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1. Introduction  

The Human Genome Project (HUGO) opened a new era for biomedical research. However, a 
decade after the completion of HUGO, we are still standing at the very beginning regarding 
the understanding of cellular dynamics under development, disease and aging. To bridge 
between genotype and phenotype, it is imperative to track the underlying genetic interaction 
network, and perhaps more importantly, the protein-protein interaction (PPI) network, which 
forms the basal layer of the majority of fundamental cellular processes [Antal et al., 2009]. 
Current approaches for protein-protein interaction network structure detection include gene 
fusion experiments such as yeast two-hybrids, co-occurrence evidences via immuno-
coprecipitation, as well as literature or orthology-based knowledge extrapolation [Stelzl and 
Wanker, 2006]. Albeit powerful and foreseeing incremental technical improvements, these 
methods either rely heavily on experimental detection thresholds, or could be biased as they 
mirror the focus of individual fields of research. Hence, it is vital to path-find the underlying 
cellular PPI network with hypothesis-free (de novo) methods [Janes and Yaffe, 2006]. 
A biological organism can be perceived as a complex system with a set of interacting 
elements. Basically, when a meta-stable system consisting of steady number of interacting 
elements is disturbed systematically, one is able to use the system outcome to puzzle back 
the underlying network structure. This is commonly known as “reverse engineering” in 
system sciences [Bansal et al., 2007]. 
Previously, the use of such reverse engineering approaches on the exploration of cellular PPI 

network has been hampered by limited amount of high confident expression profiling data. 
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Nowadays, however, techniques for the probing of gene expression profile have been 

witnessing swirling advances. mRNA microarray, mRNA-Seq, protein antibody chips, as 

well as high resolution protein electrophoresis combined with mass spectrometry have been 

catching-up rapidly to become high throughput and high confident methodologies. These 

solid technical platforms promote the use of experimental data in sophisticated de novo 

inferring of cellular interaction networks. Recently, such approach has been applied on 

diverse complex systems [Shmulevich et al., 2002]. In a pioneering study of di Bernardo et. 

al., the reverse engineering approach was successfully applied on yeast to prioritize the gene 

products and cellular pathways involved in drug responses [di Bernardo et al., 2005]. 

It should be noted that all current reverse engineering approaches have practical limitations. 

For example, Bayesian methods need a sufficiently large number of experiments comparable 

to the number of genes. Undersampled datasets will not be adequate to generate confident 

outcome.  Multiple regression methods work well only when the identity of the perturbed 

genes is known, or can be reliably inferred from the data [Lauria et al., 2009]. Fortunately, 

this methodological constraint of gene-by-gene perturbation can be partially relaxed if 

entropy maximization principle is invited into play. The entropy maximization principle 

was based on the information theory of Shannon [Shannon, 1948]. By this mean, the most 

parsimonious PPI interaction network structure that is able to give rise to experimental 

expression profiles can be probed out despite non-complete system perturbation. This 

principle of entropy maximization has been proved useful in inferring the genetic and 

signaling networks of peripheral nerve development and yeast chemostat [Dhadialla et al., 

2009; Lezon et al., 2006]. 

Nevertheless, in multicellular organism and especially in higher eukaryotes, each 

differentiated cellular system can exhibit alternative PPI networks. This has been prohibiting 

the probing of mammalian interaction network in a large extent. Embryonic stem (ES) cells can 

be considered as the starting point of multicellular life. Apart from the high relevance to 

biomedical research, the ES cells are homogeneous self-maintaining systems. Upon a genetic 

mutation, either an ES cell will balance the effect of genetic insult and remain in their 

pluripotent state, or else undergo cell death or differentiation should the impact of the genetic 

mutation surpasses a certain threshold [Amit et al., 2000; Mao et al., 2007]. Such “all or none” 

cell faith decision constitutes a solid genomic and proteomic stability, hence put forward the 

ES cells as a brilliant model system for de novo exploration of the PPI network structure.  

In this study, we applied a hybrid approach of multiple genetic perturbations and entropy 

maximization principle on the mouse embryonic stem cells to probe the underlying cellular 

protein-protein interaction network structure. Our results suggest the essential role of 

antioxidative response, transcriptional regulation and protein degradation pathways in the 

rebalancing of the proteomic network. Moreover, our predicted protein interaction data 

indicates that overexpression of Ripk4, a protein kinase originally located on human 

chromosome 21, could severely perturb the cellular cholesterol syntheses pathways via an 

adenosyl-homocystein mediated mechanism. Our study demonstrates the value of mouse 

ES cells in protein network research in the context of system biology. 

2. Methods 

Mouse embryonic stem (ES) cells were genetically perturbed with a pallet of 14 single genes 
overexpressed individually in different subclones. We studied the impacts of these genetic 
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system stimuli on the PPI network at both transcriptomic and proteomic levels. The 
workflow of the current study is summarized in figure 1.  
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Fig. 1. Workflow of the current study. Mouse embryonic stem cells were genetically 
perturbed with a pallet of 14 single gene overexpressions. The impact of the system stimuli 
on the ES cell PPI network were readout with proteomic and mRNA microarray analyses. 
Gene expression profiling data undergo entropy maximization approach to reverse engineer 
the underlying PPI network structure (picture of microarray from Wikipedia) 

2.1 Systematic genetic perturbations on mouse ES cells 

This is a meta-study on a pellet of 14 transgenic mouse ES cell lines constructed in the frame 

of our European Research Grant “AnEUploidy”. Please refer to our previous publications 

for detailed methodology for the generation of transgenic cell lines and expression profiling 

[De Cegli et al., 2010; Mao et al., 2007]. Except for Snca-overexpression cell line, each 

transgenic ES cell line overexpresses one of the human chromosome 21 genes (Table 1). 

The impacts of these genetic system perturbations on the ES cells were examined at the 

proteomic and transcriptomic levels: All cell lines were measured by large-gel two-

dimensional protein electrophoresis [Klose, 1999], whereas 8 of the cell lines were measured by 

mRNA microarray (Affymetrix GeneChip Mouse Genome 430_2 array) [De Cegli et al., 2010].  

2.2 Theoretical framework of entropy maximum principle  

We applied the principle of entropy maximization to identify the protein interaction 

network structure with the highest probability of giving rise to our experimentally observed 

proteomic and transcriptomic data [Lezon et al., 2006]. This relies on the Boltzmann’s 

concept of entropy maximization. In effect, as the number of ways of realizing a given 

macroscopic state can very widely, the most likely state of the system is the one that 

corresponds to the largest number of microscopic states, or biggest entropy. This idea of 

entropy maximization provides a natural mechanism for revealing dominant protein-

protein interaction structure inside of a quasi-stable system. 
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Gene 
Symbol 

Protein name Category 
Original gene 

location 

Aire Autoimmune regulator  21q22.3 

Erg 
Avian erythroblastosis virus E-26 (v-ets) 
oncogene related 

21q22.3 

Nrip1 Nuclear receptor interacting protein 1 21q11.2 

Olig2 Oligodendrocyte transcription factor 2 21q22.11 

Runx1 Runt related transcription factor 1 21q22.3 

Sim2 Single-minded homolog 2 

Transcription 
factor 

21q22.13 

Pdxk Pyridoxal (pyridoxine, vitamin B6) kinase 21q22.3 

Ripk4 
Receptor-interacting serine-threonine 
kinase 4 

21q22.3 

Dyrk1A 
Dual-specificity tyrosine-(Y)-
phosphorylation regulated kinase 1A 

21q22.13 

Hunk 
Hormonally up-regulated Neu-associated 
kinase 

Protein kinase

21q22.1 

Dopey2 Dopey family member 2  21q22.2 

App Amyloid beta (A4) precursor protein  21q21.3 

Snca Synuclein, alpha  4q21 

MirLet7Cdel
99a 

       --- 21q21.1 

Mir99adelLet
7C 

--- 21q21.1 

Mir802 --- 

Micro RNA 

21q22.12 

Table 1. Characteristics of the transgenes used to genetically perturb the mouse ES cell system 

2.3 Data-driven de novo PPI network exploration 

We consider each genetic modification as a distinct stimulus on the ES cell protein 

interaction network. In this sense, the protein expression profile of each transgenic cell line 

is a sampling on the perturbed system. Given a collection of n genes, their expression 

profiles in a pellet of k perturbation experiments can be represented by a k × n expression 

matrix. Here, each row vector of this expression matrix is the expression alteration (ratio of 

transgenic to control) of a give gene under different perturbations. We generated the 

expression matrixes from the proteomic and microarray data, respectively. 

In the second step, we determined the n × n expression covariance matrix M, whose entry 
Mij is the expression covariance of gene Xi and Xj according to the following equation: 

 
, ,

1

( ) ( )
( , )

k
i m i j m j

ij i j
m

X X X X
M Cov X X

k=

− ⋅ −
= =∑  (1) 
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where m stands for index of genetic perturbation experiments (in our context: measurement 
of each transgenic cell line, and k denotes the total number of perturbations (k=14 for 
proteomic data, k=8 for transcriptomic data). 
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Fig. 2. Programming algorithms for the de novo inferring of protein-protein interaction 
information from protein expression data of multiple genetic perturbation experiments on 
mouse ES cells 

According to the maximum entropy hypothesis, the corresponding pseudo-inverse matrix 

of the expression covariance matrix represents the best fit of the underlying protein-protein 

interaction network, while maximizing the entropy of the system. The strength of 

interactions is expressed by the value of Mij-1. Positive interaction values indicate the cis-

action of the two genes. For instance, an up-regulation of gene A will lead to up-regulation 

of gene B, and vice versa. In contrast, negative values indicate the gene-gene trans-action. 

Subsequently, the pair-wise protein interaction information was extracted from the pseudo-

inverse matrix of the covariance matrix. By thresholding this PPI information, we obtained 

the dominant PPI network information from the experimental data solely, without any prior 

information of the genes. 
The algorithm described above was implemented in a Java application. This Java program 
takes the input data of the expression matrix, and process it with three consecutive modules: 
In module one, the expression matrix was reduced in terms of redundant gene symbols. 
Gene expression profiles bearing the same gene symbol, but of different probeset identity, 

www.intechopen.com



 Methodological Advances in the Culture, Manipulation and  
Utilization of Embryonic Stem Cells for Basic and Practical Applications 

 

372 

were averaged. In order to increase fidelity, only genes with multiple probesets were 
retained for further data evaluation. In module two, the covariance matrix was calculated 
according to equation 1. Subsequently, the pseudoinverse matrix of the covariance matrix 
was calculated using the BlueBit (http://www.bluebit.gr/matrix-calculator/) or ARARCNE 
software (for microarray data) [Margolin et al., 2006]. Finally, the last module extracts the 
PPI information in form of a list of pair-wise interaction: Gene A – Gene B, together with 
their corresponding edge weight obtained from the covariance values. We set the threshold 
for interaction to consider only those protein interactions with weight over 0.5 as significant. 
The overview of the programming structure is given in figure 2. 

2.4 Investigation on the obtained PPI network 

The protein interaction outcome from our entropy maximization approach was compared to 
the publicly available PPI databases via three online meta-databases:  

• String (http://string-db.org),  

• UniHI (http://theoderich.fb3.mdc-berlin.de:8080/unihi) and  

• ConsensusPathDB (http://cpdb.molgen.mpg.de). 
Together, they encompass a total of 29 individual PPI interaction databases. Network 

visualization was realized using the Cytospace software (www.cytoscape.org). The online  

graph analysis tool CFinder (cfinder.org) was used to grab the community structures (closely 

interlinked sub-graphs) in our predicted PPI network. This method first locates all cliques  of 

the network and then identifies the communities by carrying out component analysis of the 

clique-clique overlap matrix [Adamcsek et al., 2006]. Gene Ontology functional enrichment 

analysis was performed using Webgestallt (bioinfo. vanderbilt.edu/webgesta). 

2.5 Label-free mass spectrometric relative protein quantification 

The global protein expression profile of the Ripk4-overexpressing ES cells was additionally 

monitored by label-free mass spectrometry quantification [Ishihama et al., 2005]. For this 

purpose, 200 μg of total protein extract from Ripk4-overexpressing and control ES cells (as 

control we consider the same mouse ES clone in which the expression of the protein Ripk4 is 

as basal expression level) were first separated by SDS-PAGE in a gel format of 13 x 25 cm. 

Subsequently, the gel strip was cut into 16 homogeneous gel slides. These gel slides were 

subjected to in-gel trypsin digestion as previously described [Mao et al., 2010]. LC/ESI-

MS/MS was performed on a LCQ Deca XP ion trap instrument (Thermo Finnigan, 

Waltham, MA, USA). The eluting gradient is formed by 0.1 % (v/v) formic acid (FA) in 

water as solvent A and 0.1 % (v/v) FA in acetonitrile (ACN) as solvent B and run at a flow 

rate of 200 nL per minute. The gradient is linear starting with 5 % B increasing to 70 % B in 

180 minutes and additional 10 min to 95 % B. ESI-MS data acquisition is performed 

throughout the LC run. The raw data were extracted by TurboSEQUEST algorithm, trypsin 

autolytic fragments and known keratin peptides were filtered out. These files were searched 

using our in-house licensed Mascot Version 2.1 (Matrix Sciences, London, UK). The MS/MS 

ion searches are performed with the following set of parameters: database = Swiss-Prot, 

taxonomy = Mus musculus, Proteolytic enzyme = trypsin, the maximum of accepted missed 

cleavages =1, mass value = monoisotopic, peptide mass tolerance = ±0.8 Da, fragment mass 

tolerance = ±0.8 Da and as variable modifications oxidation of methionine and acrylamide 

adducts (propionamide) on cysteine are expected. Only protein identifications with over 4 

spectral counts were retained for further analysis. 
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The “Experimentally Modified Protein Abundance Index”, or “emPAI”, is a indexing value 

on the relative quantification of the proteins in a protein mixture [Ishihama et al., 2005]. The 

of emPAI ratios of the identified proteins from Ripk4-overexpression to that of control were 

used as a relative indication of protein expression alteration in ES cells bearing Ripk4 

overexpression. We used the threshold of emPAI ratio >2 or emPAI ratio < 0.5 as an 

arbitrary cut-off for up-regulation or down-regulation of proteins, respectively.  

3. Results 

3.1 De novo protein interaction network attained from experimental data  

We performed the entropy maximization based PPI exploration approach on our 
experimental data. For this purpose, we combined the proteomic and transcriptomic 
expression data of the transgenic mouse ES cell lines, whose protein expression profile have 

been investigated previously in our laboratories. This built up a 14 × 690 expression matrix 

at the proteomic data level (8 × 8383 for transcriptomic data), where each row vector of the 
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Fig. 3. Global network of protein interactions predicted from our experimental data using 
the entropy maximization approach. Three major community structures could be detected, 
which correspond to transctipitonal regulation, proteasome, and antioxidative response 
processes. Nodes represent proteins, edges represent predicted functional interaction. 
Illustrated using Cytospace 
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expression matrix represents the expression ratio (transgne vs. parental control lines) of a 

distinct protein under divergent single gene overexpressions.  
In order to obtain the protein co-regulation data, we calculated the covariance matrix of 
these genes using the self-implemented Java program. Following equation 1, the program 
returns a 690x690 (8383 x 8383 for transcriptomic data) symmetrical matrix, with each 
element representing the covariance of gene Xi and Xj. This matrix contains information of 
the co-action of genes under genetic system perturbation. Here, the covariance values were 
normalized to dimensionless values. 
Through the pseudo-inverse matrix calculation, we generated a PPI network encompassing 

distinct proteins according to gene symbol. By taking the threshold of ± 0.5, we obtained a 
matrix where 22,206 elements were non-zero. This reduces the number of genes showing 
significant interaction to 490. Specifically, five genes (Cdv3, Fbl, Got2, Hspb1 and Set) 
showed self inhibitory effect. The obtained PPI network is illustrated in figure 3.  
Figure 4 shows the sub-graph build by the 50 most significant pair-wise protein interactions. 
Among them, 21 gene-pairs showed strong positive interaction, whereas 29 gene-pairs 
showed mutual inhibitory effect. However, the exact nature of inhibition is not to be 
deduced from our data. 
 

 

Fig. 4. Sub-graph showing the strongest pair-wise protein interactions in ES cells predicted 
by multiple genetic perturbations. Our result suggests that Ahcy represents one of the Ripk4 
targets 

3.2 Community structure analysis revealed key pathways involved in system rebalancing 
In the next step, we investigated the community structures (sub-networks) inside our predict 
protein-protein interaction network. Community structures (CS) can be loosely defined as 
subsets of nodes that are more densely interconnected among each other than with the rest of 
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the network [Newman and Girvan, 2004]. As shown in figure 3, three dominant community 
structures could be discovered in our predicted PPI network of ES cell. Respecting their 
molecular function, protein nodes of these community structures are representative for 
transcriptomic regulation, proteasome, stress-response pathways, respectively.  

3.3 Predicted High degree nodes are reminiscent to “balancer” proteins 

As can be seen in figure 3, our predicted PPI network demonstrates the small-worldness 
property and scale-free degree distribution. Specifically, the network nodes of our predicted 
PPI network vary substantially in their connectivity, with a small number of proteins 
exhibiting strong pair-wise interactions with many other genes. Table 2 lists the 20 protein 
nodes with more than three direct interaction partners. 
 

Node Degree 
Overlap to 

Balancer proteins 

Taldo1 3 Yes 

Nudt16l1 3 Yes 

Cndp2 3  

RGD1308600 3  

NSFL1C 4  

Cdv3 4  

Prdx6 4  

Psmb5 4  

Fbl 5  

Bai1 5  

Got2 5 Yes 

Tpm1 7 Yes 

Cfl1 8  

Mbd3 9  

Npm1 10 Yes 

Alb 13 Yes 

Mis12 13  

Hnrpa2b1 13 Yes 

Eno1 15 Yes 

Sod1 19  

Table 2. High degree nodes in the predicted PPI network show significant overlap to our 
previously documented “balancer” proteins 

In our previous communication, we reported our hypothesis that upon genetic 
perturbations on mouse ES cells, there are so-turned “balancer” proteins, defined as proteins 
that buffer or cushion the system, that act against the system stimuli [Mao et al., 2007]. These 
central network elements could mediate network remodeling upon perturbation [Bode et al., 
2007]. Consequently, we presume that part of these proteins with hub-like behavior could 
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have system functionalities to prevent from severe proteomic shift. Indeed, among the 20 

high degree nodes in our predicted PPI network (degree ≥ 3), eight of the proteins belong to 
our previously detected “balancer” proteins. A Gene Ontology functional enrichment 
analysis revealed their close involvement in RNA-binding, oxidative response and cellular 
transport processes (Figure 5). 
 

 

Fig. 5. Gene Ontology analysis revealed molecular function terms enriched in high degree 
protein nodes in our predicted PPI network 

3.4 Comparison of our result to public PPI data reveals overlaps and novel 
predictions 

In light of a comparison between our predicted PPI networks to publically available PPI 
databases, twelve direct pair-wise interactions predicted by our data-driven entropy 
maximization approach could be validated by public PPI databases (Table 3). For instance, 
one important protein interaction partner of the transcription factor single-minded homolog 
2 (Sim2), the Ttc3 (tetratricopeptide repeat domain 3), was also predicted by our approach. 
However, another commonly known PPI partner of Sim2, aryl hydrocarbon receptor nuclear 
translocator (Arnt), did not appear in our list of predicted PPI partners of Sim2, although 
Arnt is present in the probset list of the microarray analysis. 
In addition, 18 predicted links are similar to that documented in public databases (Table 4). 
For example, UniHI predicted the protein interaction of Fbl to many proteasome subunits 
including Psma4, Psma6, Psma7, Psma8, Psmb6 and Psmd8bp1. Here, we attempted to 
enrich this collection with an additional proteosome subunit, Psmb5, as a potential PPI 
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partner for Fbl. Moreover, the pair-wise interactions Ahcy—Npm1 was predicted by our 
data. This is coherent to the UniHI protein interaction database, which has documented an 
indirect PPI relation of “Ahcy—Fbl —Nmp1”. 
 

Direct pair-wise protein 
interaction 

Source database 

Acad8 — Hadh String 

Cfl1 —  Tmp1 String 

Prdx1 — Sod2 String 

Sod1 — Sod2 String 

Ahcy — Sod2 ORTHO 

Eno1— Eno1 ORTHO 

HnrpA2B1— Snrpa1 Reactome 

HnrpA2B1— Snrpb Reactome 

Hspb1 — Hspb1 IntAct 

Mis12 — Mis12 HPRD-Binary 

Ahcy — Mtap String 

Sim2 — Ttc3 String 

Table 3. Consensus direct pair-wise interactions between our predicted PPI and public 
available PPI databases 
 

Our prediction Previous documentation Source Database 

Alb — Slc8A3 Alb — Slc1A5, Slc25A13, Slc9A8 IntAct 

Cfl1 — Got2 Cfl1 — Got1 OPHID, ORTHO 

Cfl1 — Hspb1 Cfl — Hsph1 HPRD-Binary, CCSB-LIT 

Cfl1 — Psmb5 Cfl1 — Psme4 ORTHO 

Eno1— Psmb5 Eno1— Psmd2 ORTHO 

Fbl — Psmb5 
Fbl — Psma4, Psma6, Psma7, Psma8, 
Psmb6 and Psmd8bp1  

ORTHO, OPHID, BioGrid, 
HPRD-Binary 

Fbl — Rpl23A 
Fbl — Rpl30, Rpl4, Rpl6, Rpl8, Rplp0, 
Rplp2 

HPRD-Complex, OPHID, 
ORTHO 

Fbl — Snrpb2 Fbl — Snrpn BioGrid, HPRD-Binary 

Got2 — Psmb5 Got2 — Psmd10 ORTHO 

HnrpA2B1—Rbm14 HnrpA2B1— Rbm5, Rbm8A Reactome 

HnrpA2B1—Txn1 HnrpA2B1—Txndc10, TxnL4A ORTHO, Reactome 

Ahcy — Got2  Ahcy — Got1 ORTHO, OPHID 

Ahcy — Prdx6  Ahcy — Prdx1, Prdx2, Prdx4 ORTHO 

Got2 — Prdx6 Got2 — Prdx5 ORTHO 

Pdxk  — Kcna7 Pdxk  — Kcnma1 String 

Pdxk  — Prkg2 Pdxk  — Prkab String 

Pdxk  — Zfp469 Pdxk  — Zfp295 String 

Ahcy — Npm1 Ahcy — Fbl — Npm1 OPHID, ORTHO 

Table 4. Similar protein pair-wise interactions between our predicted PPI and public 
available databases 
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Similarly, our approach predicted three PPI partners for Pdxk: Kcna7 (potassium voltage-
gated channel, member 7), Prkg2 (Protein kinase cGMP dependent Type II), and Zfp469 
(Zinger finger protein 469), whereas analogous protein PPI partners have been documented 
in public PPI databases: Kcnma1 (potassium large conductance calcium-activated channel, 
subfamily M, alpha member 1), Prkab (protein kinase, AMP-activated) and Zfp295 (Zinger 
finger protein 295), respectively. Such overlaps increase the confidence of our predicted 
interaction list, and thus support the entropy-maximization approach as a useful method for 
the de novo PPI prediction. 

4. Discussion 

We predicted a PPI network that contains a list of possible pair-wise protein interactions in 
mouse ES cells. Notice that this PPI network resulted solely from the gene co-regulation 
experiments under multiple genetic perturbations. This demonstrates the usefulness of ES 
cells as a uniform, standardized cell system for system perturbation experiments. 
Intrinsically, our predicted PPI information is by default weighted, which infers the strength 
and nature of protein-protein interaction. This could be more superior to some other 
experimental approaches. 
In contrast to random network, the presence of community structures in our predicted PPI 
network is a signature of the hierarchical nature of intrinsic cellular PPI network. Being able 
to identify such community structures could help us explore the interplay inside the 
networks upon genetic perturbation. It should be noted that such perturbation approach 
reveals predominantly those part of the network structure that is affected by the system 
stimuli. Thus, the detected community structures in our predicted PPI network reflect the 
most significantly involved cellular pathways under genetic mutations.  
In addition, our data predicted significant protein-protein trans-interaction between Ripk4,  a 
protein kinase originally located on human chromosome 21, and Ahcy (S-adenosylhomocystein 
hydrolase). This could represent novel knowledge. Unfortunately, Ahcy was not revealed by 
the proteomic analysis, whereas the expression profile of Ahcy in microarray analysis was 
heterogeneous among different probesets. In order to in-depth analyse this issue, we performed 
an additional proteomic analysis. Indeed, using the label-free mass spectrometry protein 
quantification, we observed a 53 % concentration decrease in the Ripk4-overexpression ES cells. 
This supports our predicted PPI relation between Ahcy and Ripk4.  
It has been reported previously that in rats fed by the Ahcy enzyme inhibitor, the total 
plasma cholesterol level decreases significantly [Yamada et al., 2007]. Moreover, drug-
induced Ahcy inhibition can also lead to anemia due to low erythrocyte membrane fluidity 
[Altintas and Sezgin, 2004]. However, the direct link between Ripk4 and Ahcy has not been 
documented explicitly so far. Deduced from our de novo inferred PPI network topology, the 
overexpressing of Ripk4 could inevitably lead to the inhibition of Ahcy enzyme activity, 
which in turn leads to steroid metabolism disturbance. 
In line with this, it has been previously shown that drug induced blocking of sterol 
conversion to cholesterol in C. elegans causes serious defect in germ cell development and 
motor function [Choi et al., 2003]. This suggests the significance of cholesterol synthesis in 
neuronal function. 
Indeed, an additional post hoc functional analysis on the expression profile of Ripk4 transgenic 
ES cells showed significant down-regulation in proteins involved in lipid metabolism. This 
includes several key nuclear receptors such as retinoic acid receptor, retinoid X receptor, 
peroxisome proliferators-activated receptor and steroid hormone receptor ERR2.  
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Taken together, we may hypothesize that the overexpression of Ripk4 severely inhibits 
Ahcy’s activity. Moreover, this interaction may be important for the cholesterol synthesis 
pathways. How the interaction of Rikp4 with Ahcy could be correlated to Down syndrome 
pathology and neuronal dysfunction need to be further investigated. 

5. Conclusion 

In conclusion, this study demonstrated the feasibility of de novo tracking the structure of 
protein interaction network using a combined experimental and entropy-maximization 
approach using mouse ES cells as a model system. Albeit useful, this approach also has 
some limitations: Firstly, biological organisms are rather complex systems with vast number 
of system components. This engenders high experimental and calculation workloads. 
Secondly, the entropy maximization approach applied in this study considers only pair-wise 
protein-protein interaction. More compound interactions, such as triple node interactions or 
loop effects, which could also be relevant for the cellular PPI network, are not considered.  
Finally, it needs to be noted that like all other data-dependent modeling approaches, the 
performance of this method is highly dependent on data quality. In particular, too much of 
system reaction such as oscillation leads to high system noise, and can deleteriously 
influence the modeling outcome. In this sense, mouse ES cells could represent a warrant 
mammalian cell model of such system biological approaches due to their homogeneous and 
stable system behavior. 
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