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Dissimilar Alternative Path Search 
Algorithm Using a Candidate Path Set1 

Yeonjeong Jeong and Dong-Kyu Kim 
Expressway & Transportation Research Institute, Seoul National University 

South Korea 

1. Introduction  

There is a growing need for navigation services providing multiple dissimilar alternative 
paths that reflect a variety of user preferences and a dynamic/stochastic variety of travel 
time and cost. Providing multiple dissimilar paths, in addition to the shortest path based on 
a certain attribute (travel cost, time or length), may contribute to extending the market of 
navigation services and attract new customers since navigation users may prefer other 
attributes, such as driving convenience and fewer right/left turns, to just saving some 
minutes of driving time. 
The traditional method for searching multiple paths is the K-shortest path search method, 
which provides paths in the order of cost (Yen, 1971; Shier, 1976; 1979; Martins, 1984; 
Azevedo et al., 1993). However, the multiple paths found by this method tend to be very 
similar to each other and cannot truly be called alternative paths. A reasonable alternative 
path should not only have acceptable attribute value(s) but should also be dissimilar to 
previously identified paths in terms of the links used (Park et al., 2002). 
To avoid unreasonable searches for the multiple paths, some methods were suggested in the 
previous literature. Barra et al. (1993) suggested a link penalty method. In this method, links 
of a path which was searched in the previous step have a penalty and the next path is 
searched using a shortest path search algorithm with consideration of the penalties of links. 
The link penalty method has no way of evaluating the quality of the set of the paths it 
generates in terms of the spatial differences and the costs of the paths while it can be easily 
used due to its simplicity (Akgün et al., 2000). Furthermore, this method cannot consider the 
cost constraint of the alternative paths while generalized cost is one of the most important to 
select alternative paths in navigation services. The link penalty method is, therefore, not 
suitable for the path search algorithm for navigation services.  
Meng et al. (2005) and Martí et al. (2009) formulated the multiple dissimilar path problems 
as a multi-objective problem and suggested several solution algorithms. These problems 
have multiple objectives varying with the purpose of researches such as minimizing average 
or total costs of the paths, minimizing total population exposed and maximizing the average 
of the dissimilarity between the paths. However, it takes significant time to solve the multi-
objective problem while these problems can produce the paths that meet the given 

                                                 
1 A preliminary version of this paper has appeared in Jeong (2010) writen in Korean. 
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conditions. The multi-objective problem is not suitable for the application of navigation 
services since search time also is important as much as dissimilarity in navigation services.  
On the other hand, Park et al. (2002) and Jeong et al. (2010) formulated the multiple 
dissimilar path problems as using cost (time) and dissimilarity constraints. Each of methods 
has one objective function, such as minimizing the cost of alternative path (Park et al., 2002) 
or minimizing the shared length ratio between an alternative path and the previous 
searched path (Jeong et al., 2010). The method suggested in Park et al. (2002) is based on the 
efficient vector labeling approach (EVL) wherein a cost constraint is used for pruning a 
transportation network and an overlap constraint is applied to maintain the dissimilarity of 
alternative paths. The method developed by Jeong et al. (2010) provides dissimilar 
alternative paths satisfying both user-specified allowable shared length ratio with already 
searched paths and travel cost ratio against the shortest path. These methods can find 
alternative dissimilar paths in rational time but they cannot sometimes provide the number 
of alternative paths required due to their strict constraints.  
The candidate path set (CPS) method is another one to use the candidate path set to provide 
the number of paths required considering dissimilarity. The method suggested in Jeong et 
al. (2007) establishes a candidate path set based on path deviation by executing the shortest-
path algorithm only once. The CPS method provides candidate paths based on the 
previously searched paths, and thus can provide more various paths than the classical k-
shortest path search algorithm. The merit of the CPS is that dissimilarity is not used as a 
strict constraint but a criterion for selecting alternative paths. In the next section, we will 
explain the CPS algorithm based on Jeong et al. (2007) with a travel cost constraint and a 
dissimilarity selecting criterion. 

2. Proposed algorithm 

2.1 Algorithm 

Step 1 Find shortest paths from each node to a destination 

 Find all-to-one shortest paths from each node to a destination node s.  

 Denote the shortest path from some node h  to a destination node s  by hs
1P . 

 For our interesting origin node r  and destination node s , 

 rs rs rs
1A A {P }= ∪  

 rs
1UB α C[P ]= ×  

Step 2 Update candidate path set 

 When ( )rs
kP {r,1,  2,   ...,   j 1 ,  j,  s}= −  

step 2-1 

 rj rs
kkR P {s}= − , rj jsrs

kkC[R ] C P c⎡ ⎤= −⎣ ⎦ , rj jsrs
kkL[R ] L P⎡ ⎤= −⎣ ⎦ `  

 If rj rj
kR C∈  

  then go to step 3 
  otherwise 

   rjrs hs
c 1kP R P= +  
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   rj jhrs hs
c 1kC[P ] C[R ] c C[P ]= + +  

   rj jhrs hs
c 1kL[P ] L[R ] L[P ]= + +`  

    (where, jh O∈ , ( )h r,1,2, , j 1 , j,s≠ … − ) 

   rjrj rj
kC C {R }= ∪  

 If rs
cC[P ] UB≤  

  then rs rs rs
cB B {P }= ∪  

step 2-2 

 j j 1= −  

 rj r( j 1)
k kR R {j 1}+= − + , ( )r j 1rj j( j 1)

k kC[R ] C[R ] c
+ += − , ( )r j 1rj j( j 1)

k kL[R ] L[P ]
+ += − `  

 If rj rj
kR C∈  

  then go to step 3 
  otherwise  

   rjrs hs
c 1kP R P= +  

   rj jhrs hs
c 1kC[P ] C[R ] c C[P ]= + +  

   rj jhrs hs
c 1kL[P ] L[R ] L[P ]= + +`  

    (where, jh O∈ , h r,  1,2, , j,( j 1)≠ … + ) 

   rjrj rj
kC C {R }= ∪  

 If rs
cC[P ] UB≤  

  then rs rs rs
cB B {P }= ∪  

 If j r=  

  then go to step 3 
  otherwise go to step 2-2 

Step 3 select 1+ thk  alternative path 

  ( )
rs rsK
k crs rs rs

k 1 krs
k 1 kP B

L P P1
P argmin       P A

K L Prs rs
c

+
=∈

⎡ ⎤
⎣ ⎦= ∈

⎡ ⎤
⎣ ⎦

∩∑  

If user accepts that path  
  then the algorithm ends 
  otherwise go to step 2 
where,  
k   : Number of alternative paths 

h,i, j   : Node Index (node r  is an origin and node s  is a destination)  

α    : User-specified allowable travel cost ratio 

UB   : Travel cost constraint (upper bound of alternative path cost) 
jO   : Set of nodes linked from node j  

i, j< >   : Link between node i  and node j  
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ijc   : Cost of link between node i  and node j  
ij`   : Length of link between node i  and node j  
rsA   : Set of alternative paths from node r  to node s   
rsB   : Set of candidate paths from node r  to node s  
rjC   : Set of subpaths for avoiding of making same candidate paths  
rs
kP   : thk  Alternative path from node r  to node s  rs rs

k(P A )∈ , which is a set of  

continuous nodes ( )rs
kP {r,1,2, , j 1 , j,s}= … −  

rs
cP   : Candidate path from node r  to node s  rs rs

c(P B )∈ , which is a set of continuous 

nodes ( )rs
cP {r,1,2, , j 1 , j,s}= … −  

rj
kR   : Subpath of  rs

k 1P −  from node r  to node j , which is a set of continuous nodes  

 ( )rj
kR {r,1,2, , j 1 , j}= … −  

rj hs
1kR P+  : Path adding rj

kR  and hs
1P  with link j,h< >  

rj
kR {j}−   : Path excluding node j  from rj

kR  
rs
kC[P ]   : Cost of path rs

kP  
rs
kL[P ]   : Length of path rs

kP  
rs rs
k cL[P P ]∩  : Length of overlapped link between rs

kP  and rs
cP  

2.2 Illustrative example 

In this subsection, we explain how the CPS algorithm works using an example network of 

Fig. 1, which consists of 9 nodes and 12 undirected links. In Fig. 1, the alphabetical 

characters within each circle mean node indices; the numbers in front of the parentheses 

denote link indices; two numbers in the parentheses are cost and length of each link, 

respectively. In this example, the user-specified allowable travel cost ratio, α , is set to 1.3, 

which means that we include paths with the travel cost not higher than UB by 30% into the 

candidate path set . 

 
 

 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

 

Fig. 1. Example network 
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2.2.1 Finding the 1
st

 alternative path (the shortest path) 

First of all, we found hs
1P  from all nodes to a destination node s  using a reverse shortest path 

search algorithm as shown in Fig. 2. Table 1 shows the cost and length of all hs
1P . After then, 

the shortest path, rs
1P {r,a,d,g,s}= , is found as shown in Fig. 3. At this time, the minimum 

travel cost becomes ‘10’, and travel cost constraint, UB is set to ‘13’ as shown in Table 2. 
 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

 

Fig. 2. Shortest paths to node s 

 

h  r a  b  c  d  e  f  g  

hs
1C[P ]  10 8 5 7 6 4 5 3 

hs
1L[P ]  8 6 6 9 5 4 5 2 

Table 1. Path costs and lengths of shortest paths 

 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

 

Fig. 3. The 1st shortest path 
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k  rj
kR  

rj
kC[R ]  h  

rs
cP  

rs
cC[P ]  O.R. rs

kP  
rs
kC[P ]  

1       r,a,d,g,s  10 

Table 2. Result of the 1st shortest path 

2.2.2 Finding the 2
nd

 alternative path 

First, we make a subpath, rg
2R {r,a,d,g}= , by deleting link 12 between node g  and node s . 

The cost of this subpath is calculated as ‘7’ subtracting the cost ‘3’ of deleted link 12 from the 

cost ‘10’ of rs
1C[P ] . Then, this subpath is stored in rgC . Node f  linked from node g  by link 

11 is considered as a candidate node for the next path search.  

The candidate path set is made as follows: The shortest path from node f  to a destination 

node s  has been already determined as fs
1P  in the step 1. Therefore, the path adding rg

2R  

and fs
1P , rg fs

12R P {r,a,d,g, f ,g,s}+ = , may be the candidate path for the next alternative path. 

The cost of this path is calculated as ‘14’ by adding the cost ‘2’ of cgf and the cost ‘5’ of 
fs
1C[P ]  to the cost ‘7’ of rg

2C[R ] . This path cost ‘14’ is higher than the user-specified 

allowable cost (α UB 13× = ), and thus the path, rg fs
12R P+ , cannot be included into the 

candidate path set.  
 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

        

r a b

c d e

f g s

1 (2,2) 2 (4,3)

6 (3,2) 7 (4,5)

11 (2,3) 12 (3,2)

3 (4,4) 4 (2,1) 5 (1,2)

8 (2,4) 9 (3,3) 10 (4,4)

[ ] +7:RC rg

2 +2:gfc [ ] 5:PC fs

1
13UBα =×>

 

Fig. 4. Updating candidate path set by using subpath rg
2R  

Next, a subpath, rd
2R {r,a,d}=  is investigated by deleting link 9 between node d  and node 

g . The cost of this subpath is calculated as ‘4’ subtracting the cost ‘3’ of deleted link 9 from 

the cost ‘7’ of rg
2C[R ] . Then, this subpath is stored in rdC . Node c  linked by link 6 and node 

e  linked by link 7 from node d  are considered as the next candidate nodes for the next path 

search.  

In the same way mentioned above, two candidate paths, rd cs
2 1R P {r,a,d,c, f ,g,s}+ =  and 

rd es
2 1R P {r,a,d,e,s}+ = , are made for the next alternative path since the shortest paths from 
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node c  and node e  to a destination node s , as cs
1P  and es

1P   have been already determined 

in the step 1. The cost of the path, rd cs
2 1R P+ , is calculated as ‘14’ adding the cost ‘3’ of cdc 

and the cost ‘7’ of cs
1C[P ]  to the cost ‘4’ of rd

2C[R ]  and this path cannot be also included into 

the candidate path set since its cost is higher than the user-specified allowable cost. On the 

other hand, the cost of the path, rd es
2 1R P+  is calculated as ‘12’ adding the cost ‘4’ of cde and 

the cost ‘4’ of  es
1C[P ]  to the cost ‘4’ of rd

2C[R ] . We can include this path, rd es
2 1R P+ , into the 

candidate path set since its cost is not higher than the user-specified allowable cost.  
 

 

Fig. 5. Updating candidate path set by using subpath rd
2R  

Next, a subpath, ra
2R {r,a}= , is made by deleting link 4 between node a  and node d . After 

calculating the cost of this subpath as ‘2’, this subpath is stored in raC  and node b  linked 

from node a  by link 2 is considered as the next candidate. The cost of the path, 
ra bs
2 1R P {r,a,b,e,s}+ = , can be calculated as ‘11’ adding the cost ‘4’ of cab and the cost ‘5’ of 

bs
1C[P ]  to the cost ‘2’ of ra

2C[R ] . This path, ra bs
2 1R P+ , can be also included into the 

candidate path set since its cost is not higher than the user-specified allowable cost.  
 

 

Fig. 6. Updating candidate path set by using subpath ra
2R  
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Finally, we make a subpath, rr
2R {r}= , by deleting link 1 between node r  and node a . The 

cost of this subpath is calculated as ‘0’. This subpath is stored in rrC  and node c  linked from 

node r  by link 3 will be the next candidate node for the next path search. The path 
rr cs
2 1R P {r,c, f ,g,s}+ =  may be the candidate path for the next alternative path since the 

shortest path from node c  to a destination node s  has been already determined as cs
1P  in the 

step 1. The cost of this candidate path is calculated as ‘11’ adding the cost ‘4’ of linked crc and 

the cost ‘7’ of cs
1C[P ]  to the cost ‘0’ of rr

2C[R ] . And we can also include this path, rr cs
2 1R P+ , 

into the candidate path set since its cost is not higher than the user-specified allowable cost. 
 

 

Fig. 7. Updating candidate path set by using subpath rr
2R  

Because we have made all subpaths to an origin node r  using the shortest path rs
1P , we can 

select the second alternative path, rs
2P  in the step 3. First, we calculate the overlap length 

ratios of all the paths in the candidate path set by dividing overlapped length of candidate 

path and the shortest path by the length ‘8’ of the shortest path. The overlapped length ratio 

of the path, { }r,a,b,e,s , is the smallest one among the candidate paths, so this path becomes 

the second alternative path and is deleted in the candidate path set. 
 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

 

Fig. 8. 1st path and 2nd path 
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k   rj
kR  

rj
kC[R ]  h  rs

cP   rs
cC[P ]  O.R.2  rs

kP  
rs
kC[P ]  

1        r,a,d,g,s  10 

 r,a,d,g  10-3 f   r,a,d,g, f ,g,s  7+2+5=143  

c   r,a,d,c, f ,g,s  4+3+7=14  
r,a,d  7-3 

e   r,a,d,e,s  4+4+4=12 3 /8  

r,a  4-2 b   r,a,b,e,s  2+4+5=11 2/8 

2 

r  2-2 c   r,c, f ,g,s  0+4+7=11 2 /8  

 r,a,b,e,s  11 

Table 3. Result of finding the 2nd alternative path 

2.2.3 Finding the 3
rd

 alternative path 

Next, we will find the third alternative path rs
3P  from an origin node r  to a destination 

node s  using the second alternative path rs
2P .  

First, in the same way mentioned above, we make a subpath, re
3R {r,a,b,e}= , by deleting 

link 10 between node e  and node s . The cost of this subpath is calculated as ‘7’ subtracting 

the cost ‘4’ of deleted link 10 from the cost ‘11’ of rs
2C[P ] . Then, this subpath is stored in 

reC . Node d  linked from node e  by link 7 is considered as the first candidate node for the 

third shortest path search. The cost of the path, re ds
3 1R P {r,a,b,e,d,g,s}+ = , is calculated as 

‘17’ adding the cost ‘4’ of ced, the cost ‘6’ of  ds
1C[P ]  and the cost ‘7’ of re

3C[R ] . This path cost 

‘17’ is higher than the user-specified allowable cost (α UB 13× = ), and thus the path, 
re ds
3 1R P+ , cannot be included into the candidate path set. 

 

 

Fig. 9. Updating candidate path set by using subpath re
3R  

                                                 
2 The overlapped length ratio 
3 The search stops because the path cost is higher than the user-specified allowable cost. 
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Next, a subpath, rb
3R {r,a,b}= , is made by deleting link 5 between node b  and node e . The 

cost of this subpath is calculated as ‘6’ subtracting the cost ‘1’ of deleted link 5 from the cost 

‘7’ of re
3C[R ] . Then, this subpath is stored in rbC . Because there is no node linked from node 

b , the search stops. 
 
 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

 

Fig. 10. Updating candidate path set by using subpath rb
3R  

Next, we make and investigate a subpath, ra
3R {r,a}= , by deleting link 2 between node a  

and node b . The cost of this subpath is calculated as ‘2’ subtracting the cost ‘4’ of deleted 

link 2 from the cost ‘6’ of rb
3C[R ] . This subpath, however, has been already included in raC  

during the second alternative path search process. Therefore, the search stops and we can 

select the third alternative path, rs
3P  in the step 3. 

 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

 

Fig. 11. Updating candidate path set by using subpath ra
3R  

First, we calculate the average overlapped length ratios between each path in the candidate 

path set and the alternative paths. The average overlapped length ratio of the path, 

{r,c, f ,g,s}  is the smallest one among the candidate paths, so this path becomes the third 

alternative path and is deleted in the candidate path set. 
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k  rj
kR  

rj
kC[R ] h  rs

cP  rs
cC[P ]  O.R.  rs

kP  rs
kC[P ]  

1        r,a,d,g,s  10 

r,a,d,g  10-3 f   r,a,d,g, f ,g,s  7+2+5=14  

c   r,a,d,c, f ,g,s  4+3+7=14  

r,a,d  7-3 
e   r,a,d,e,s  4+4+4=12  

1 3 6
( )

2 8 12
× +  

r,a  4-2 b r, a, b, e, s 2+4+5=11 2/8 

2 

r  2-2 c   r,c, f ,g,s  0+4+7=11  
1 2

( 0)
2 8
× +  

 r,a,b,e,s  11 

r,a,b,e  11-4 d  r,a,b,e,d,g,s  7+4+6=17  

r,a,b 4 7-1     3 

r,a 5 6-4     

 r,c, f ,g,s  11 

Table 4. Result of finding the 3rd alternative path 

ۍ ڼ ڽ

ھ ڿ ۀ

ہ ۂ ێ

ڄڍ,ڍڃ ڌ ڄڎ,ڏڃ ڍ

ڄڍ,ڎڃ ڑ ڄڐ,ڏڃ ڒ

ڄڎ,ڍڃ ڌڌ ڄڍ,ڎڃ ڍڌ

ڄڏ,ڏڃ ڎ ڄڌ,ڍڃ ڏ ڄڍ,ڌڃ ڐ

ڄڏ,ڍڃ ړ ڄڎ,ڎڃ ڔ ڄڏ,ڏڃ ڋڌ

 

Fig. 12. 1st path, 2nd path and 3rd path 

3. Computational results 

To check the performance, all methods were applied to a real Chicago and Philadelphia 
networks6. The Chicago network consists of 12,982 nodes and 39,018 links. And the 

                                                 
4 This search stops since there is no node linked from node b. 
5 This search stops for avoiding of making same candidate paths since this subpath has been already 
included in the set of subpaths 

6 We used ‘chicago_network.txt’ and ‘philadelphia_network.txt’ from 
http://www.bgu.ac.il/~bargera/tntp/. 
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Philadelphia network consists of 13,389 nodes and 40,003 links. We used ‘cost’ columns of 
both network data as link costs but substituted the ‘ftime’ value ‘0.01’ for ‘0’. We used C++ 
for programming and implemented the solution algorithm using a computer with Pentium 
Core2 Quad 2.66 GHz processor, a Windows XP operating system, and 2 GB DDR RAM.  
First of all, we tested 100 iterations of the algorithm to make candidate path sets from node 
25 to node 10348 based on the Philadelphia network. Table 5 shows the number of candidate 
path and CPU time to the iteration. This test shows the method can provide candidate paths 
quickly.  
 

iteration # of Candidate Paths CPU time iteration # of Candidate Paths CPU time 

0 1 0.141 10 274 0.234 

1 48 0.141 20 450 0.359 

2 91 0.156 30 629 0.547 

3 91 0.156 40 847 0.812 

4 137 0.172 50 971 1.016 

5 137 0.172 60 1,136 1.312 

6 175 0.187 70 1,278 1.609 

7 218 0.203 80 1,463 2.031 

8 256 0.219 90 1,544 2.297 

9 274 0.234 100 1,669 2.703 

Table 5. Test result of making candidate path sets 

We compared the results of the EVL method and the CPS method to evaluate the suitability 

of these methods for navigation services that finds multiple alternative paths. We selected 

randomly 1,000 O-D (origin-destination) pairs on the Chicago network and 100 O-D pairs on 

the Philadelphia network for searching for the shortest path and 9 alternative dissimilar 

paths. This test determines whether the method can provide as many alternative paths as 

users want; the larger the number of the paths, the better the method.  

In Tables 6 and 7, the figures in parentheses refer to the specified values of constraints. For 

example, 1.1 and 2.0 of the ‘user allowable travel cost ratio’ mean that the paths having 

travel cost higher than the shortest path by 10% and 100%, respectively, should not be 

selected for the next alternative path. In the same manner, 0.5 and 0.8 of the ‘user allowable 

overlapped length ratio’ mean that the paths having 50% and 80% or more overlapped 

length ratios with already searched paths, respectively, should not be selected. The value of 
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the overlapped length ratio constraint of the CPS method is 1.0 since it does not employ the 

constraint.  

Table 6 shows the average numbers of paths searched by each method. The results show 
that the stronger the cost and overlap constraints, the fewer paths were searched. The CPS 
method, which uses only the cost constraint, searched alternative paths close to the number 
of paths to be required (K=9). Because CPS does not consider the overlap constraint, it can 
provide almost as many alternative paths as users may want.  
 

 

User allowable travel cost ratio 

Chicago network Philadelphia network  

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0) 

Strong (0.5) EVL 2.56 EVL 7.75 EVL 1.74 EVL 7.49 

Weak (0.8) EVL 4.47 EVL 7.68 EVL 3.61 EVL 7.41 

User 
allowable 

overlapped 
length ratio 

None (1.0) CPS 8.80 CPS 8.97 CPS 8.83 CPS 8.91 

Table 6. Average numbers of paths searched (K=9)  

Table 7 shows the average CPU computation time required for each method. This test 

determines which method can provide alternative paths more quickly, so the smaller the 

value, the better the method. The EVL method prunes the network using the cost constraint. 

Therefore, the average CPU computation time of the EVL method increases rapidly as the 

cost constraint weakens while its computation time was not significantly influenced by the 

overlap constraint. The CPS method searched the number of paths required more quickly 

because it did not consider the overlap constraint. 

 

User allowable travel cost ratio 

Chicago network Philadelphia network  

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0) 

Strong (0.5) EVL 0.86 EVL 4.22 EVL 1.31 EVL 6.05 

Weak (0.8) EVL 0.95 EVL 4.12 EVL 1.55 EVL 6.08 

User 
allowable 

overlapped 
length ratio 

None (1.0) CPS 0.50 CPS 0.56 CPS 0.51 CPS 0.62 

Table 7. Average CPU computation times (sec)  
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Tables 8 and 9 show the average overlap ratios for the case when one or more alternative 
paths are searched and for the overall sample data (1,000 and 100 O-D pairs), respectively. 
As shown in Table 8, when one or more alternative paths were searched, CPS’s average 

overlapped length ratio is higher than that of EVL which has the overlap constraint.  
However, it is too early to conclude that EVL has better performances than CPS since the 
result of Table 8 did not reflect the cases when no alternative path was searched. When there 
is no alternative path, a driver is provided only one path. Therefore, in the result of Table 8, 

the overlapped length ratio was set to 1.0 when there was no alternative path.  
As shown in Table 9, the result of CPS is similar to that of EVL if the result of no alternative 
path is included. In other words, considering only the case when one or more alternative 
paths were searched, the EVL with the overlapped length ratio constraint searched more 

dissimilar paths than CPS; however, in general conditions including the case when no 
alternative path was searched, whether a method considered the overlap constraint or not 
does not influence the results. Summarizing all the results, then, the CPS method finds more 

number of dissimilar alternative paths with similar overlap ratios to the EVL more quickly. 
 

User allowable travel cost ratio 

Chicago network Philadelphia network  

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0) 

Strong (0.5) EVL 0.30 EVL 0.27 EVL 0.33 EVL 0.27 

Weak (0.8) EVL 0.57 EVL 0.52 EVL 0.58 EVL 0.52 

User 
allowable 

overlapped 
length ratio 

None (1.0) CPS 0.60 CPS 0.56 CPS 0.58 CPS 0.50 

Table 8. Average overlap ratios for the cases when one or more alternative paths were 
searched  

 

User allowable travel cost ratio 

Chicago network Philadelphia network  

Strong (1.1) Weak (2.0) Strong (1.1) Weak (2.0) 

Strong (0.5) EVL 0.49 EVL 0.28 EVL 0.49 EVL 0.31 

Weak (0.8) EVL 0.62 EVL 0.53 EVL 0.63 EVL 0.55 

User 
allowable 

overlapped 
length ratio 

None (1.0) CPS 0.60 CPS 0.56 CPS 0.59 CPS 0.51 

Table 9. Average overlap ratios for the overall sample data  
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4. Conclusions 

In this chapter, we explained that the candidate path set is made by executing a shortest 
path search algorithm only once and compared the efficient vector labeling method (EVL) 
and the candidate path set method (CPS) to investigate the conditions for dissimilar paths-
search algorithms by which drivers can select their own best path.  
Navigation services should provide dissimilar alternative paths until their users are satisfied 
with a path based on their own criteria. This study suggests the method of selecting the path 
having the minimum average overlapped length ratio with a previously searched path as 
the alternative path from among paths that satisfy only the cost constraint. A test based on a 
real Chicago and Philadelphia networks showed that the proposed method can provide the 
number of alternative dissimilar paths required more rapidly. The generalized cost 
constraints are applied to all conditions at the same ratio since the travel cost stems from the 
entire path. On the other hand, the overlap constraints can vary among the alternative paths. 
For example, a driver may search for alternative paths until a path is provided that does not 
include the section he or she does not want. Therefore, navigation services must provide 
alternative paths to satisfy the various needs of users.  

Drivers can select their own best paths from the alternative paths provided by using the 
information on several alternative paths and can see to what degree the alternative path 
provided by the service or that they select on their own is better than other paths. Drivers 
can also become familiar with unfamiliar regions by using different paths. 
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