
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Yoshiaki OKUBO and Makoto HARAGUCHI
IST, Hokkaido University

JAPAN

1. Introduction

We often rely on the World Wide Web as useful and rich resources of information and
knowledge. A large number of web pages (documents) are on the Internet and we can easily
browse and enjoy them anytime. It is, however, not so easy to efficiently find useful pages
because of the hugeness of the Web space. For example, Google, a popular information retrieval
(IR) engine, often gets a number of web pages with the order of hundred thousands for a given
keyword set.
In general, an information retrieval system shows us an ordered list of web pages, where the
ordering is determined by its own ranking mechanism. Then, only some of the higher-ranked
pages in the list are actually browsed and the others are discarded as less important ones,
because the list contains a large number of pages. Thus, web pages with lower ranks are
usually invisible for us even if they are similar to higher-ranked ones. In this sense, we
might be missing many useful pages or documents. Therefore, if we can make such hidden
significant pages visible, our chance to obtain valuable information and knowledge on the
Web can be enhanced. Extracting clusters each of which consists of similar (web) documents
would be a promising approach to realizing it.
Although several clustering methods for web documents have already been investigated (e.
g. (Vakali et al., 2004)), most of them adopt traditional hierarchical or partitional approaches.
That is, the whole set of documents is divided into k clusters, where the number of clusters,
k, is given as a parameter. As is well-known, however, providing an adequate value for k is
quite difficult. This fact has motivated us to investigate a new clustering method, a pinpoint
extraction of Top-N nice clusters (Haraguchi & Okubo, 2010; 2006b; Okubo et al., 2005; Okubo
& Haraguchi, 2003).
As has been pointed out (e. g. (Hotho et al., 2003)), a meaningful cluster should have a clear
explanation of what the conceptual meaning of the cluster is. Agreeing with that, we have
made an informal constraint on clusters to be extracted (Haraguchi & Okubo, 2007; 2006a):

The notion of relevance or interestingness depends only on a conceptual class of documents,
not dependent on particular instances of documents. Then the clusters we have to find must be
concepts of documents that can be definable by means of feature terms.

Finding Conceptual Document Clusters Based
on Top-N Formal Concept Search: Pruning

Mechanism and Empirical Effectiveness

19

www.intechopen.com

This kind of clusters has been originally formalized in (Haraguchi & Okubo, 2007; 2006a)
with the notion of Formal Concept Analysis (Ganter & Wille, 1999). A formal concept (FC in
short) in our case is defined as a pair of closed sets of documents X and feature terms Y, where
the former is called the extent and the latter the intent of the concept. Such a concept means
each document in X shares all the feature terms in Y and such a document never exists any
more. Thus, a set of documents as the extent of an FC corresponds to a conceptual cluster of
documents which is definable by the feature terms shared with the documents. We call this
kind of cluster an FC-cluster.
In general, we can extract a huge number of FC-clusters for a given document set. In order to
obtain meaningful FCs, we try to extract only Top-N FCs in the sense that their intents retain
a certain degree of quality (constraint on intents by a lower threshold δ) and their extents are
evaluated as in the top N (preference on extents). In (Haraguchi & Okubo, 2007; 2006a), it has
been formalized as Top-N δ-Valid FC Problem.
In this chapter, we precisely present an algorithm for efficiently extracting Top-N FCs. It is
based on a maximum clique algorithm (Balas & Yu, 1986) and can be viewed as an improved
version of our previous algorithm (Haraguchi & Okubo, 2007; 2006a). The point is to safely
and completely exclude duplications of extents already obtained. We show useful theoretical
properties for the task with their proofs. Several pruning rules based on these properties are
incorporated in our improved algorithm. The safeness and completeness of the pruning rules
are also discussed with theoretical proofs. Our experimental results show that it can extract
Top-N FCs with practical times for a real dataset. Moreover, since the exact correspondence
between the notion of closed itemsets (Pasquier et al., 1999) and FCs can be observed, our
improved algorithm is compared with several excellent closed itemset miners in computation
times. The experimental results also show that our algorithm outperforms them in certain
difficult cases.

This chapter is an extended version of the literature (Okubo & Haraguchi, 2006). We
especially focuses on the algorithmic viewpoint of our method. The remainder of this
chapter is organized as follows: In the next section, we introduce a basic terminology used
throughout this chapter. Section 3 describes the notion of formal concepts and discusses the
correspondence between FCs and closed itemsets. Our conceptual document clusters are
introduced in Section 4. Section 5 formalizes our problem for finding Top-N δ-Valid FCs.
Our algorithm for the problem is discussed in Section 6. Some pruning rules are presented
in details and a pseudo-code of the algorithm is also given. In Section 7, we conduct
our experimentation with a real dataset of web pages. Computational performance of our
algorithm is compared with several efficient closed itemset miners. In the final section, we
conclude this chapter with a summary and important future directions.

2. Preliminaries

In this chapter, we are concerned with a simple weighted undirected graph. A graph is denoted by
G = (V, E, w), where V is a set of vertices, E ⊆ V ×V a set of undirected edges 1 and w : V → R

+

a (positive real-valued) weight function for vertices.
For any vertices v, v′ ∈ V, if (v, v′) ∈ E, v is said to be adjacent to v′ and vice versa. For a vertex
v ∈ V, the set of vertices adjacent to v is denoted by NG(v), where |NG(v)| is called the degree
of v. If it is clear from the context, it is simply denoted by N(v).

1 That is, any edge (v, v′) ∈ E is identified with (v′, v).

386 Search Algorithms and Applications

www.intechopen.com

Object ID Features
1 a b c d e f

2 b c e

3 b e

4 a b d e f

5 b d

6 a d f

7 c d f

Fig. 1. Formal Context

For any pair of vertices v and v′ in V (v �= v′), if (v, v′) ∈ E, then G is said to be complete.
For a subset V ′ of V, a graph G(V ′) defined by G(V ′) = (V ′, E∩V ′×V ′, w) is called a subgraph
of G and is said to be induced by V ′. If the subgraph is complete, then it is called a clique in G.
A clique is simply referred to as the set of vertices by which it is induced. Note here that any
subset of a clique is also a clique.
For a clique Q, its size is defined by |Q|. Since each vertex in G is assigned a weight, it would be
reasonable to evaluate cliques by providing an adequate evaluation function based on vertex
weights.
For cliques Q and Q′, if Q ⊂ Q′, then Q′ is called an expansion of Q. Moreover, if there exists
no clique Q′′ such that Q ⊂ Q′′ ⊂ Q′, Q′ is called an immediate expansion of Q. If a clique Q has
no immediate expansion, that is, any proper superset of Q is not a clique, then Q is said to be
maximal. A maximal clique whose size is largest among all maximal ones is especially called a
maximum clique. In general, a maximum clique is not uniquely found in G.

3. Formal concept analysis

Formal Concept Analysis (FCA) (Ganter & Wille, 1999) is a theory of data analysis
which identifies conceptual structures among objects (individuals). We first introduce some
terminologies for FCA.

3.1 Formal concepts

Let O be a set of objects (individuals) and F a set of features (attributes). Assume we have a
binary relation R ⊆ O×F , where a tuple (x, y) ∈ R means that the object x is associated with
the feature y (that is, x has y). A triple of O, F and R, < O,F , R >, is called a formal context.
A formal context is often represented as a table. Figure 1 shows an example of a formal context
in a table format. For example, the object 2 is associated with the features b, c and e.
Under a formal context < O,F , R >, for each object x ∈ O, the set of features with which x is
associated is denoted by F (x), that is, F (x) = {y | (x, y) ∈ R}.
Given a formal context < O,F , R >, for a set of objects X ⊆ O and a set of features Y ⊆ F ,
we define two mappings ϕ : 2O → 2F and ψ : 2F → 2O , respectively, as follows.

ϕ(X) = {y ∈ F | ∀x ∈ X, (x, y) ∈ R} =
⋂

x∈X

F (x) and

ψ(Y) = {x ∈ O | Y ⊆ F (x)}.

The former computes the set of features shared by every object in X. The latter, on the other
hand, returns the set of objects each of which is associated with all of the features in Y.

387Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

Based on the mappings, a formal concept (FC in short) under the formal context is defined as
a pair of an object set X ⊆ O and a feature set Y ⊆ F , (X, Y), such that ϕ(X) = Y and
ψ(Y) = X. Especially, X and Y are called the extent and intent of the concept, respectively. From
the definition, it is obvious that ψ(ϕ(X)) = X and ϕ(ψ(Y)) = Y. That is, a formal concept is
defined as a pair of closed sets of objects and features under the composite mappings. We often
denote the composite mappings ψ ◦ ϕ and ϕ ◦ ψ by E and I, respectively.
For a set of objects X ⊆ O, ϕ(ψ(ϕ(X))) = I(ϕ(X)) = ϕ(X) holds. In other words, ϕ(X) is
always closed under I. Therefore, ϕ(X) can be the intent of an FC. More precisely speaking,
for any set of objects X, we can uniquely obtain an FC, (ψ(ϕ(X)), ϕ(X)) = (E(X), ϕ(X)).
Similarly, for a set of features Y ⊆ F , we can always consider its corresponding FC,
(ψ(Y), ϕ(ψ(Y))) = (ψ(Y), I(Y)).
From the definition of the mappings, we can observe the following theoretical properties.

Observation 1.
Let X and X′ be subsets of O such that X ⊆ X′. Then ϕ(X) ⊇ ϕ(X′) and E(X) ⊆ E(X′).
Dually, for subsets of F , Y and Y′, such that Y ⊆ Y′, ψ(Y) ⊇ ψ(Y′) and I(Y) ⊆ I(Y′) hold.

3.2 Formal concept lattice

Given a formal context < O,F , R >, let FC be the set of FCs under the context. We introduce
here an ordering on FC.

Definition 1. (Partial Ordering on FC)
Let FCi and FCj be a pair of formal concepts in FC such that FCi = (Xi, Yi) and FCj = (Xj, Yj).
Then FCi precedes FCj, denoted by FCi ≺ f c FCj, iff Xi ⊂ Xj and Yi ⊃ Yj.

For a pair of formal concepts FCi and FCj such that FCi ≺ f c FCj, we often say that FCi is more
specific than FCj and FCj is more general than FCi.
The partially ordered set (FC,≺ f c) forms a lattice, called a formal concept lattice. For the formal
context in Figure 1, we have the formal concept lattice shown in Figure 2. In the figure, xyz
is an abbreviation of a set {x, y, z}. The most general concept is put at the top and the most
specific one at the bottom. For any pair of FCi and FCj, if FCi immediately precedes FCj, they
are connected by an edge.

3.3 Exact correspondence between formal concepts and closed itemsets

In the field of Data Mining (Han & Kamber, 2006), many researchers have investigated Frequent
Itemset Mining (Agrawal & Srikant, 1994; Han et al., 2007; Pasquier et al., 1999). Particularly,
the notion of closed itemsets is well-known as a useful lossless condensed representation of
itemsets (Pasquier et al., 1999).
Let I be a set of items. A transaction T is a subset of I and is assigned a unique identifier,
denoted by id(T). A transaction database T D is given as a (multiple) set of transactions. Let
ID be the set of identifiers of transactions in T D, that is, ID = {id(T) | T ∈ T D}. We can
obtain a binary relation R ⊆ ID×I which is defined as R = {(id(T), x) | T ∈ T D ∧ x ∈ T}.
Regarding each transaction in T D as an object and each item in I as a feature, we can represent
the transaction database as a formal context < ID, I , R >.
A set of items in I , I, is called an itemset. For a transaction database T D, the support (or
frequency) of I, denoted by sup(I), is defined as sup(I) = |{T ∈ T D | I ⊆ T}|. An itemset I
is said to be closed if there exists no itemset I ′ such that I ⊂ I ′ and sup(I) = sup(I ′). Since
the support of an itemset is defined as the number of transactions containing the itemset, a
closed itemset I exactly corresponds to the intent of a formal concept. For the closed itemset I,

388 Search Algorithms and Applications

www.intechopen.com

 (1234567 , φ)

 (12345 , b) (14567 , d)

 (1234 , be) (1467 , df)

(127 , c) (145 , bd) (146 , adf)

 (12 , bce) (14 , abdef) (17 , cdf)

 (1 , abcdef)

Object ID Features
1 a b c d e f

2 b c e

3 b e

4 a b d e f

5 b d

6 a d f

7 c d f

Fig. 2. Formal Concept Lattice

furthermore, the set of identifiers of the transactions containing I, denoted by IDI , is uniquely
identified. Particularly, IDI is closed in the sense that any other transaction never contains
I, that is, IDI also corresponds to the extent of an FC. Therefore, we can always observe the
exact correspondence between a closed itemset I and the formal concept (IDI , I).
From the correspondence, any efficient closed itemset miner would be helpful for finding FCs.
For example, AFOPT (Liu et al., 2003), DCI-Closed (Lucchese et al., 2004) and LCM (Uno et al.,
2004) are well-known as such efficient systems (algorithms).

4. Conceptual document clusters based on formal concepts

Let D be a set of documents and T a set of feature terms. We assume that each document in D is
represented as a set of feature terms in T appearing in the document. Then, we have a binary
relation R ⊆ D × T , where a tuple (d, t) ∈ R means that the term t appears in the document
d. Under the assumption, the triple C =< D, T , R > is regarded as a formal context, where
for each formal concept (D, T) under C, D is considered as a document cluster. It should be
emphasized here that we can clearly explain why the documents in D are grouped together.
Each document in D shares the set of feature terms T and any other document never contains
T. In this sense, D can be viewed as a conceptual document cluster which is definable by
the feature terms shared with the documents. Thus, by restricting our document clusters to
extents of formal concepts under C, we can explicitly provide conceptual meanings based on
their intents.

5. Top-N δ-valid formal concept problem

For a given formal context C =< O,F , R >, the number of FCs under C often becomes
large. It is actually impossible for users to check and analyze all of them. Therefore, selectively
extracting FCs with a certain degree of quality would be a practical and reasonable approach.
Needless to say, quality of an FC is affected by both its extent and intent. For example, a
concept with a larger intent might have convincing evidence (similarity) for the grouping
of objects (extent). Its extent, however, tends to be smaller. We often consider that concepts

389Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

with too small extents would not be so meaningful because they might be too specific or
exceptional. Conversely, although a concept with a smaller intent will have a larger extent,
evidence for the grouping seems to be weak. In other words, the extent would consist of less
similar objects. Thus, in order to obtain meaningful FCs, it is required to control their quality
from the viewpoint of extents and intents. For such a requirement, we formalize our FCs to be
found as follows:

Constraint on Intents: In order for FCs to retain a certain degree of similarity, a constraint
on intents is imposed. Concretely speaking, a threshold for evaluation value of intents,
δ, is provided. For an FC, if its intent value is greater than or equal to δ, then the FC is
considered to have sufficient quality of intent. Such an FC is said to be δ-valid.

Preference in Extents: FCs with higher evaluation values of extents are preferred among
the δ-valid FCs. Particularly, given an integer N, the FCs with Top-N extent values are
extracted.

In order to evaluate extents and intents of FCs, we assume that each object x ∈ O and feature
y ∈ F are assigned their positive real-valued weights, referred to as wO(x) and wF (y). Then,
evaluation functions for extents and intents, evalE and evalI , are defined with wO and wF ,
respectively.
Although we can define various evaluation functions, increasing monotone functions are
strongly preferred from the computational point of view, where a function f is said to be
increasing monotone (under set-inclusion) iff S ⊆ S′ implies f (S) ≤ f (S′) for any pair of sets,
S and S′. In what follows, we assume our evaluation functions to be increasing monotone. The
reason why such a function is preferable will become clear in the next section.
We can now formalize our problem of finding Top-N δ-valid formal concepts as follows:

Definition 2. (Top-N δ-Valid Formal Concept Problem)
Let C =< O,F , R > be a formal context, δ a threshold for admissible evaluation value of
intent and N an integer for Top-N. The problem of finding Top-N δ-valid formal concepts for
C is to extract the set of formal concepts {(X, Y)} such that evalI(Y) ≥ δ (as constraint) and
evalE(X) is in the top N among such ones (as preference).

From the viewpoint of problem specification, our Top-N δ-valid FC problem is closely related
to Top-N Frequent Closed Itemset Mining (Wang et al., 2005) and Constraint-Based Concept
Mining (Besson et al., 2005).
Given a pair of parameters, N and minlen, Top-N Frequent Closed Itemset Mining (Wang
et al., 2005) is to find closed itemsets of length at least minlen whose frequencies (supports)
are in the top N. Since length (size) of itemsets is a measure which evaluates itemsets, the
parameter minlen controls the quality of closed itemsets (that is, intents) to be extracted, as is
similar to our problem. Furthermore, frequencies of closed itemsets are equivalent to sizes of
their corresponding extents. In case we simply evaluate each intent and extent by their sizes,
therefore, our Top-N FC problem is identical with the Top-N frequent closed itemset mining.
In the framework, however, length and frequency are only measures by which we can evaluate
itemsets. On the other hand, in our framework, we can consider various evaluation measures
as well as length and frequency. In this sense, our problem can be regarded as a generalization
of Top-N closed itemset mining.
Given a pair of parameters, minsup and minlen, Constraint-Based Concept Mining (Besson
et al., 2005) is a task of finding all closed itemsets I such that sup(I) ≥ minsup and |I| ≥
minlen. That is, this mining task is to compute all frequent closed itemsets with enough length.

390 Search Algorithms and Applications

www.intechopen.com

Since the frequency of closed itemsets is equivalent to the size of extents, minsup implicitly
gives some integer N such that the N-th frequency of closed itemsets with enough length is
equal to minsup. Therefore, if extents are evaluated by their sizes, providing minsup in essence
corresponds to providing some N for Top-N in our problem. However, the authors consider
that providing N is more simple and intuitive than providing minsup.

6. Finding top-N δ-valid formal concepts with clique search

In this section, we precisely discuss our algorithm for finding Top-N δ-valid FCs.
Top-N δ-valid FCs can be extracted by finding certain cliques in an weighted undirected graph.
Before going into details, we present a basic strategy of our search algorithm.

6.1 Basic search strategy

Let C =< O,F , R > be a formal context. For each FC under C, there always exists a set of
objects X ⊆ O such that E(X) = ψ(ϕ(X)) and ϕ(X) correspond to the extent and the intent
of the FC, respectively. Therefore, by applying the mappings ϕ and ψ to each set of objects
X ⊆ O, we can obtain all of the FCs under C.
Let us consider a total ordering on O = {x1, . . . , x|O|}, ≺, simply defined as xi ≺ xj iff i < j. It
is assumed that for each subset X ⊆ O, the elements in X is ordered based on ≺.
For a subset of O, Xi = {xi1

, . . . , xin
}, the first element xi1

is denoted by head(Xi) and the last
one, xin

, by tail(Xi). Furthermore, the set of first k elements, {xi1
, . . . , xik

}, is called the k-prefix
of Xi and is referred to as pre f ix(Xi, k), where 0 ≤ k ≤ n and pre f ix(Xi, 0) is defined as φ.
We introduce here a partial ordering on 2O , ≺s, as follows.

Definition 3. (Partial Ordering on 2O)
Let Xi and Xj be subsets of O such that Xi �= Xj. Then Xi precedes Xj or Xj succeeds Xi, denoted
by Xi ≺s Xj, iff Xi is a prefix of Xj, that is, Xi = pre f ix(Xj, |Xi|). If Xj is a successor of Xi,
then Xj is called a descendant of Xi. Particularly, Xj is called a child of Xi if Xj is an immediate
successor of Xi.

It can be easily observed that the partially ordered set (2O ,≺s) forms a tree with the root node
φ which is well-known as a set enumeration tree (Rymon, 1992). Figure 3 shows an example of
a set enumeration tree for O = {a, b, c, d, e}.
For each (non-leaf) subset X ⊆ O in the tree, its child is simply obtained as X ∪ {x}, where
tail(X) ≺ x. Based on the fact, therefore, any subset of O can be generated systematically
without any duplications, starting with the empty set.
In the tree, a simple theoretical property can be observed.

Observation 2.
Let Xi and Xj be subsets of O such that Xi ≺s Xj. Then, evalI(ϕ(Xi)) ≥ evalI(ϕ(Xj)).

Proof:
It is immediately proved from Observation 1. From Xi ⊆ Xj, ϕ(Xi) ⊇ ϕ(Xj) holds. Since evalI

is assumed to be increasing monotone, we have evalI(ϕ(Xi)) ≥ evalI(ϕ(Xj)).

As a direct consequence, a simple pruning rule will be available in our search.

Pruning 1.
For a set of objects X ⊆ O, if evalI(ϕ(X)) < δ holds, then there is no need to examine any
descendant of X.

391Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

 abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

 ab ac ad ae bc bd be cd ce de

 a b c d e

 φ

Fig. 3. Set Enumeration Tree

Proof:
It can be easily verified. Let X′ be a descendant of X. Since X ⊂ X′, evalI(ϕ(X)) ≥
evalI(ϕ(X′)) holds. From the assumption in the rule, we have evalI(ϕ(X′)) ≤ evalI(ϕ(X)) <

δ. This means that no δ-valid FC can be obtained from X′. Thus, we can safely prune any
descendant of X.

From the above discussion, our search for finding Top-N δ-valid FCs can be performed in
depth-first manner with the simple pruning. During our search, we maintain a list which stores
Top-N δ-valid FCs already found. That is, the list keeps tentative Top-N FCs. For a set of objects
X ⊆ O, we check whether evalI(ϕ(X)) ≥ δ holds or not. If it holds, then (E(X), ϕ(X)) is a
δ-valid FC and the tentative Top-N list is adequately updated for the FC. Then a child of X is
generated and the same procedure is recursively performed for the child. If evalI(ϕ(X)) < δ,
we can immediately backtrack without examining any descendant of X. Starting with the
initial X of the empty set, the procedure is iterated in depth-first manner until no X remains
to be examined. A pseudo-code of our basic algorithm is presented in Figure 4.

6.2 Finding formal concepts by clique search

Although a pruning rule is available, the simple basic algorithm just discussed above is
required further improvement for efficient computation. In order to improve it, we try to find
our Top-N FCs by clique search with depth-first branch-and-bound strategy (Balas & Yu, 1986).

6.2.1 Graph construction

Given a formal context C =< O,F , R > and a threshold δ, an weighted undirected graph
G = (O, E, wO), is first constructed, where the set of edges, E, is defined as

E = {(xi, xj) | xi, xj ∈ O(i �= j) ∧ evalI(F (xi) ∩ F (xj)) ≥ δ}.

That is, if a pair of objects share a set of features whose evaluation value is greater than or
equal to δ, then they are connected by an edge.

392 Search Algorithms and Applications

www.intechopen.com

Input :
< O,F , R > : a formal context where

O : a set of objtects, F : a set of features and R : a binary relation on O and F
δ : a threshold for intent value

N : an integer for Top-N
evalE : an evaluation function for extents defined with an weight function wO for O
evalI : an evaluation function for intents defined with an weight function wF for F

Output :
FC : the set of δ-valid formal concepts whose extent values are in the top N

procedure main() :
FC ← φ ; /* Grobal variable */
min = 0.0 ; /* Grobal variable */
for each x ∈ O in predefined order do

begin
if evalI(F (x)) ≥ δ then /* Pruning 1 */

TopNFCFindBasic({x}, F (x)) ;
endif

end
return FC ;

procedure TopNFCFindBasic(X, I) :
TopNListUpdata((E(X), I)) ;
for each x ∈ O such that tail(X) ≺ x in predefined order do

begin
NewX ← X ∪ {x} ;
NewI ← I ∩ F (x) ;

if evalI(NewI) ≥ δ then /* Pruning 1 */
TopNFCFindBasic(NewX, NewI) ;

endif
end

procedure TopNListUpdate(FC) :
FC ← FC ∪ {FC} ;
if FC tentatively contains N-th ones then

min ← N-th extent value ;
Remove M-th ones from FC such that N < M ;

endif

Fig. 4. Basic Algorithm for Finding Top-N δ-Valid Formal Concepts

6.2.2 Clique enumeration tree

Since each clique Q in G is a subset of O, (E(Q), ϕ(Q)) always becomes a formal concept. It
should be noted here that from the definition of G, for each δ-valid FC, there always exists
a clique Q in G such that E(Q) and ϕ(Q) are the extent and intent of the FC, respectively.
Therefore, subsets to be examined in our basic algorithm can be restricted to only cliques in
G. Based on δ, thus, we can statically excludes many useless subsets from which we can never
obtain δ-valid FCs.

393Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

 abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

 ab ac ad ae bc bd be cd ce de

 a b c d e

 φ

 a

e b

 d c
 Graph G

Fig. 5. Clique Enumeration Tree for Graph G

Since any subset of a clique is also a clique, the ordering ≺s is still valid for cliques and
the cliques in G also form a tree, called a clique enumeration tree. An example of a clique
enumeration tree for a graph G is shown in Figure 5, where any clique in G is boxed.
Needless to say, Pruning 1 is still available in the clique enumeration tree. That is, the
constraint based on δ can work not only statically in the graph construction, but also
dynamically in the search process.
A child of a clique Q is generated by adding a certain vertex (object) to Q. Such an object to be
added is precisely defined with a notion of extensible candidates

Definition 4. (Extensible Candidates for Clique)
Let G = (V, E, w) be a graph and Q a clique in G. A vertex v ∈ V adjacent to any vertex in Q
is called an extensible candidate for Q. The set of extensible candidates is denoted by cand(Q),
that is,

cand(Q) = {v ∈ V | ∀u ∈ Q (v, u) ∈ E} =
⋂

v∈Q

NG(v).

Since it is obvious from the definition that for any extensible candidate v ∈ cand(Q), Q ∪ {v}
always becomes a clique, we can easily generate a child of Q by adding v ∈ cand(Q) such that
tail(Q) ≺ v. Thus, we can explore a clique enumeration tree in depth-first manner.

6.3 Pruning redundant cliques

As has just been discussed, Pruning 1 excludes useless cliques from which no δ-valid FCs can
be obtained. In addition to such useless ones, our clique enumeration tree in general contains
redundant cliques whose corresponding FCs are identical. Therefore, it would be desirable for
efficient computation to prune such redundant cliques as well. We can observe the following
three simple properties of FCs which will be useful for realizing it.

Observation 3.
Let (X, Y) be a formal concept. Then, there always exists a clique Q in G such that E(Q) = X
and head(Q) = head(X).

394 Search Algorithms and Applications

www.intechopen.com

Proof:
It is trivial. Since X is a clique in G, X itself can be such a clique Q. Then, it is obvious that
E(Q) = E(X) = X and head(Q) = head(X).

Observation 4.
Let Q be a clique in G. For any element α ∈ E(Q)\Q, E(Q ∪ {α}) = E(Q) holds. That is, their
corresponding FCs are identical.

Proof:
It can be easily proved from Observation 1. Let α be an element such that α ∈ E(Q)\Q. From
a property of the mapping ϕ, ϕ(Q ∪ {α}) = ϕ(Q) ∩ ϕ({α}). Moreover, since α ∈ E(Q),
ϕ(Q) ⊆ ϕ({α}). Therefore, we have ϕ(Q ∪ {α}) = ϕ(Q) and ψ(ϕ(Q ∪ {α})) = ψ(ϕ(Q)).

Observation 5.
Let Q be a clique in G and Q ∪ {α} a child of Q. For any element β ∈ E(Q ∪ {α})\E(Q) such
that β ≺ α, there exists Q′ such that E(Q′) = E(Q ∪ {α}) and Q′ is examined prior to Q ∪ {α}
in our depth-first search.

Proof:
Let β be an element such that β ∈ E(Q ∪ {α})\E(Q) and β ≺ α. Since β �∈ E(Q) and
Q ⊆ E(Q), we have β �∈ Q and then β �∈ Q ∪ {α}. Therefore, β ∈ E(Q ∪ {α})\Q ∪ {α} holds.
From Observation 4, E(Q ∪ {α} ∪ {β}) = E(Q ∪ {α}) holds. It should be noted here that
since β ≺ α, Q ∪ {α} ∪ {β} is processed prior to Q ∪ {α} in our depth-first search. Thus, the
observation can be verified.

Each of the above observations provides us a pruning rule to exclude redundant cliques.

Pruning 2.
Let Q be a clique in G. If head(Q) �= head(E(Q)) holds, then Q and its descendants do not
have to be examined.

Pruning 3.
Let Q be a clique in G. For any element α ∈ E(Q)\Q such that tail(Q) ≺ α, Q ∪ {α} and its
descendants do not have to be examined.

Pruning 4.
Let Q be a clique in G and Q∪{α} a child of Q. If there exists an element β ∈ E(Q∪{α})\E(Q)
such that β ≺ α, then Q ∪ {α} and its descendants do not have to be examined.

A remarkable point we should emphasize is that the pruning rules are safe. In other words,
for each formal concept (X, Y), there always exists a clique Q such that E(Q) = X and Q is
never pruned with the pruning rules.

Theorem 1.
Pruning 2, 3 and 4 are safe.

Proof:
For a formal concept FC = (X, Y), let α0 be the head element of X, that is, α0 = head(X).
Moreover, assume P = X \E({α0}) = {α1, . . . , αk}.

395Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

Since X = E({α0}) ∪ P,

ϕ(X) = ϕ(E({α0}) ∪ P)

= ϕ(E({α0})) ∩ ϕ(P)

= ϕ({α0}) ∩ ϕ(P)

= ϕ({α0} ∪ P).

Therefore, we immediately have

X = E(X) = ψ(ϕ(X)) = ψ(ϕ({α0} ∪ P)) = E({α0} ∪ P).

For each i (1 ≤ i ≤ k), we consider

Di = E({α0} ∪ {α1} ∪ · · · ∪ {αi}) \ {α0} ∪ {α1} ∪ · · · ∪ {αi}

= E({α0} ∪ pre f ix(P, i)) \ {α0} ∪ pre f ix(P, i).

In case of i = 0, D0 is defined as D0 = E({α0}) \ {α0}. Observation 4 implies that, for each i
(1 ≤ i ≤ k), if αi ∈ Di−1, then

E({α0} ∪ pre f ix(P, i)) = E({α0} ∪ pre f ix(P, i − 1)).

On the other hand, if αi �∈ Di−1,

E({α0} ∪ pre f ix(P, i)) ⊃ E({α0} ∪ pre f ix(P, i − 1)).

Here, let us consider a subset of P, R, defined as

R = {αi ∈ P | αi �∈ Di−1}.

Assuming R = {α′1, . . . , α′
ℓ
} and α′0 = α0, P can be represented as a union of ℓ + 1 (ordered)

subsets, P = P0 ∪ · · · ∪ Pℓ, where Pi is defined as

Pi =

{

{α ∈ P | α′i � α ≺ α′i+1} if 0 ≤ i < ℓ,

{α ∈ P | α′i � α} if i = ℓ.

That is, each α ∈ P belongs to a certain Pi. If α ∈ P is contained in Pi, then the index i is referred
to as f (α).
We first verify that for each αi ∈ P (1 ≤ i ≤ k),

E({α0} ∪ pre f ix(P, i)) = E({α′0} ∪ pre f ix(R, f (αi))). (1)

The statement can be proved with mathematical induction on the index i of αi.
In case of i = 1, α1 belongs to P0 or P1, that is, f (α1) is 0 or 1, respectively. For the former,
α1 is in D0 = E({α0})\{α0}. Hence, E({α0} ∪ {α1}) = E({α0} ∪ pre f ix(P, 1)) = E({α0}) =
E({α0} ∪ pre f ix(R, 0)) holds. For the latter, since pre f ix(P, 1) = pre f ix(R, 1) = {α1}, the
statement is obviously true.
For the induction step, let us assume that for some i, E({α0} ∪ pre f ix(P, i)) = E({α′0} ∪
pre f ix(R, f (αi))) holds. In case of αi+1 ∈ Di, αi+1 belongs to Pf (αi), that is, f (αi+1) =

396 Search Algorithms and Applications

www.intechopen.com

f (αi). In addition, E({α0} ∪ pre f ix(P, i) ∪ {αi+1}) = E({α0} ∪ pre f ix(P, i)) holds. From the
assumption, therefore, we have

E({α0} ∪ pre f ix(P, i) ∪ {αi+1}) = E({α0} ∪ pre f ix(P, i + 1))

= E({α′0} ∪ pre f ix(R, f (αi)))

= E({α′0} ∪ pre f ix(R, f (αi+1))),

showing the statement is true.
On the other hand, in case of αi+1 �∈ Di, αi+1 belongs to Pf (αi)+1 and is particularly identical

with α′
f (αi)+1

. Since f (αi+1) = f (αi) + 1, we also have αi+1 = α′
f (αi+1)

. From the assumption,

therefore, it can be verified that the statement is true as follows.

E({α0} ∪ pre f ix(P, i) ∪ {αi+1}) = E({α0} ∪ pre f ix(P, i + 1))

= E({α′0} ∪ pre f ix(R, f (αi)) ∪ {αi+1})

= E({α′0} ∪ pre f ix(R, f (αi)) ∪ {α′f (αi)+1})

= E({α′0} ∪ pre f ix(R, f (αi) + 1))

= E({α′0} ∪ pre f ix(R, f (αi+1))).

As the result, we can conclude the statement is true for any αi ∈ P (1 ≤ i ≤ k).
We can now obtain

E({α0} ∪ pre f ix(P, k)) = E({α′0} ∪ pre f ix(R, f (αk))).

It is noted here that since pre f ix(P, k) = P and pre f ix(R, f (αk)) = pre f ix(R, ℓ) = R, E({α0} ∪
P) = X = E({α′0} ∪ R) holds. This implies that examining {α′0} ∪ R is sufficient to obtain the
extent X. In order to visit {α′0} ∪ R in our depth-first search, we have to take into account the
ordered sequence of cliques,

{α′0} ∪ pre f ix(R, 0) ≺s {α′0} ∪ pre f ix(R, 1) ≺s · · · ≺s {α′0} ∪ pre f ix(R, ℓ).

Therefore, it should be verified that our pruning rules never exclude any {α′0} ∪ pre f ix(R, i)
in the sequence.
For any i (0 ≤ i ≤ ℓ), since {α′0} ∪ pre f ix(R, i) ⊆ E({α′0} ∪ pre f ix(R, i)) ⊆ X and α′0 =
α0 = head(X), head({α′0} ∪ pre f ix(R, i)) = head(E({α′0} ∪ pre f ix(R, i))) always holds. Hence,
Pruning 2 can never prevent us from examining {α′0} ∪ pre f ix(R, i).
In order to show Pruning 3 is safe, we have to verify that for any α′i ∈ R,

α′i �∈ E({α′0} ∪ pre f ix(R, i − 1))\{α′0} ∪ pre f ix(R, i − 1).

Let r be the original index of α′i in P, that is, α′i = αr (∈ P). Since α′i ∈ R, αr �∈ Dr−1 =
E({α0} ∪ pre f ix(P, r − 1))\{α0} ∪ pre f ix(P, r − 1). It is, particularly, clear that αr �∈ E({α0} ∪
pre f ix(P, r − 1)) because αr �∈ {α0} ∪ pre f ix(P, r − 1). From the statement (1), it is noted
here that E({α0} ∪ pre f ix(P, r − 1)) = E({α′0} ∪ pre f ix(R, f (αr−1))). Moreover, since α′i =
αr , f (αr−1) should be i − 1. Therefore, E({α0} ∪ pre f ix(P, r − 1)) = E({α′0} ∪ pre f ix(R, i −
1)) holds. Since α′i �∈ E({α′0} ∪ pre f ix(R, i − 1)), it is clear that α′i �∈ E({α′0} ∪ pre f ix(R, i −
1))\{α′0} ∪ pre f ix(R, i − 1). This means that for each i (1 ≤ i ≤ ℓ), {α′0} ∪ pre f ix(R, i) can
never be a target of Pruning 3.

397Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

Safeness of Pruning 4 can be confirmed by showing the following statement is true for any i
(1 ≤ i ≤ ℓ):

∀β ∈ E({α′0} ∪ pre f ix(R, i))\E({α′0} ∪ pre f ix(R, i − 1)), α′i � β.

From Observation 1, for any X′ ⊆ X, E(X′) ⊆ E(X) holds. Moreover, since X is the extent of
FC, E(X) = X. It implies that for any X′ ⊆ X, E(X′) ⊆ X. From E({α0}) ∪ P = X and for any
i (0 ≤ i < k), P = pre f ix(P, i) ∪ {αi+1} ∪ · · · ∪ {αk}, therefore, we have

Di = E({α0} ∪ pre f ix(P, i)) \ {α0} ∪ pre f ix(P, i)

⊆ E({α0}) ∪ {αi+1} ∪ · · · ∪ {αk}.

In other words, for any β ∈ Di, β ∈ E({α0}) or αi ≺ β. It is, therefore, easy to see that
for any β ∈ E({α0} ∪ pre f ix(P, i)) \ {α0} ∪ pre f ix(P, i − 1), β ∈ E({α0}) or αi � β. From
{α0}∪ pre f ix(P, i− 1) ⊆ E({α0}∪ pre f ix(P, i− 1)) and E({α0}) ⊆ E({α0}∪ pre f ix(P, i− 1)),
it is immediately derived that for each β ∈ E({α0} ∪ pre f ix(P, i)) \ E({α0} ∪ pre f ix(P, i − 1)),
αi � β holds.
Following the argument just before, we assume here that for α′i ∈ R, its original index in P is
r. From the statement (1),

E({α0} ∪ pre f ix(P, r)) = E({α′0} ∪ pre f ix(R, f (αr)))

= E({α′0} ∪ pre f ix(R, i)).

Moreover,

E({α0} ∪ pre f ix(P, r − 1)) = E({α′0} ∪ pre f ix(R, f (αr−1)))

= E({α′0} ∪ pre f ix(R, i − 1))

because f (αr−1) = i − 1. That is,

E({α0} ∪ pre f ix(P, r)) \ E({α0} ∪ pre f ix(P, r − 1))

= E({α′0} ∪ pre f ix(R, i)) \ E({α′0} ∪ pre f ix(R, i − 1)).

Therefore, we can see that for any β ∈ E({α′0}∪ pre f ix(R, i)) \ E({α′0}∪ pre f ix(R, i− 1)), α′i �
β holds.
As the result, in our depth-first search with Pruning 2, 3 and 4, we can surely visit the clique
{α′0} ∪ R from which the extent X can be obtained. Thus, our prunings are safe.

With the help of the prunings, thus, we can safely exclude only cliques from which we
certainly obtain duplicate FCs. One might be interested here in whether our removal of
duplications is complete or not. We can affirmatively answer to the question. That is, the
prunings can completely eliminate all of the duplicate FCs.

Theorem 2.
Let Q be the set of cliques examined in our search with Pruning 2, 3 and 4. Then, for any pair
of (different) cliques in Q, their corresponding FCs are not identical.

Proof:
We prove the theorem by showing their extents are not identical.
Let Qi and Qj be a pair of cliques in Q, where i �= j. There are two cases to be considered.

398 Search Algorithms and Applications

www.intechopen.com

Case 1 : Qi and Qj are comparable under the ordering ≺s.

Case 2 : Qi and Qj are not comparable under ≺s.

In each case, we try to verify that E(Qi) �= E(Qj) holds.

Case 1 : Without loss of generality, we assume Qi ≺s Qj. There exists a child of Qi, Qi ∪ {α},
such that Qi ≺s Qi ∪ {α} �s Qj. Since Pruning 3 could not exclude Qi ∪ {α}, tail(Qi) ≺ α and
α �∈ E(Qi)\Qi hold. Then, we have α �∈ E(Qi).
On the other hand, since Qi ∪ {α} �s Qj, Qi ∪ {α} ⊆ E(Qi ∪ {α}) ⊆ E(Qj) holds. This means
α ∈ E(Qj). Therefore, we obtain E(Qi) �= E(Qj).

Case 2 : Since Qi and Qj are not comparable under ≺s, they have common ancestors. Let Q
be the maximum (youngest) ancestor among them. That is, Q is equivalent to the maximum
common prefix of Qi and Qj.
In case of Q = φ, from the definition of the ordering≺s, head(Qi) is not equivalent to head(Qj).
Moreover, according to Pruning 2, head(E(Qi)) and head(E(Qj)) should be head(Qi) and
head(Qj), respectively. Hence, E(Qi) �= E(Qj) holds.
In order to prove E(Qi) �= E(Qj) in case of Q �= φ, we assume without loss of generality that
in our depth-first search, Qi is examined prior to Qj. Since Q ≺s Qi, there exists a child of Q,
Q ∪ {αi}, such that Q ≺s Q ∪ {αi} �s Qi Similarly, we can consider another child, Q ∪ {αj},
such that Q ≺s Q ∪ {αj} �s Qj. Note here that from the assumption, tail(Q) ≺ αi ≺ αj.
Since Pruning 4 could not exclude Q ∪ {αi}, for each β ∈ E(Q ∪ {αi})\E(Q), αi � β
holds. Similarly, for each β ∈ E(Q ∪ {αj})\E(Q), αj � β holds. Furthermore, αi and αj

are not contained in E(Q) according to Pruning 3. Hence, we have αi ∈ E(Q ∪ {αi}) and
αi �∈ E(Q ∪ {αj}). It should be noted here that by Pruning 4, for any clique Q′ such that

Q ∪ {αj} �s Q′, E(Q′) can never contain αi. That is, αi �∈ E(Qj). On the other hand, since
Q ∪ {αi} �s Qi, it is obvious that αi ∈ E(Qi). Therefore, we can conclude E(Qi) �= E(Qj).

The above prunings are basically based on theoretical properties of FCs. In addition to them,
we can also enjoy a simple branch-and-bound pruning based on a theoretical property of
cliques. It is adopted as a basic pruning mechanism in several efficient algorithms for finding
the maximum clique in a given graph (Balas & Yu, 1986; Fahle, 2002; Tomita & Kameda, 2007).
This kind of pruning is based on the following simple property.

Observation 6.
For cliques Q and Q′ in G such that Q ⊆ Q′, Q ∪ cand(Q) ⊇ Q′ ∪ cand(Q′).

Proof:
It can be easily proved. Since Q ⊆ Q′ and each v ∈ cand(Q′) is adjacent to all vertices in Q′, v
is adjacent to any vertex in Q, that is, v ∈ cand(Q). For each vertex v ∈ Q′\Q, Q ⊆ Q′\{v}.
Since such a vertex v is adjacent to all vertices in Q′\{v}, v is always adjacent to any vertex in
Q, that is, v ∈ cand(Q). Thus, we have Q ∪ cand(Q) ⊇ Q′ ∪ cand(Q′).

Let us assume that we have a list of tentative Top-N δ-valid FCs already found in our search.
Based on the above property, we can obtain a simple but quite effective pruning rule.

Pruning 5.
Let min be the minimum extent value in the tentative list. For a clique Q in G, if evalE(Q ∪
cand(Q)) < min, then no descendant of Q has to be examined.

399Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

Proof:
For a clique Q, let Q′ be a descendant of Q, that is, Q ⊂ Q′. Since E(Q′) is also a clique
containing Q′, Q ⊂ Q′ ⊆ E(Q′). There always exists a maximal clique in G, Qmax, such that
Q ⊂ Q′ ⊆ E(Q′) ⊆ Qmax. Note here that the extensible candidates of Qmax becomes φ because
Qmax is maximal. From Observation 6, therefore, Qmax ⊆ Q ∪ cand(Q) holds. Then, we also
have E(Q′) ⊆ Q ∪ cand(Q). It gives an inequality evalE(E(Q′)) ≤ evalE(Q ∪ cand(Q)). From
the assumption in the pruning rule, we know evalE(E(Q′)) < min. This means that the FC
obtained from Q′, (E(Q′), ϕ(Q′)), can never be in Top-N because its extent value is less than
the tentative N-th value of extents. Therefore, we can safely prune any descendant of Q as
useless ones.

In the pruning rule, thus, evalE(Q∪ cand(Q)) can work as an upper bound of evaluation values
we can observe by expanding Q.

Remark: If our evaluation function evalE is simply defined as size, the upper bound
can be represented as

evalE(Q ∪ cand(Q)) = |Q ∪ cand(Q)| = |Q|+ |cand(Q)|.

In this case, the upper bound can be further improved.

Let Qmax be a maximum clique which is an expansion of Q. From the definition of
cand(Q), Qmax ⊆ Q ∪ cand(Q) holds. Since cand(Q) is in general not a clique, we
can consider a maximum clique Q′

max in G(cand(Q)), the subgraph of G induced by
cand(Q), such that Qmax = Q ∪ Q′

max. Therefore, if we can compute any upper bound
K for the size of a maximum clique in G(cand(Q)), we have

|Qmax| = |Q ∪ Q′
max| = |Q|+ |Q′

max| ≤ |Q|+ K ≤ |Q|+ |cand(Q)|.

That is, |Q|+ K can work as a better (tighter) upper bound of evaluation values we can
obtain by expanding Q.

Upper bounds for the size of a maximum clique have been widely utilized in efficient
branch-and-bound algorithms for finding a maximum clique (Fahle, 2002; Tomita &
Kameda, 2007). The literature (Fahle, 2002) has summarized several classes of upper
bounds. According to the argument in (Fahle, 2002), the (vertex) chromatic number
χ can be tightest among well-known upper bounds. However, identifying χ is an
NP-complete problem. Therefore, approximations of χ are computed in algorithms
previously proposed. For more detailed discussion, see the literature (Fahle, 2002;
Tomita & Kameda, 2007).

6.4 Algorithm for finding top-N δ-valid formal concepts

With the help of the pruning rules, we can design a depth-first branch-and-bound algorithm
for finding Top-N δ-valid FCs. The pruning rules are adequately incorporated into the basic
algorithm previously presented. A pseudo-code of our algorithm is shown in Figure 6.

7. Experimental results

We present in this section our experimental results. An example of document cluster actually
extracted is presented. Since this chapter mainly focuses on the algorithmic viewpoint, we
also discuss the empirical computational performance of our algorithm.

400 Search Algorithms and Applications

www.intechopen.com

Input :
< O,F , R > : a formal context where

O : a set of objects, F : a set of features, and R : a binary relation on O and F
δ : a threshold for intent value

N : an integer for Top-N
evalE : an evaluation function for extents defined with an weight function wO for O
evalI : an evaluation function for intents defined with an weight function wF for F

Output :
FC : the set of δ-valid formal concepts whose extent values are in the top N

procedure main() :
FC ← φ ; /* Global variable */
min = 0.0 ; /* Global variable */
G ← (O, E, wO) where

E = {(xi, xj) | xi, xj ∈ O(i �= j) ∧ evalI(F (xi) ∩ F (xj)) ≥ δ} ; /* Global variable */
for each x ∈ O in predefined order do

begin
if evalI(F (x)) ≥ δ then /* Pruning 1 */

TopNFCFind({x}, F (x), φ, NG(x)) ;
end

return FC ;

procedure TopNFCFind(X, I, Prev, Cand) :
if head(X) �= head(E(X)) or /* Pruning 2 */

∃x ∈ E(X)\Prev such that x ≺ tail(X) then /* Pruning 4 */
return ;

else
TopNListUpdata((E(X), I)) ;

endif
for each x ∈ Cand\E(X) such that tail(X) ≺ x in predefined order do /* Based on Pruning 3 */

begin
NewX ← X ∪ {x} ;
NewI ← I ∩F (x) ;
NewCand ← Cand ∩ NG(x) ;
if evalI(NewI) < δ then /* Pruning 1 */

continue ;
endif
if FC tentatively contains N-th ones and

evalE(NewX ∪ NewCand) < min then /* Pruning 5 */
continue ;

else
TopNFCFind(NewX, NewI, E(X), NewCand) ;

endif
end

procedure TopNListUpdate(FC) :
FC ← FC ∪ {FC} ;
if FC tentatively contains N-th ones then

min ← N-th extent value ;
Remove M-th ones from FC such that N < M ;

endif

Fig. 6. Algorithm for Finding Top-N δ-Valid Formal Concepts

401Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

Extent :
http : //news.bbc.co.uk/sport3/worldcup2002/hi/

matches_wallchart/south_korea_v_poland/default.stm [10]
http : //news.bbc.co.uk/sport3/worldcup2002/hi/

matches_wallchart/tunisia_v_japan/default.stm [265]
...

http : //news.bbc.co.uk/sport3/worldcup2002/hi/
team_pages/france/newsid_2097000/2097020.stm [328]

http : //news.bbc.co.uk/sport3/worldcup2002/hi/
matches_wallchart/england_v_brazil/
newsid_2049000/2049924.stm [562]

Intent:
Russia, Belgium, go, bbc, ... etc.

Fig. 7. Example of 500.0-Valid FC for WorldCup

Our algorithm has been implemented in language C and compiled by gcc with the
optimization of O3 on FreeBSD. For comparison in the viewpoint of computational efficiency,
two closed itemset miners, AFOPT (Liu et al., 2003) and LCM (Uno et al., 2004), have been also
compiled. All of the systems have been run on a PC with Xeon 2.4 GHz CPU and 1GB main
memory.

7.1 Dataset

For the experimentation, we have prepared a dataset, WorldCup, which is a collection of web
pages. They have been retrieved with Google SOAP Search API 2 under the key words, “World
Cup” and { “Germany”, “France”, “Brazil”, “Korea”, “Japan”, “ticket” }. The number of
documents (pages) is 5, 971. Each document corresponds to a snippet retrieved by Google
API. After Stemming Process with Porter Stemmer (Porter, 1980), we have discarded any words
whose document frequencies are out of the range of [50, 700]. The remaining words are
regarded as feature terms and the number of them is 2, 824.
Each document has been linearly assigned a weight according to its rank. Moreover, each
feature term has been given the IDF value as its weight. Each extent and intent have been
evaluated by the sum of individual weights.

7.2 Extracted document clusters

Figure 7 shows an example cluster extracted from WorldCup, under N = 50 and δ = 500.0. It is
33-th one. In the figure, each URL is accompanied with its rank on the right. A point worthy to
remark is that the cluster consists of web pages with their ranks within a wide range. Since we
usually browse web pages only with relatively higher ranks, lower-ranked pages are almost
discarded in many cases, regardless of their contents. However, if such a lowly ranked page
is concerned with some feature terms shared with several higher-ranked ones, we can expect
that it is probably valuable. Thus, our cluster can make such hidden useful pages visible. A
similar effect has been also observed in (Haraguchi & Okubo, 2010; 2006b; Okubo et al., 2005).

2 It is no longer available.

402 Search Algorithms and Applications

www.intechopen.com

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [
s
e
c
]

Top-N

LCM
AFOPT

Ours

(a) δ = 80

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50
C

o
m

p
u
ta

ti
o
n
 T

im
e
 [
s
e
c
]

Top-N

Abnormally Terminated
(AFOPT)

Break over 6 hours
(LCM)

LCM
AFOPT

Ours

(b) δ = 120

Fig. 8. Computation Time under Various Top-N for WorldCup

7.3 Computational performance

As has been discussed, any closed itemset miner would be helpful for finding Top-N δ-valid
FCs. We compare computational performance of our algorithm with some of efficient closed
itemset miners. Such a system usually enumerates all frequent closed itemsets under a given
minimum support threshold (minsup). Therefore, we can naively obtain Top-N FCs by first
enumerating frequent closed itemsets including Top-N FCs and then choosing the targets
from them. Since the former task is the dominant part of the whole process, we particularly
report on computation times for the task.
It is noted here that weights of objects (transactions) and features (items) are out of
considerations in these miners. Therefore, each object and feature are assigned uniform
weights, 1.0. Then each extent and intent are evaluated by the weight sum, that is, by their
sizes.
For the comparison, LCM (Uno et al., 2004) and AFOPT (Liu et al., 2003) have been selected
as very fast frequent closed itemset miners. Their implementations are available at Frequent
Itemset Mining Implementations Repository 3. In order to find Top-N δ-valid FCs by the systems,
we have to provide some minsup under which all of the Top-N FCs can be enumerated as
frequent ones. However, we have no idea about an adequate minsup in advance. If a given
minsup is too high, some δ-valid FCs will be lost because a higher minsup forces us to extract
only smaller closed itemsets equivalent to intents with lower evaluation values. Conversely,
if a minsup is too low, we will obtain a large number of closed itemsets, even though we
can find all of the targets from them. The most adequate value of minsup is given as the
extent size of the N-th δ-valid FCs. Under the optimal minsup, the number of closed itemsets
to be enumerated can be minimized. In our experimentations, the closed itemset miners are
executed under the optimal minsup in each problem setting. It should be emphasized here
that it is certainly advantageous to the miners.
For the dataset WorldCup, we try to find Top-N δ-valid FCs under δ = 80 and δ = 120. For
each δ setting, we observe computation times changing the parameter N. After the execution
of our system for each problem setting, LCM and AFOPT have been given the N-th extent size as
the optimal minsup. The results are shown in Figure 8.
From the figure, we guess that in case of lower δ, the closed itemset miners can quickly
enumerate candidates including the targets. LCM is especially a system worthy to remark.

3 http : //fimi.cs.helsinki.fi/

403Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

 0.1

 1

 10

 100

 1000

 10000

 50 60 70 80 90 100 110 120 130 140 150

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [
s
e
c
]

delta

Break over 6 hours
(LCM)

LCM
Ours

(a)

 1

 10

 100

 1000

 10000

 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
C

o
m

p
u
ta

ti
o
n
 T

im
e
 [
s
e
c
]

delta

Break over 6 hours
(LCM)

LCM
Ours

(b) Around δ = 100

Fig. 9. Computation Time under Various δ for WorldCup (N = 30)

As the result, they will find final targets faster than our system does. However, the authors
emphasize here that although they have been ideally given the best minsup for each problem,
we never know such best values of minsup in actual situations.
On the other hand, in case of higher δ, our system outperforms the other systems. These
miners have failed to enumerate the closed itemsets within 6 hours. As δ becomes higher,
the miners are given a lower minsup. It is well known that in such a minsup-based system, a
lower minsup brings just a small reduction of the search space. In other words, under such a
lower minsup, the number of frequent (closed) itemsets becomes quite huge. The figure seems
to reflect this fact.
In order to analyze such a performance behavior more precisely, we observe computation
times by LCM and our system changing the parameter δ under N = 30. The results are shown
in Figure 9 (a). From the figure, as we have guessed just above, in lower range of δ, LCM can
enumerate the closed itemsets including Top-N FCs much faster than our system. On the other
hand, in higher range of δ, our system outperforms LCM. In particular, since the performance
curves cross in a range around δ = 100, detailed curves around the range are shown in Figure 9
(b).
As is shown in Figure 9 (b), the performance curves cross between δ = 101 and δ = 102.
Roughly speaking, the computational performance of LCM is primary affected the number of
frequent closed itemsets, and that of our system the number of FCs we examined in our search.
Therefore, we also observe these numbers in order to precisely compare the performance in
more detail.
The results are presented in Figure 10 (a) and the detailed curves around δ = 100 are also
shown in Figure 10 (b). The curves cross between δ = 100 and δ = 101. In a strict sense, this
observation is slightly different from the case of computation time. This observation stems
from the difference between the processing cost for each closed itemset and that for each FC.
The latter cost (that is, ours) is slightly higher than the former. Since LCM can enumerate a more
number of frequent closed itemsets, we have had such slight different observations. Therefore,
the authors consider that they are consistent.
We observe an exponential growth in the number of closed itemsets LCM has actually
enumerated, as is shown in Figure 10. The fact can be clearly explained as follows. The
parameter δ corresponds to some threshold for the minimum size of itemsets we can accept.
Furthermore, frequencies (supports) of itemsets are monotonically decreasing, as itemsets

404 Search Algorithms and Applications

www.intechopen.com

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 50 60 70 80 90 100 110 120 130 140 150

N
u
m

b
e
r

o
f
fr

e
q
u
e
n
t
c
lo

s
e
d
 i
te

m
s
e
ts

delta

Break over 6 hours
(LCM)

LCM
Ours

(a)

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
N

u
m

b
e
r

o
f
fr

e
q
u
e
n
t
c
lo

s
e
d
 i
te

m
s
e
ts

delta

Break over 6 hours
(LCM)

LCM
Ours

(b) Around δ = 100

Fig. 10. Number of frequent closed itemsets and examined FCs for WorldCup (N = 30)

Boundary zones including

Top-N FCs

Enumeration areas of

frequent closed itemsets

(a) lower δ (b) higher δ

S
iz

e
o
f

it
em

se
ts

large

small

Fig. 11. Boundary Zones including Top-N δ-valid FCs and enumeration areas of frequent
closed itemsets in itemset-lattices

become larger. Our task of finding Top-N FCs is equivalent to extract closed itemsets with
enough sizes and Top-N frequencies. Intuitively speaking, therefore, our targets of Top-N
δ-valid FCs can be found in some boundary zone determined by δ, as is illustrated in Figure 11.
If frequent closed itemset miners like LCM is used for finding Top-N FCs, they have to
enumerate the closed itemsets in the lower part of the itemset lattice including the boundary
zone. In case of lower δ, since such a boundary zone lies lower in the lattice, the number of
closed itemsets will not be so large (Figure 11 (a)). Therefore, they can enumerate all of them
very quickly as we have observed above. On the other hand, as δ gets higher, a boundary zone
in the lattice rises and the number of closed itemsets to be enumerated will drastically increase
(Figure 11 (b)).
From these figures, in higher range of δ, any algorithms for finding frequent closed itemsets
are no longer practical for our Top-N δ-valid FC problem, even though they are quite helpful
in lower range of δ. The authors, however, expectantly assert that in order to find FCs which
are actually interesting for us, we need to provide a relatively higher value for δ. Under a lower
δ, we will obtain FCs with larger extents (clusters). Such large clusters seem to be ordinary
and not so interesting for us. The authors expect that clusters which are not too large would
provide us valuable information in practical sense. In order to find such interesting clusters,

405Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

we are required to give a relatively higher value of δ. We can, therefore, consider our algorithm
to be suitable and effective for this purpose.

8. Concluding remarks

In this chapter, we discussed a method for conceptual clustering of documents. Since our
document clusters are extracted as extents of formal concepts, each document cluster can be
provided a clear conceptual meaning in terms of feature terms. Our task was formalized
as the Top-N δ-valid FC problem. We designed an efficient depth-first branch-and-bound
algorithm which is an improved version of our previous algorithm with some new pruning
rules. The safeness and completeness of the prunings were verified with theoretical proofs.
Our experimental results showed that our document clusters can be extracted with reasonable
computation time. Furthermore, we verified that our algorithm outperforms several efficient
closed itemset miners in certain problem settings.
Document clusters we can actually extract are much affected by terms we provide as features.
In case of web pages, it might depend on the result of converting HTML sources into texts.
We need to adequately remove useless terms such as advertisements. Those points should be
further investigated as important future work.
Quality of our clusters will be also related to how we assign a weight to each feature term
and document. We need to analyze relationship between weight assignment and quality of
clusters in more details.
It is important to investigate the scalability of our algorithm. By conducting further
experimentations, we need to observe its computational performance for datasets with the
order of hundreds thousands.
Needless to say, our method is not only for datasets of documents (web pages). We can apply
the method to any dataset in which each object to be clustered can be represented as a set of
features, like relational data. Applying the method to other practical domain will be interesting
work.

9. References

Agrawal, R. & Srikant, R. (1994). Fast Algorithms for Mining Association Rules, Proceedings of
the 20th International Conference on Very Large Databases - VLDB’94, pp.487 – 499, ISBN
1-55860-153-8, Santiago de Chile, September 1994, Morgan Kaufmann Publishers,
CA.

Balas, E. & Yu, C. S. (1986). Finding a Maximum Clique in an Arbitrary Graph, SIAM Journal
on Computing, Vol. 15, No. 4, pp. 1054 – 1068, ISSN 0097-5397.

Besson, J.; Robardet, C. & Boulicaut, J. (2005). Constraint-Based Concept Mining and Its
Application to Microarray Data Analysis, Intelligent Data Analysis, Vol. 9, No. 1, pp.
59 – 82, ISSN 1088-467X.

Fahle, T. (2002). Simple and Fast: Improving a Branch and Bound Algorithm for Maximum
Clique, Proceedings of the 10th European Symposium on Algorithms - ESA’02, LNCS 2461,
pp. 485 – 498, ISBN 3-540-44180-8, Rome, September 2002, Springer, Berlin.

Ganter, B & Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations, Springer, ISBN
978-3540627715, Berlin.

Han, J.; Cheng, H.; Xin, D. & Yan, X. (2007). Frequent Pattern Mining - Current Status and
Future Directions, Data Mining and Knowledge Discovery, Vol. 15, No. 1, pp. 55 – 86,
ISSN 1384-5810.

406 Search Algorithms and Applications

www.intechopen.com

Han, J. & Kamber, M. (2006). Data Mining - Concepts and Techniques (Second Edition), Morgan
Kaufmann Publishers, ISBN 1-55860-901-6, CA.

Haraguchi, M. & Okubo, Y. (2010). Pinpoint Clustering of Web Pages and Mining Implicit
Crossover Concepts, In: Web Intelligence and Intelligent Agents, Usmani, Z. (Ed.), pp.
391 – 410, INTECH, ISBN 978-953-7619-85-5, Rijeka.
(Online version : http://sciyo.com/articles/show/title/pinpoint-

clustering-of-web-pages-and-mining-implicit-crossover-concepts)
Haraguchi, M. & Okubo, Y. (2007). An Extended Branch-and-Bound Search Algorithm

for Finding Top-N Formal Concepts of Documents, In: New Frontiers in Artificial
Intelligence, JSAI 2006 Conference and Workshops, Tokyo, Japan, June 5-9, 2006, Revised
Selected Papers , Washio, T., Satoh, K., Takeda, H. and Inokuchi, A. (Eds.), LNCS 4384,
pp. 276 – 288, Springer, ISBN 3-540-69901-5, Berlin.

Haraguchi, M. & Okubo, Y. (2006a). An Extended Branch-and-Bound Search Algorithm for
Finding Top-N Formal Concepts of Documents, Proceedings of the 4th Workshop on
Learning with Logics and Logics for Learning - LLLL’06, pp. 41 – 47, Tokyo, June 2006,
JSAI, Tokyo.

Haraguchi, M. & Okubo, Y. (2006b). A Method for Pinpoint Clustering of Web Pages with
Pseudo-Clique Search, In: Federation over the Web, International Workshop, Dagstuhl
Castle, Germany, May 1 - 6, 2005, Revised Selected Papers, Jantke, K. P., Lunzer,
A., Spyratos, N. and Tanaka, Y. (Eds.), LNAI 3847, pp. 59 – 78, Springer, ISBN
3-540-31018-5, Berlin.

Hotho, A.; Staab, S. & Stumme, G. (2003). Explaining Text Clustering Results Using Semantic
Structures, Proceedings of the 7th European Conference on Principles of Data Mining
and Knowledge Discovery - PKDD’03, LNCS 2838, pp. 217 – 228, ISBN 3-540-20085-1,
Cavtat-Dubrovnik, September 2003, Springer, Berlin.

Liu, G.; Lu, H.; Yu, J. X.; Wei, W. & Xiao, X. (2003). AFOPT: An Efficient
Implementation of Pattern Growth Approach, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations - FIMI’03,
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-90/,
ISSN 1613-0073.

Lucchese, C.; Orlando, S. & Perego, R. (2004). DCI-Closed: A Fast and Memory
Efficient Algorithm to Mine Frequent Closed Itemsets, Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations - FIMI’04,
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-126/,
ISSN 1613-0073.

Okubo, Y. & Haraguchi, M. (2006). Finding Conceptual Document Clusters with Improved
Top-N Formal Concept Search, Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence - WI’06, pp. 347 – 351, ISBN 0-7695-2747-7, Hong Kong,
December 2006, IEEE Computer Society, CA.

Okubo, Y.; Haraguchi, M. & Shi, B. (2005). Finding Significant Web Pages with Lower Ranks
by Pseudo-Clique Search, Proceedings of the 8th International Conference on Discovery
Science - DS’05, LNAI 3735, pp. 346 – 353, ISBN 3-540-29230-6, Singapore, October
2005, Springer, Berlin.

Okubo, Y. & Haraguchi, M. (2003). Creating Abstract Concepts for Classification by Finding
Top-N Maximal Weighted Cliques, Proceedings of the 6th International Conference on
Discovery Science - DS’03, LNAI 2843, pp. 418 – 425, ISBN 3-540-20293-5, Sapporo,
October 2003, Springer, Berlin.

407Finding Conceptual Document Clusters Based on Top-N Formal Concept Search:
Pruning Mechanism and Empirical Effectiveness

www.intechopen.com

Pasquier, N.; Bastide, Y.; Taouil, R. & Lakhal, L. (1999). Efficient Mining of Association Rules
Using Closed Itemset Lattices, Information Systems, Vol. 24, No. 1, pp. 25 – 46, ISSN
0306-4379.

Porter, M. F. (1980). An Algorithm for Suffix Stripping, Program: Electronic Library and
Information Systems, Vol. 14, No. 3, pp. 130 – 137, ISSN 0033-0337.

Rymon, R. (1992). Search through Systematic Set Enumeration, Proceedings of International
Conference on Principles of Knowledge Representation Reasoning - KR’92, pp. 539 – 550,
ISBN 1-55860-262-3, Cambridge, October 1992, Morgan Kaufmann Publishers, CA.

Tomita, E. & Kameda, T. (2007). An Efficient Branch-and-Bound Algorithm for Finding a
Maximum Clique with Computational Experiments, Journal of Global Optimization,
Vol. 37, No. 1, pp. 95 – 111, ISSN 0925-5001.

Uno, T.; Kiyomi, M. & Arimura, H. (2004). LCM ver. 2: Efficient Mining
Algorithm for Frequent/Closed/Maximal Itemsets, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations - FIMI’04,
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-126/,
ISSN 1613-0073.

Vakali, A.; Pokorný, J. & Dalamagas, T. (2004). An Overview of Web Data Clustering Practices,
Current Trends in Database Technology - EDBT 2004 Workshops, EDBT 2004 Workshops
PhD, DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March 14-18, 2004,
Revised Selected Papers, Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y. and Vakali, A.
(Eds.), LNCS 3268, pp. 597 – 606, Springer, ISBN 3-540-23305-9, Berlin.

Wang, J.; Han, J.; Lu, Y. & Tzvetkov, P. (2005). TFP: An Efficient Algorithm for Mining Top-K
Frequent Closed Itemsets, IEEE Transactions on Knowledge and Data Engineering, Vol.
17, No. 5, pp. 652 – 664, ISSN 1041-4347.

408 Search Algorithms and Applications

www.intechopen.com

Search Algorithms and Applications

Edited by Prof. Nashat Mansour

ISBN 978-953-307-156-5

Hard cover, 494 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Search algorithms aim to find solutions or objects with specified properties and constraints in a large solution

search space or among a collection of objects. A solution can be a set of value assignments to variables that

will satisfy the constraints or a sub-structure of a given discrete structure. In addition, there are search

algorithms, mostly probabilistic, that are designed for the prospective quantum computer. This book

demonstrates the wide applicability of search algorithms for the purpose of developing useful and practical

solutions to problems that arise in a variety of problem domains. Although it is targeted to a wide group of

readers: researchers, graduate students, and practitioners, it does not offer an exhaustive coverage of search

algorithms and applications. The chapters are organized into three parts: Population-based and quantum

search algorithms, Search algorithms for image and video processing, and Search algorithms for engineering

applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yoshiaki Okubo and Makoto Haraguchi (2011). Finding Conceptual Document Clusters Based on Top-N

Formal Concept Search: Pruning Mechanism and Empirical Effectiveness, Search Algorithms and Applications,

Prof. Nashat Mansour (Ed.), ISBN: 978-953-307-156-5, InTech, Available from:

http://www.intechopen.com/books/search-algorithms-and-applications/finding-conceptual-document-clusters-

based-on-top-n-formal-concept-search-pruning-mechanism-and-empi

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

