
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

20

Dissimilar Alternative Path Search
Algorithm Using a Candidate Path Set1

Yeonjeong Jeong and Dong-Kyu Kim
Expressway & Transportation Research Institute, Seoul National University

South Korea

1. Introduction

There is a growing need for navigation services providing multiple dissimilar alternative
paths that reflect a variety of user preferences and a dynamic/stochastic variety of travel
time and cost. Providing multiple dissimilar paths, in addition to the shortest path based on
a certain attribute (travel cost, time or length), may contribute to extending the market of
navigation services and attract new customers since navigation users may prefer other
attributes, such as driving convenience and fewer right/left turns, to just saving some
minutes of driving time.
The traditional method for searching multiple paths is the K-shortest path search method,
which provides paths in the order of cost (Yen, 1971; Shier, 1976; 1979; Martins, 1984;
Azevedo et al., 1993). However, the multiple paths found by this method tend to be very
similar to each other and cannot truly be called alternative paths. A reasonable alternative
path should not only have acceptable attribute value(s) but should also be dissimilar to
previously identified paths in terms of the links used (Park et al., 2002).
To avoid unreasonable searches for the multiple paths, some methods were suggested in the
previous literature. Barra et al. (1993) suggested a link penalty method. In this method, links
of a path which was searched in the previous step have a penalty and the next path is
searched using a shortest path search algorithm with consideration of the penalties of links.
The link penalty method has no way of evaluating the quality of the set of the paths it
generates in terms of the spatial differences and the costs of the paths while it can be easily
used due to its simplicity (Akgün et al., 2000). Furthermore, this method cannot consider the
cost constraint of the alternative paths while generalized cost is one of the most important to
select alternative paths in navigation services. The link penalty method is, therefore, not
suitable for the path search algorithm for navigation services.
Meng et al. (2005) and Martí et al. (2009) formulated the multiple dissimilar path problems
as a multi-objective problem and suggested several solution algorithms. These problems
have multiple objectives varying with the purpose of researches such as minimizing average
or total costs of the paths, minimizing total population exposed and maximizing the average
of the dissimilarity between the paths. However, it takes significant time to solve the multi-
objective problem while these problems can produce the paths that meet the given

1 A preliminary version of this paper has appeared in Jeong (2010) writen in Korean.

www.intechopen.com

 Search Algorithms and Applications

410

conditions. The multi-objective problem is not suitable for the application of navigation
services since search time also is important as much as dissimilarity in navigation services.
On the other hand, Park et al. (2002) and Jeong et al. (2010) formulated the multiple
dissimilar path problems as using cost (time) and dissimilarity constraints. Each of methods
has one objective function, such as minimizing the cost of alternative path (Park et al., 2002)
or minimizing the shared length ratio between an alternative path and the previous
searched path (Jeong et al., 2010). The method suggested in Park et al. (2002) is based on the
efficient vector labeling approach (EVL) wherein a cost constraint is used for pruning a
transportation network and an overlap constraint is applied to maintain the dissimilarity of
alternative paths. The method developed by Jeong et al. (2010) provides dissimilar
alternative paths satisfying both user-specified allowable shared length ratio with already
searched paths and travel cost ratio against the shortest path. These methods can find
alternative dissimilar paths in rational time but they cannot sometimes provide the number
of alternative paths required due to their strict constraints.
The candidate path set (CPS) method is another one to use the candidate path set to provide
the number of paths required considering dissimilarity. The method suggested in Jeong et
al. (2007) establishes a candidate path set based on path deviation by executing the shortest-
path algorithm only once. The CPS method provides candidate paths based on the
previously searched paths, and thus can provide more various paths than the classical k-
shortest path search algorithm. The merit of the CPS is that dissimilarity is not used as a
strict constraint but a criterion for selecting alternative paths. In the next section, we will
explain the CPS algorithm based on Jeong et al. (2007) with a travel cost constraint and a
dissimilarity selecting criterion.

2. Proposed algorithm

2.1 Algorithm

Step 1 Find shortest paths from each node to a destination

 Find all-to-one shortest paths from each node to a destination node s.

 Denote the shortest path from some node h to a destination node s by hs
1P .

 For our interesting origin node r and destination node s ,

 rs rs rs
1A A {P }= ∪

 rs
1UB α C[P]= ×

Step 2 Update candidate path set

 When ()rs
kP {r,1, 2, ..., j 1 , j, s}= −

step 2-1

 rj rs
kkR P {s}= − , rj jsrs

kkC[R] C P c⎡ ⎤= −⎣ ⎦ , rj jsrs
kkL[R] L P⎡ ⎤= −⎣ ⎦ `

 If rj rj
kR C∈

 then go to step 3
 otherwise

 rjrs hs
c 1kP R P= +

www.intechopen.com

Dissimilar Alternative Path Search Algorithm Using a Candidate Path Set

411

 rj jhrs hs
c 1kC[P] C[R] c C[P]= + +

 rj jhrs hs
c 1kL[P] L[R] L[P]= + +`

 (where, jh O∈ , ()h r,1,2, , j 1 , j,s≠ … −)

 rjrj rj
kC C {R }= ∪

 If rs
cC[P] UB≤

 then rs rs rs
cB B {P }= ∪

step 2-2

 j j 1= −

 rj r(j 1)
k kR R {j 1}+= − + , ()r j 1rj j(j 1)

k kC[R] C[R] c
+ += − , ()r j 1rj j(j 1)

k kL[R] L[P]
+ += − `

 If rj rj
kR C∈

 then go to step 3
 otherwise

 rjrs hs
c 1kP R P= +

 rj jhrs hs
c 1kC[P] C[R] c C[P]= + +

 rj jhrs hs
c 1kL[P] L[R] L[P]= + +`

 (where, jh O∈ , h r, 1,2, , j,(j 1)≠ … +)

 rjrj rj
kC C {R }= ∪

 If rs
cC[P] UB≤

 then rs rs rs
cB B {P }= ∪

 If j r=

 then go to step 3
 otherwise go to step 2-2

Step 3 select 1+ thk alternative path

 ()
rs rsK
k crs rs rs

k 1 krs
k 1 kP B

L P P1
P argmin P A

K L Prs rs
c

+
=∈

⎡ ⎤
⎣ ⎦= ∈

⎡ ⎤
⎣ ⎦

∩∑

If user accepts that path
 then the algorithm ends
 otherwise go to step 2
where,
k : Number of alternative paths

h,i, j : Node Index (node r is an origin and node s is a destination)

α : User-specified allowable travel cost ratio

UB : Travel cost constraint (upper bound of alternative path cost)
jO : Set of nodes linked from node j

i, j< > : Link between node i and node j

www.intechopen.com

 Search Algorithms and Applications

412

ijc : Cost of link between node i and node j
ij` : Length of link between node i and node j
rsA : Set of alternative paths from node r to node s
rsB : Set of candidate paths from node r to node s
rjC : Set of subpaths for avoiding of making same candidate paths
rs
kP : thk Alternative path from node r to node s rs rs

k(P A)∈ , which is a set of

continuous nodes ()rs
kP {r,1,2, , j 1 , j,s}= … −

rs
cP : Candidate path from node r to node s rs rs

c(P B)∈ , which is a set of continuous

nodes ()rs
cP {r,1,2, , j 1 , j,s}= … −

rj
kR : Subpath of rs

k 1P − from node r to node j , which is a set of continuous nodes

 ()rj
kR {r,1,2, , j 1 , j}= … −

rj hs
1kR P+ : Path adding rj

kR and hs
1P with link j,h< >

rj
kR {j}− : Path excluding node j from rj

kR
rs
kC[P] : Cost of path rs

kP
rs
kL[P] : Length of path rs

kP
rs rs
k cL[P P]∩ : Length of overlapped link between rs

kP and rs
cP

2.2 Illustrative example

In this subsection, we explain how the CPS algorithm works using an example network of

Fig. 1, which consists of 9 nodes and 12 undirected links. In Fig. 1, the alphabetical

characters within each circle mean node indices; the numbers in front of the parentheses

denote link indices; two numbers in the parentheses are cost and length of each link,

respectively. In this example, the user-specified allowable travel cost ratio, α , is set to 1.3,

which means that we include paths with the travel cost not higher than UB by 30% into the

candidate path set .

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

Fig. 1. Example network

www.intechopen.com

Dissimilar Alternative Path Search Algorithm Using a Candidate Path Set

413

2.2.1 Finding the 1
st

 alternative path (the shortest path)

First of all, we found hs
1P from all nodes to a destination node s using a reverse shortest path

search algorithm as shown in Fig. 2. Table 1 shows the cost and length of all hs
1P . After then,

the shortest path, rs
1P {r,a,d,g,s}= , is found as shown in Fig. 3. At this time, the minimum

travel cost becomes ‘10’, and travel cost constraint, UB is set to ‘13’ as shown in Table 2.

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

Fig. 2. Shortest paths to node s

h r a b c d e f g

hs
1C[P] 10 8 5 7 6 4 5 3

hs
1L[P] 8 6 6 9 5 4 5 2

Table 1. Path costs and lengths of shortest paths

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

Fig. 3. The 1st shortest path

www.intechopen.com

 Search Algorithms and Applications

414

k rj
kR

rj
kC[R] h

rs
cP

rs
cC[P] O.R. rs

kP
rs
kC[P]

1 r,a,d,g,s 10

Table 2. Result of the 1st shortest path

2.2.2 Finding the 2
nd

 alternative path

First, we make a subpath, rg
2R {r,a,d,g}= , by deleting link 12 between node g and node s .

The cost of this subpath is calculated as ‘7’ subtracting the cost ‘3’ of deleted link 12 from the

cost ‘10’ of rs
1C[P] . Then, this subpath is stored in rgC . Node f linked from node g by link

11 is considered as a candidate node for the next path search.

The candidate path set is made as follows: The shortest path from node f to a destination

node s has been already determined as fs
1P in the step 1. Therefore, the path adding rg

2R

and fs
1P , rg fs

12R P {r,a,d,g, f ,g,s}+ = , may be the candidate path for the next alternative path.

The cost of this path is calculated as ‘14’ by adding the cost ‘2’ of cgf and the cost ‘5’ of
fs
1C[P] to the cost ‘7’ of rg

2C[R] . This path cost ‘14’ is higher than the user-specified

allowable cost (α UB 13× =), and thus the path, rg fs
12R P+ , cannot be included into the

candidate path set.

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

r a b

c d e

f g s

1 (2,2) 2 (4,3)

6 (3,2) 7 (4,5)

11 (2,3) 12 (3,2)

3 (4,4) 4 (2,1) 5 (1,2)

8 (2,4) 9 (3,3) 10 (4,4)

[] +7:RC rg

2 +2:gfc [] 5:PC fs

1
13UBα =×>

Fig. 4. Updating candidate path set by using subpath rg
2R

Next, a subpath, rd
2R {r,a,d}= is investigated by deleting link 9 between node d and node

g . The cost of this subpath is calculated as ‘4’ subtracting the cost ‘3’ of deleted link 9 from

the cost ‘7’ of rg
2C[R] . Then, this subpath is stored in rdC . Node c linked by link 6 and node

e linked by link 7 from node d are considered as the next candidate nodes for the next path

search.

In the same way mentioned above, two candidate paths, rd cs
2 1R P {r,a,d,c, f ,g,s}+ = and

rd es
2 1R P {r,a,d,e,s}+ = , are made for the next alternative path since the shortest paths from

www.intechopen.com

Dissimilar Alternative Path Search Algorithm Using a Candidate Path Set

415

node c and node e to a destination node s , as cs
1P and es

1P have been already determined

in the step 1. The cost of the path, rd cs
2 1R P+ , is calculated as ‘14’ adding the cost ‘3’ of cdc

and the cost ‘7’ of cs
1C[P] to the cost ‘4’ of rd

2C[R] and this path cannot be also included into

the candidate path set since its cost is higher than the user-specified allowable cost. On the

other hand, the cost of the path, rd es
2 1R P+ is calculated as ‘12’ adding the cost ‘4’ of cde and

the cost ‘4’ of es
1C[P] to the cost ‘4’ of rd

2C[R] . We can include this path, rd es
2 1R P+ , into the

candidate path set since its cost is not higher than the user-specified allowable cost.

Fig. 5. Updating candidate path set by using subpath rd
2R

Next, a subpath, ra
2R {r,a}= , is made by deleting link 4 between node a and node d . After

calculating the cost of this subpath as ‘2’, this subpath is stored in raC and node b linked

from node a by link 2 is considered as the next candidate. The cost of the path,
ra bs
2 1R P {r,a,b,e,s}+ = , can be calculated as ‘11’ adding the cost ‘4’ of cab and the cost ‘5’ of

bs
1C[P] to the cost ‘2’ of ra

2C[R] . This path, ra bs
2 1R P+ , can be also included into the

candidate path set since its cost is not higher than the user-specified allowable cost.

Fig. 6. Updating candidate path set by using subpath ra
2R

www.intechopen.com

 Search Algorithms and Applications

416

Finally, we make a subpath, rr
2R {r}= , by deleting link 1 between node r and node a . The

cost of this subpath is calculated as ‘0’. This subpath is stored in rrC and node c linked from

node r by link 3 will be the next candidate node for the next path search. The path
rr cs
2 1R P {r,c, f ,g,s}+ = may be the candidate path for the next alternative path since the

shortest path from node c to a destination node s has been already determined as cs
1P in the

step 1. The cost of this candidate path is calculated as ‘11’ adding the cost ‘4’ of linked crc and

the cost ‘7’ of cs
1C[P] to the cost ‘0’ of rr

2C[R] . And we can also include this path, rr cs
2 1R P+ ,

into the candidate path set since its cost is not higher than the user-specified allowable cost.

Fig. 7. Updating candidate path set by using subpath rr
2R

Because we have made all subpaths to an origin node r using the shortest path rs
1P , we can

select the second alternative path, rs
2P in the step 3. First, we calculate the overlap length

ratios of all the paths in the candidate path set by dividing overlapped length of candidate

path and the shortest path by the length ‘8’ of the shortest path. The overlapped length ratio

of the path, { }r,a,b,e,s , is the smallest one among the candidate paths, so this path becomes

the second alternative path and is deleted in the candidate path set.

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

Fig. 8. 1st path and 2nd path

www.intechopen.com

Dissimilar Alternative Path Search Algorithm Using a Candidate Path Set

417

k rj
kR

rj
kC[R] h rs

cP rs
cC[P] O.R.2 rs

kP
rs
kC[P]

1 r,a,d,g,s 10

 r,a,d,g 10-3 f r,a,d,g, f ,g,s 7+2+5=143

c r,a,d,c, f ,g,s 4+3+7=14
r,a,d 7-3

e r,a,d,e,s 4+4+4=12 3 /8

r,a 4-2 b r,a,b,e,s 2+4+5=11 2/8

2

r 2-2 c r,c, f ,g,s 0+4+7=11 2 /8

 r,a,b,e,s 11

Table 3. Result of finding the 2nd alternative path

2.2.3 Finding the 3
rd

 alternative path

Next, we will find the third alternative path rs
3P from an origin node r to a destination

node s using the second alternative path rs
2P .

First, in the same way mentioned above, we make a subpath, re
3R {r,a,b,e}= , by deleting

link 10 between node e and node s . The cost of this subpath is calculated as ‘7’ subtracting

the cost ‘4’ of deleted link 10 from the cost ‘11’ of rs
2C[P] . Then, this subpath is stored in

reC . Node d linked from node e by link 7 is considered as the first candidate node for the

third shortest path search. The cost of the path, re ds
3 1R P {r,a,b,e,d,g,s}+ = , is calculated as

‘17’ adding the cost ‘4’ of ced, the cost ‘6’ of ds
1C[P] and the cost ‘7’ of re

3C[R] . This path cost

‘17’ is higher than the user-specified allowable cost (α UB 13× =), and thus the path,
re ds
3 1R P+ , cannot be included into the candidate path set.

Fig. 9. Updating candidate path set by using subpath re
3R

2 The overlapped length ratio
3 The search stops because the path cost is higher than the user-specified allowable cost.

www.intechopen.com

 Search Algorithms and Applications

418

Next, a subpath, rb
3R {r,a,b}= , is made by deleting link 5 between node b and node e . The

cost of this subpath is calculated as ‘6’ subtracting the cost ‘1’ of deleted link 5 from the cost

‘7’ of re
3C[R] . Then, this subpath is stored in rbC . Because there is no node linked from node

b , the search stops.

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

Fig. 10. Updating candidate path set by using subpath rb
3R

Next, we make and investigate a subpath, ra
3R {r,a}= , by deleting link 2 between node a

and node b . The cost of this subpath is calculated as ‘2’ subtracting the cost ‘4’ of deleted

link 2 from the cost ‘6’ of rb
3C[R] . This subpath, however, has been already included in raC

during the second alternative path search process. Therefore, the search stops and we can

select the third alternative path, rs
3P in the step 3.

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

Fig. 11. Updating candidate path set by using subpath ra
3R

First, we calculate the average overlapped length ratios between each path in the candidate

path set and the alternative paths. The average overlapped length ratio of the path,

{r,c, f ,g,s} is the smallest one among the candidate paths, so this path becomes the third

alternative path and is deleted in the candidate path set.

www.intechopen.com

Dissimilar Alternative Path Search Algorithm Using a Candidate Path Set

419

k rj
kR

rj
kC[R] h rs

cP rs
cC[P] O.R. rs

kP rs
kC[P]

1 r,a,d,g,s 10

r,a,d,g 10-3 f r,a,d,g, f ,g,s 7+2+5=14

c r,a,d,c, f ,g,s 4+3+7=14

r,a,d 7-3
e r,a,d,e,s 4+4+4=12

1 3 6
()

2 8 12
× +

r,a 4-2 b r, a, b, e, s 2+4+5=11 2/8

2

r 2-2 c r,c, f ,g,s 0+4+7=11
1 2

(0)
2 8
× +

 r,a,b,e,s 11

r,a,b,e 11-4 d r,a,b,e,d,g,s 7+4+6=17

r,a,b 4 7-1 3

r,a 5 6-4

 r,c, f ,g,s 11

Table 4. Result of finding the 3rd alternative path

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

Fig. 12. 1st path, 2nd path and 3rd path

3. Computational results

To check the performance, all methods were applied to a real Chicago and Philadelphia
networks6. The Chicago network consists of 12,982 nodes and 39,018 links. And the

4 This search stops since there is no node linked from node b.
5 This search stops for avoiding of making same candidate paths since this subpath has been already
included in the set of subpaths

6 We used ‘chicago_network.txt’ and ‘philadelphia_network.txt’ from
http://www.bgu.ac.il/~bargera/tntp/.

www.intechopen.com

 Search Algorithms and Applications

420

Philadelphia network consists of 13,389 nodes and 40,003 links. We used ‘cost’ columns of
both network data as link costs but substituted the ‘ftime’ value ‘0.01’ for ‘0’. We used C++
for programming and implemented the solution algorithm using a computer with Pentium
Core2 Quad 2.66 GHz processor, a Windows XP operating system, and 2 GB DDR RAM.
First of all, we tested 100 iterations of the algorithm to make candidate path sets from node
25 to node 10348 based on the Philadelphia network. Table 5 shows the number of candidate
path and CPU time to the iteration. This test shows the method can provide candidate paths
quickly.

iteration # of Candidate Paths CPU time iteration # of Candidate Paths CPU time

0 1 0.141 10 274 0.234

1 48 0.141 20 450 0.359

2 91 0.156 30 629 0.547

3 91 0.156 40 847 0.812

4 137 0.172 50 971 1.016

5 137 0.172 60 1,136 1.312

6 175 0.187 70 1,278 1.609

7 218 0.203 80 1,463 2.031

8 256 0.219 90 1,544 2.297

9 274 0.234 100 1,669 2.703

Table 5. Test result of making candidate path sets

We compared the results of the EVL method and the CPS method to evaluate the suitability

of these methods for navigation services that finds multiple alternative paths. We selected

randomly 1,000 O-D (origin-destination) pairs on the Chicago network and 100 O-D pairs on

the Philadelphia network for searching for the shortest path and 9 alternative dissimilar

paths. This test determines whether the method can provide as many alternative paths as

users want; the larger the number of the paths, the better the method.

In Tables 6 and 7, the figures in parentheses refer to the specified values of constraints. For

example, 1.1 and 2.0 of the ‘user allowable travel cost ratio’ mean that the paths having

travel cost higher than the shortest path by 10% and 100%, respectively, should not be

selected for the next alternative path. In the same manner, 0.5 and 0.8 of the ‘user allowable

overlapped length ratio’ mean that the paths having 50% and 80% or more overlapped

length ratios with already searched paths, respectively, should not be selected. The value of

www.intechopen.com

Dissimilar Alternative Path Search Algorithm Using a Candidate Path Set

421

the overlapped length ratio constraint of the CPS method is 1.0 since it does not employ the

constraint.

Table 6 shows the average numbers of paths searched by each method. The results show
that the stronger the cost and overlap constraints, the fewer paths were searched. The CPS
method, which uses only the cost constraint, searched alternative paths close to the number
of paths to be required (K=9). Because CPS does not consider the overlap constraint, it can
provide almost as many alternative paths as users may want.

User allowable travel cost ratio

Chicago network Philadelphia network

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0)

Strong (0.5) EVL 2.56 EVL 7.75 EVL 1.74 EVL 7.49

Weak (0.8) EVL 4.47 EVL 7.68 EVL 3.61 EVL 7.41

User
allowable

overlapped
length ratio

None (1.0) CPS 8.80 CPS 8.97 CPS 8.83 CPS 8.91

Table 6. Average numbers of paths searched (K=9)

Table 7 shows the average CPU computation time required for each method. This test

determines which method can provide alternative paths more quickly, so the smaller the

value, the better the method. The EVL method prunes the network using the cost constraint.

Therefore, the average CPU computation time of the EVL method increases rapidly as the

cost constraint weakens while its computation time was not significantly influenced by the

overlap constraint. The CPS method searched the number of paths required more quickly

because it did not consider the overlap constraint.

User allowable travel cost ratio

Chicago network Philadelphia network

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0)

Strong (0.5) EVL 0.86 EVL 4.22 EVL 1.31 EVL 6.05

Weak (0.8) EVL 0.95 EVL 4.12 EVL 1.55 EVL 6.08

User
allowable

overlapped
length ratio

None (1.0) CPS 0.50 CPS 0.56 CPS 0.51 CPS 0.62

Table 7. Average CPU computation times (sec)

www.intechopen.com

 Search Algorithms and Applications

422

Tables 8 and 9 show the average overlap ratios for the case when one or more alternative
paths are searched and for the overall sample data (1,000 and 100 O-D pairs), respectively.
As shown in Table 8, when one or more alternative paths were searched, CPS’s average

overlapped length ratio is higher than that of EVL which has the overlap constraint.
However, it is too early to conclude that EVL has better performances than CPS since the
result of Table 8 did not reflect the cases when no alternative path was searched. When there
is no alternative path, a driver is provided only one path. Therefore, in the result of Table 8,

the overlapped length ratio was set to 1.0 when there was no alternative path.
As shown in Table 9, the result of CPS is similar to that of EVL if the result of no alternative
path is included. In other words, considering only the case when one or more alternative
paths were searched, the EVL with the overlapped length ratio constraint searched more

dissimilar paths than CPS; however, in general conditions including the case when no
alternative path was searched, whether a method considered the overlap constraint or not
does not influence the results. Summarizing all the results, then, the CPS method finds more

number of dissimilar alternative paths with similar overlap ratios to the EVL more quickly.

User allowable travel cost ratio

Chicago network Philadelphia network

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0)

Strong (0.5) EVL 0.30 EVL 0.27 EVL 0.33 EVL 0.27

Weak (0.8) EVL 0.57 EVL 0.52 EVL 0.58 EVL 0.52

User
allowable

overlapped
length ratio

None (1.0) CPS 0.60 CPS 0.56 CPS 0.58 CPS 0.50

Table 8. Average overlap ratios for the cases when one or more alternative paths were
searched

User allowable travel cost ratio

Chicago network Philadelphia network

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0)

Strong (0.5) EVL 0.49 EVL 0.28 EVL 0.49 EVL 0.31

Weak (0.8) EVL 0.62 EVL 0.53 EVL 0.63 EVL 0.55

User
allowable

overlapped
length ratio

None (1.0) CPS 0.60 CPS 0.56 CPS 0.59 CPS 0.51

Table 9. Average overlap ratios for the overall sample data

www.intechopen.com

Dissimilar Alternative Path Search Algorithm Using a Candidate Path Set

423

4. Conclusions

In this chapter, we explained that the candidate path set is made by executing a shortest
path search algorithm only once and compared the efficient vector labeling method (EVL)
and the candidate path set method (CPS) to investigate the conditions for dissimilar paths-
search algorithms by which drivers can select their own best path.
Navigation services should provide dissimilar alternative paths until their users are satisfied
with a path based on their own criteria. This study suggests the method of selecting the path
having the minimum average overlapped length ratio with a previously searched path as
the alternative path from among paths that satisfy only the cost constraint. A test based on a
real Chicago and Philadelphia networks showed that the proposed method can provide the
number of alternative dissimilar paths required more rapidly. The generalized cost
constraints are applied to all conditions at the same ratio since the travel cost stems from the
entire path. On the other hand, the overlap constraints can vary among the alternative paths.
For example, a driver may search for alternative paths until a path is provided that does not
include the section he or she does not want. Therefore, navigation services must provide
alternative paths to satisfy the various needs of users.

Drivers can select their own best paths from the alternative paths provided by using the
information on several alternative paths and can see to what degree the alternative path
provided by the service or that they select on their own is better than other paths. Drivers
can also become familiar with unfamiliar regions by using different paths.

5. References

Akgün, V., Erkut, E., and Batta, R. (2000). On Finding Dissimilar Paths, European Journal of
Operational Research, Vol. 121, pp. 232-246, 0377-2217

Azevedo, J. A., Costa, M. E. O. S., Madeira, J. J. E. R. S., and Martins, E. Q. V. (1993). An
Algorithm from the Ranking of Shortest Paths, European Journal of Operational
Research, Vol. 69, pp. 97-106, 0377-2217

Barra, T., Perez, B. and Anez, J. (1993). Multidimensional Path Search and Assignment,
Proceedings of 21st PTRC Summer Annual Conference, pp. 307-319, Manchester,
England, PTRC

Jeong, Y. J., Hong, Y., and Kim, T. J. (2007). Flexible Multipath Search Algorithm for
Multipurpose Location-based Activities, Transportation Research Record: Journal of the
Transportation Research Board, No. 2039, pp. 50-57, 0361-1981

Jeong, Y. J., Kim, T. J., Park, C. H., and Kim, D. -K. (2010). A Dissimilar Alternative Paths-
Search Algorithm for Navigation Services: A Heuristic Approach, KSCE: Journal of
Civil Engineering, Vol. 14, No. 1, pp.41-49, 1226-7988

Jeong, Y. J. (2010). A Dissimilar Paths Search Algorithm for a Multi-purpose Trip, Ph.D.
Dissertation, Seoul National University.

Martí, R., Luis González Velarde, J., and Duarte, A. (2009). Heuristics for the Bi-Objective
Path Dissimilarity Problem. Computers and Operations Research, Vol. 36, No. 11, pp.
2905-2912, 0305-0548

Martins, E. Q. V. (1984). An Algorithm for Ranking Paths that May Contain Cycles. European
Journal of Operational Research, Vol. 18, pp. 123-130, 0377-2217

www.intechopen.com

 Search Algorithms and Applications

424

Meng, Q., Lee, D. -H., Cheu, R. L. (2005). Multiobjective Vehicle Routing and Scheduling
Problem with Time Window Constraints in Hazardous Material Transportation.
ASCE: Journal of Transportation Engineering, Vol. 131, No. 9, pp. 699-707, 0733-947X

Park, D., Sharma, S. L., Rilett, L. R., and Chang, M. (2002). Identifying Multiple Reasonable
Alternative Routes: Efficient Vector Labeling Approach. Transportation Research
Record: Journal of the Transportation Research Board, No. 1783, pp. 111-118, 0361-1981

Shier, R. D. (1976). Iterative Methods for Determining the K Shortest Paths in a Network.
Networks, Vol. 6, pp. 205-229, 0028-3045

Shier, R. D. (1979). On Algorithms from Finding the K Shortest Paths in a Network.
Networks, Vol. 9, pp. 195-214, 0028-3045

Yen, J. Y. (1971). Finding the K shortest Loopless Paths in a Network. Management Science,
Vol. 17, pp. 712-716, 0025-1909

www.intechopen.com

Search Algorithms and Applications

Edited by Prof. Nashat Mansour

ISBN 978-953-307-156-5

Hard cover, 494 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Search algorithms aim to find solutions or objects with specified properties and constraints in a large solution

search space or among a collection of objects. A solution can be a set of value assignments to variables that

will satisfy the constraints or a sub-structure of a given discrete structure. In addition, there are search

algorithms, mostly probabilistic, that are designed for the prospective quantum computer. This book

demonstrates the wide applicability of search algorithms for the purpose of developing useful and practical

solutions to problems that arise in a variety of problem domains. Although it is targeted to a wide group of

readers: researchers, graduate students, and practitioners, it does not offer an exhaustive coverage of search

algorithms and applications. The chapters are organized into three parts: Population-based and quantum

search algorithms, Search algorithms for image and video processing, and Search algorithms for engineering

applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yeonjeong Jeong and Dong-Kyu Kim (2011). Dissimilar Alternative Path Search Algorithm Using a Candidate

Path Set, Search Algorithms and Applications, Prof. Nashat Mansour (Ed.), ISBN: 978-953-307-156-5, InTech,

Available from: http://www.intechopen.com/books/search-algorithms-and-applications/dissimilar-alternative-

path-search-algorithm-using-a-candidate-path-set

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

