gramicidins are covalently linked to specific antibodies 
moieties which can recognize specific analyte molecules. Another set of antibodies are 
covalently linked to the upper headgroup of bilayer spanning bolalipids with the lower 
bolalipid headgroup linked to the electrode substrate. This arrangement effectively anchors 
the bolalipid-linked antibodies relative to the gramicidin monomer-linked antibodies in the 
upper monolayer.  
If no analyte molecules are present, the conformational equilibrium between monomers and 
dimers results in a randomly fluctuating current with a mean value effectively dependent 
on the total gramicidin concentration. When an analyte is present it may cross-link 
antibodies attached to the mobile outer layer channels with those attached to membrane 
spanning bolalipid-based tethers. The result is a decreased mean value of the fluctuating 
current as the outer monomers now are ‘captured’ by the analyte mediated crosslinking and 
therefore not available for dimerization with their immobilized lower monolayer channel 
partners. The increase in the effective transmembrane resistance (equivalent to a decrease of 
membrane admittance) with time provides a means to estimate the concentration of the 
analyte.  
Gramicidin channels are low molecular weight peptides and unique in the sense that 
channel function (i.e. transfer of ions across the membrane) depends on dimerization of two 
(identical) monomers. In general membrane spanning ion channels are high molecular 
weight oligomeric structures with large hydrophilic moieties where the oligomeric 
interactions may depend only on weak interactions. However, recently the voltage-gated 
HERG potassium channel has been successfully reconstituted in biomimetic membranes 
tethered on mercury showing that large ‘bulky’ channel forming oligomeric proteins can be 
functional in a confined cushion geometry (Becucci et al., 2008).   
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Ion channel gating (i.e. opening and closing of the ion conducting pathway) is a result of 
complex conformational changes in the protein. Although our structural understanding of 
ion channel gating is still limited, sensing devices based on detecting ion channel gating has 
been proposed. For example the ligand-gated nicotinic acetylcholine receptor (nAchR) ion 
channel (with acetylcholine as the ‘natural’ ligand) has been reconstituted in free-standing 
lipid bilayers (Boheim et al., 1981; Eray et al., 1995) as well as in lipopetide supported 
biomimetic membranes (Schmidt et al., 1998). Using nAchR modified with two bispecific 
antibodies the channel remains open until both antibodies bind to the same antigen (Eray et 
al., 1995).   
Also the rectifying voltage gated Kv1.5 potassium channel has been reconstituted in free 
standing and solid supported membranes (Dhoke et al., 2005; Matsuno et al., 2004). The 
current/voltage relations display symmetric sigmoidal shapes. This highlights one of the 
major challenges in biomimetic membrane design based on reconstituted ion channels. The 
sigmoidal I/V relationship indicates that approximately half of the channels are inserted so 
they are rectifying the ionic current in one direction and the other half is rectifying currents 
in the opposite direction.  For some application orientational randomness is problematic as 
membrane proteins generally have distinct intracellular and extracellular binding sites – 
thus for a sensor based on ligand detection directional control over protein insertion is 
imperative. However by careful optimization reconstitution procedures a more or less 
pronounced unidirectionality may be achieved. 
The application of gated ion channels in biosensors exemplifies how signal amplification 
occurs both intrinsically (e.g. the binding of a single ligand gives rise to currents with 106 
ions/second per channel) and externally though e.g. the I/V conversion and amplification 
of the current signal in voltage-clamp amplifiers. As we gain more insight into channel 
gating through more high-resolution structures of ion channel proteins in various 
conformational states the use of complex ion channel proteins in biomimetic membrane 
sensors may evolve from an ‘all-or-nothing’ type of response to more complex read-outs 
based on detecting ion channel sub-conductance states.  
Ion channels represent one important class of biomedical ‘targets’. Another important class 
is comprised of GPCRs. GPCRs generally detect molecules outside the cell and initiate 
downstream signalling in the form of a cascade of biochemical reactions leading to changes 
in cellular function. Since GPCRs are targets for more than 50% of all medicinal drugs there 
is a huge interest in understanding GPCR mediated signalling. Although the signalling 
process is generally well-described it is also very complex because it can involve several 
GPCRs simultaneously and the signalling may also occur by other pathways not requiring 
G-proteins. Also different ligands can result in different signals from the same GPCR 
depending on the cell type and vice versa: the same ligand can result in different signals in 
different cells. This complexity presents a major obstacle in our understanding of GPCRs but 
recently an elegant biosensing method has pointed to a way of overcoming some of the 
complexities. The sensor is based on coupling ion channels with GPCRs. Thus when the 
GPCR binds an agonist, its conformation changes, and this changes the structure of the 
coupled ion channel. (Moreau et al., 2008). The conformational change in the GPCR is thus 
transduced into a change in ion channel current. In order to make this (and other ion 
channel based methods) technologically feasible electrical measurements must be integrated 
with membrane array designs allowing for parallel current recordings.     
Another strategy is to take advantage of the electrical properties of bilayers and use them as 
insulating surfaces. Any defect in this surface is easily detectable as a change in impedance 
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and as the defect locations create strong non-specific binding sites the sensitivity of such a 
device is high (Steltze, 1993). Impedance analysis on supported lipid bilayers can also be 
used to dissect the action of channel forming peptides e.g. the bee venom melittin (Becucci et 
al., 2006a), the potassium specific valinomycin (Becucci et al., 2005), and channel forming 
proteins e.g. the bacterial outer membrane porin Omp F (Becucci, Moncelli & Guidelli, 
2006b) on the bilayer. This approach has also been used in black polymer membranes 
(BPMs) where protein driven energy transduction was realized by incorporation of 
cytochrome c oxidase (COX) (Ho et al., 2004).   
Light driven transport across membranes constitutes a particular interesting biosensing 
mechanism behind the design of membranes for energy conversion and advanced 
photoresponsive/optical devices (LaVan & Cha, 2006). BR and halorhodopsin (HR) are 
examples of light-driven ion pumps for protons (Oesterhelt & Stoeckenius, 1973) and 
chloride (and other halide)  ions respectively (Essen, 2002; Schobert & Lanyi, 1982). BR 
occurs natually in highly ordered two-dimensional arrays (purple membranes) in 
Halobacterium salinarium (Oesterhelt & Stoeckenius, 1973). BR may be reconstituted in 
proteoliposomes (Kayushin & Skulachev, 1974; Oesterhelt & Schuhmann, 1974) but direct 
adsorption of purple membrane fractions onto suitable substrates takes direct advantage of 
the natural two-dimensional layout of BR in the native membrane (Ganea et al., 1998). This 
approach has been refined by forming lipid membranes on a porous alumina substrate and 
then adsorbing purple membrane patches onto the membrane (Horn & Steinem, 2005). Also 
HR (Essen, 2002; Varo, 2000) has been reconstituted in proteoliposomes (Duschl, McCloskey 
& Lanyi, 1988) and lipid bilayer membranes (Bamberg, Hegemann & Oesterhelt, 1984). 
Biomimetic sensing with reconstituted rhodopsins rely on an optical input, but changes in 
optical properties of supported biomimetic membranes may also be used as output signal. 
For example the application of supported membranes in the design of biosensors mounted 
on electro-optical devices is attracting considerable interest. Using surface plasmon 
resonance (SPR) allows for real-time measurements of ligand binding to immobilized 
proteins (Löfås & Johnsson, 1990) and thus opens for the possibility to detect ligand binding 
to membrane spanning proteins. Immunosensing can be seen as a special case of ligand 
binding sensing and detection of Staphylococcus enterotoxin B (SEB) in milk has been 
demonstrated in a microfluidic system with supported bilayer membranes with biotinylated 
anti-SEB IgG (Dong, Scott Phillips & Chen, 2006). 
Although most work on biomimetic membrane sensors is based on incorporating 
membranes proteins, some sensor designs may also be realized in protein free systems. A 
recent example is a membrane supported by nanoporous aluminium oxide providing a high 
surface area and a protective environment against dewetting (Largueze, Kirat & Morandat, 
2010). The membrane contains polyethylene-glycol (PEG) conjugated lipids as hydrating, 
protective and tethering agents and ubiquinone which is a naturally occurring redox 
lipophilic mediator embedded within the acyl chains of the lipid bilayer. The sensing system 
is based on cyclic voltammetry and can detect alterations of lipid membranes that are 
induced by the addition of surfactants (exemplified by the commonly used non-ionic 
detergent: Triton X-100). Biomedical application of this system could for example be 
screening of pulmonary surfactant candidates, monitoring enzymatic degradation by 
lipases, and studying peptide bilayer insertion. 
Another method relies in the use of infrared absorption spectroscopy (IRAS) measurements. 
A recent study combining IRAS and voltage-clamp has demonstrated changes in specific 
regions in spectra obtained with solvent containing biomimetic membranes formed with 
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D2O in the electrolyte solutions providing insight into membrane formation (Hirano-Iwata 
et al., 2009). An OD stretching peak (arising from D2O) appeared immediately after lipid 
application (painting). The band intensity increased with time with a concomitant decrease 
in bandwidth which could reflect gradual changes in the ordering of interfacial water 
molecules. Also specific bands could be assigned to CHx stretching modes of acyl chains. 
The intensity of these bands was about ten times higher than that of the C=O modes of PC. 
Thus these CHx bands likely arose from n-decane rather than from phospholipid acyl 
chains. The band intensities decreased with time, suggesting that n-decane was slowly 
expelled. These results demonstrate that IRAS can detect self-thinning of the lipid solution 
to form biomimetic membranes, the resulting expulsion of the n-decane solvent, and 
reordering of interfacial D2O.  By extending this methodology combined IRAS-voltage-
clamp may be used to detect spectroscopic signals due to specific conformational changes in 
lipid acyl chains induced by pharmaceutical compounds as well as a biomedical screening 
assay for investigating the properties of naturally occurring (antioxidant) membrane 
residing solvents e.g. ubiquinone. 

5. Future research 

By virtue of mimicking cellular membranes, model systems based on one or few lipid 
species and reconstituted proteins have attracted considerable interest in biomedical 
research since the first appearance of black lipid membranes in the 1960ties.  With the recent 
advances in nanotechnology over the last two decades this interest has now manifested 
itself in laboratory model devices with multiparameter detection of membrane dynamics 
and protein function. Recent developments in membrane design have led to the concept of 
biomimetic membrane arrays that may provide powerful HTS assays in drug discovery and 
in creation of novel separation technologies based on membrane peptide and protein 
function.  
A reason that biomimetic membrane array devices are not already commercially available is 
related to the difficulty of creating stable and transportable devices. Although, major efforts 
have resulted in increased biomimetic membrane stability and lifetimes (several days to 
weeks), further improvements are still required. Especially transportation robustness needs 
further attention. With further developments in multi composite materials, sandwich 
structuring and encapsulation strategies storable and transportable biomimetic membrane 
based biomedical devices appear feasible. 
While general protocols for reconstitution small fusiogenic membrane-spanning 
depsipeptides and peptides are relatively well-established, general reconstitution strategies 
are urgently required for controlled and reliable incorporating medium to large membrane 
proteins (35-500 kDa) that do not reliable self-insert into established biomimetic membrane 
arrays. Moreover, designs that support reconstitution of different membrane proteins into 
individual membranes would enable fabrication of membrane peptide or protein 
microarrays similar to current DNA microarrays and protein dot-blot arrays. 
With the recent advances in biomimetic membrane array design and with further 
developments of biomimetic designs to comprise laboratory-on-a-chip (LOC) and micro-
total-analysis systems (µTAS) the ultimate goal of industrially fabricated devices for drug-
discovery, toxicologial testing, and other biomedical/pharmaceutical applications based on 
biomembrane function seem within reach.    
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