
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

18

Evolutionary Algorithms in
Decomposition-Based Logic Synthesis

Mariusz Rawski
Warsaw University of Technology

Poland

1. Introduction

Functional decomposition is a logic synthesis method that has recently gained much
recognition. The main reason is the evolution of field programmable gate-arrays (FPGAs) as
a new technology for digital system implementation. Architecture of FPGA is based on the
lookup table (LUT) as basic building block. An n-input LUT is capable of implementing any
Boolean function of up to n variables. Thus, logic synthesis for LUT-based FPGAs must
transform a logic network into network that consists of nodes with up to n inputs only. Each
node of such network can be then implemented by a single LUT. For this reason, for the case
of implementation targeting FPGA structure, decomposition is a very efficient method.
Modern FPGA devices have very complex structure. Today's FPGAs are entire
programmable systems on a chip (SoC) which are able to cover an extremely wide range of
applications. The Altera Stratix III and Xilinx Virtex-5 families of devices, both using a 65
nm manufacture process, can be used as examples of contemporary FPGAs. The basic
architecture of FPGAs has not changed dramatically since their introduction in the 1980s.
Early FPGAs used a logic cell consisting of a 4-input lookup table and register. Present
devices employ larger numbers of inputs (6-input for Virtex-5 and 7-input for Stratix III) and
have other associated circuitry. Another enhancement extensively used in modern FPGAs
are specialized embedded blocks, serving to improve delay, power and area if utilized by
the application, but waste area and power if unused. Early embedded blocks included fast
carry chains, memories, phase locked loops, delay locked loops, boundary scan testing and
multipliers. More recently, multipliers have been replaced by digital signal processing (DSP)
blocks which add support for logical operations, shifting, addition, multiply-add, complex
multiplication etc. Some architectures even contain hardware CPU cores. This greatly
extends the space of possible solution during the process of mapping the design into FPGA
structure with such embedded blocks. Unfortunately such heterogeneous structure of
available logic resources greatly increases the complexity of mapping algorithms. The
existing CAD tools are not well suited to utilize all possibilities that such modern
programmable structures offer due to the lack of appropriate logic synthesis methods.
Functional decomposition is perceived as one of the best logic synthesis methods targeted
FPGAs. It relies on breaking down a complex system into a network of smaller and
relatively independent co-operating subsystems, in such a way that the original system’s
behavior is preserved. A system is decomposed into a set of smaller subsystems, such that
each of them is easier to analyze, understand and synthesize. Decomposition allows

www.intechopen.com

Evolutionary Algorithms

344

synthesizing the Boolean function into multilevel structure that is built of components, each
of which is in the form of LUT logic block specified by truth tables.
Since the Ashenhurst-Curtis decomposition have been proposed, the research has been

focused in forming new decomposition techniques (Łuba & Selvaraj, 1995; Sasao et al., 2001;

Scholl, 2001; Brzozowski & Łuba, 2003; Rawski, 2007a). The researchers have developed

many types of decompositions, but they are still based on Ashenhurst’s ideas. Thanks to the

fact that the functional decomposition gives very good results in the logic synthesis of

combinational circuits, it is viewed for the most part, as a synthesis method for

implementing combinational functions into FPGA-based architectures (Wurth et al, 1999;

Scholl, 2001; Rawski et al., 2007). However, the decomposition-based method can be used

beyond this field. Decomposition-like synthesis methods are not limited only to logic

synthesis of digital circuits. The strong motivation for developing decomposition techniques

comes recently from modern research areas such as pattern recognition, knowledge

discovery and machine learning in artificial intelligence (Perkowski et al. 1997).

The practical usefulness of functional decomposition for very complex systems is limited by
the lack of an efficient method for the construction of the high quality subsystems. In the
subsystem construction process the following three factors play an extremely important
role: an appropriate input support selection for subsystems, decision which (multi-valued)
function will be computed by a certain subsystem and encoding of the subsystem’s function
with binary output variables. For large functions the solution space is so huge that heuristic
method for solving this problem has to be used. This is an NP-hard problem and thus
heuristic methods have to be used to efficiently and effectively search for optimal or near-
optimal solutions.
There are two types of algorithms solving input variable partitioning problem. The
algorithms finding decompositions without using any search heuristics. The basic idea of
these algorithms is to limit the search to some input variable partitions. This is done by
using different functional methods to choose which partitions will be evaluated. These
methods select partitions through Reed-Muller expansions, Fourier transforms, binary
difference equations, and technology-based mappings (Łuba et al., 1995; Perkowski, 1994;
Steinbach & Stokert, 1994). The second type of algorithms utilize different heuristic
methods. In (Rawski et al., 2001) input variable partitioning method based on information
relationship measures was presented, which produced optimal or sub-optimal results for
factions of considerable size.
In recent years the use of the genetic algorithms has received widespread attention. An

evolutionary computing is inspired by Darwin's theory of evolution. In other words, problems

are solved by an evolutionary process resulting in the best (fittest) solution (survivor) – the

solution is evolved. ‘Genetic algorithm’ term was introduced by John Holland (Holland, 1975).

The evolutionary algorithm is one of heuristics, which not necessarily provides the best

possible solution. However, these sub-optimal solutions are considered as acceptable, because

in many problems it is not possible to find the best solution in reasonable time. It means that

evolutionary algorithms are especially useful for problems with a vast search space and non-

polynomial time algorithms solving the given problem.

The evolutionary algorithms need individuals that represent a solution attempt to the
problem they are trying to solve. The population needs to be tested to find how well
individuals perform, and new individuals are created that are combinations of existing good
solutions with some occasional variations. The cycle of testing and creation of new

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

345

individuals is repeated until a suitable solution is found, all the individuals represent the
same solutions, or the search is abandoned.
This approach has been used to find approximate solutions to NP-complete optimization
problems (Khuri, 1994). There have been attempts to apply genetic algorithms to functional
decomposition (Noviskey et al., 1994). In (Rawski et al., 2004) the application of
evolutionary algorithms was proposed to solve input support selection problem for
functional decomposition based on blanket calculus. The solution has been extended to
decomposition based on BDDs (Morawiecki & Rawski, 2008)
In this chapter an application of evolutionary algorithm for functional decomposition-based
logic synthesis will be discussed. First an introduction to functional decomposition based
on cubes and BDDs will be given. Next basics of evolutionary algorithms will be outlined.
Subsequently the heuristic input partitioning method will be presented. Following that
some experimental results will be discussed. The experimental results demonstrate that the
proposed method is able to construct optimal or near optimal decompositions efficiently,
even for large systems.

2. Basic information

In this section, only information that is necessary for an understanding of this chapter is
reviewed. More detailed description of functional decomposition based on partition calculus
can be found in (Brzozowski & Łuba, 2003), functional decomposition based on BDD in
(Scholl, 2001).

2.1 Functional decomposition

The set X of input variables of Boolean function is partitioned into two subsets: free variables

U and bound variables V, such that U ∪ V = X. Assume that the input variables x1, ..., xn have
been relabeled in such a way, that:
U = {x1, ..., xr} and
V = {xn–s+1, ..., xn}.
Consequently, for an n-tuple x, the first r components are denoted by xU and the last s
components are denoted by xV.

Fig. 1. Schematic representation of the functional decomposition.

www.intechopen.com

Evolutionary Algorithms

346

Let F be a Boolean function with n inputs and m outputs and let (U, V) be the pair of sets
defined above. Assume that F is specified by a set of the function’s cubes. Let G be a
function with s inputs and p outputs, and let H be a function with r + p inputs and m
outputs. The pair (G, H) represents a serial decomposition of F with respect to (U, V), if for

every minterm b relevant to F, G(bV) is defined, G(bV) ∈ {0, 1}p, and F(b) = H(bU, G(bV)). G and
H are called blocks of the decomposition (Fig. 1).

2.2 Functional decomposition based on blanket calculus

A Boolean function can be specified using the concept of cubes (input patterns) representing
some specific sub-sets of minterms (Tab. 1.). In a minterm, each input variable position has a
well-specified value. In a cube, positions of some input variables can remain unspecified
and they represent “any value” or “don’t care” (–). A cube may be interpreted as a p-
dimensional subspace of the n-dimensional Boolean space or as a product of n – p variables
in Boolean algebra (p denotes the number of components that are ’–’). For function from
Table 1 truth table with 24 = 16 rows would be required to describe the function using
minterms. Since cube represents a set of minterms, application of cubes allows for much
more compact description in comparison with minterm representation. For example cube
10–0 from row 2 of truth table from Table 1 represents set of two minterms {1000, 1010 }.

 x1 x2 x3 x4 y

1 0 0 – 0 1
2 1 0 – 0 1
3 – 0 0 – 1
4 – – 1 1 0
5 – 1 1 0 0
6 1 1 – 1 0
7 0 – 0 1 1
8 – 1 0 0 0

Table 1. Example function.

For pairs of cubes and for a certain input subset B, we define the compatibility relation

COM as follows: each two cubes S and T are compatible (i.e. S, T ∈ COM(B)) if and only if

x(S) ~ x(T) for every x ⊆ B. The compatibility relation ~ on {0, –, 1) is defined as follows [1]: 0
~ 0, – ~ –, 1 ~ 1, 0 ~ –, 1 ~ –, – ~ 0, – ~ 1, but the pairs (1, 0) and (0, 1) are not related by ~. The
compatibility relation on cubes is reflexive and symmetric, but not necessarily transitive. In
general, it generates a “partition” with non-disjoint blocks on the set of cubes representing a
certain Boolean function F. The cubes contained in a block of the “partition” are all
compatible with each other.
”Partitions” with non-disjoint blocks are referred to as blankets (Brzozowski & Łuba, 2003).
The concept of blanket is a simple extension of ordinary partition and typical operations on
blankets are strictly analogous to those used in the ordinary partition algebra.
Definition 1. Blanket
A blanket on a set S is such a collection of (not necessary disjoint) distinct subsets Bi of S,
called blocks, that

 i
i

B S=∪ (1)

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

347

Each block Bi of blanket has its cube representative r(Bi) that indicates the value of variables
inducing blanket corresponding to this block.
Example 1 (Blanket-based representation of Boolean functions).
For function F from Table 1, the blankets induced by particular input and output variables
and by the two-output function on the set of function F’s input patterns (cubes) are as
follows:

 1 {1 3, 4, 5, 7, 8; 2, 3, 4, 5, 6, 8},x ,β = (2)

 2 {1, 2, 3, 4, 7; 4, 5, 6, 7, 8},xβ = (3)

 3 {1, 2, 3, 6, 7, 8; 1, 2, 4, 5, 6},xβ = (4)

 4 {1, 2, 3, 5, 8; 3, 4, 6, 7},xβ = (5)

 {4, 5, 6, 8 ; 1, 2, 3, 7}.yβ = (6)

The product of two blankets β1 and β2 is defined as follows:

 β1 • β2 = { Bi ∩ Bj | Bi ∈ β1 and Bj ∈β2 }. (7)

For two blankets we write β1 ≤ β2 if and only if for each Bi in β1 there exists a Bj in β2 such

that Bi ⊆ Bj. The relation ≤ is reflexive and transitive.
For example:

 2 3 2 3 {1, 2, 3, 7; 1, 2, 4; 6, 7, 8; 4, 5, 6 },x x x xβ β β= • = (8)

 2 3 2 .x x xβ β≤ (9)

Information on the input patterns of a certain function F is delivered by the function’s inputs

and used by its outputs with precision to the blocks of the input and output blankets.

Knowing the block of a certain blanket, one is able to distinguish the elements of this block

from all other elements, but is unable to distinguish between elements of the given block. In

this way, information in various points and streams of discrete information systems can be

modeled using blankets.

Theorem 1. Existence of the serial decomposition (Brzozowski & Łuba, 2003).
Let F be a Boolean function with n inputs and m outputs and let (U, V) be the pair of sets:

free variables U and bound variables V, such that U ∪ V = X. Let βV, βU, and βF be blankets

induced on the function F’s input cubes by the input sub-sets V and U, and outputs of F,

respectively.

If there exists a blanket βG on the set of function F’s input cubes such that βV ≤ βG, and

βU • βG ≤ βF, then F has a serial decomposition with respect to (U, V).
Proof of Theorem 1 can be found in (Brzozowski & Łuba, 2003).
As follows from Theorem 1 the main task in constructing a serial decomposition of a function

F with given sets U and V is to find a blanket βG which satisfies the condition of the theorem.

Since βG must be ≥ βV, it is constructed by merging blocks of βV as much as possible.

www.intechopen.com

Evolutionary Algorithms

348

Two blocks Bi and Bj of blanket βV are compatible (mergeable), if blanket γij obtained from

blanket βV by merging Bi and Bj into a single block satisfies the second condition of

Theorem 1, that is, if βU • γij ≤ βF. Otherwise blocks Bi and Bj are incompatible (unmergeable).

A subset δ of blocks of the blanket βV is a compatible class of blocks if the blocks in δ are pair
wise compatible. A compatible class is maximal if it is not contained in any other compatible
class.
From the computational point of view, finding maximal compatible classes is equivalent to

finding maximal cliques in a graph Γ = (N, E), where the set N of vertices is the set of blocks

of βV and set E of edges is formed by set of compatible pairs.

The next step in the calculation of βG is the selection of a set of maximal classes, with

minimal cardinality, that covers all the blocks of βV. The minimal cardinality ensures that

the number of blocks of βG, and hence the number of outputs of the function G, is as small as

possible.

In certain heuristic strategies, both procedures (finding maximal compatible classes and
then finding the minimal cover) can be reduced to the graph coloring problem.

Calculating βG corresponds to finding the minimal number k of colors for graph Γ = (N, E).
Example 2. For the function from Table 1 specified by a set F of cubes numbered 1 through

8, consider a serial decomposition with U = {x1} and V = {x2, x3, x4}.

We find

 1 {1 3 4,5,7,8 2,3 4,5,6,8 },U x , , ; ,β β= = (10)

 2 3 4 {1 2 3 3 7; 1,2; 4; 6,7; 5; 4,6 },V x x x , , ; ,β β= = (11)

 {4, 5, 6, 8; 1, 2, 3, 7}.F yβ β= = (12)

Let βG be as follows:

 {1 2,3,7 4,5,6,8 6,7}.G , ; ; β = (13)

It is easily verified that βG satisfies the condition of Theorem 1 (more detailed description of
partition calculus can be found in (Brzozowski & Łuba, 2003)). Thus function F has a serial
decomposition with respect to (U, V).

Number of blocks in blanket βG determines the number of outputs of block G:

 p= ⎡log2(q)⎤, (14)

where q is the number of blocks in blanket βG.

Since in example βG has 3 blocks, to encode blocks of this blanket two encoding bits g1 and g2

have to be used. To define a function G by a set of cubes we calculate cube representatives,

r(Bi), assigned to each block Bi of βV. The relationship between blocks of βV and their cube

representatives, r(Bi), relies on containment of block Bi in blocks of βxj from xj ∈ V. Finally,

the value of function G is obtained on the basis of containment of blocks Bi in blocks of βG.

To compute the cubes for function H we consider each block of the product βU • βG. Their

representatives are calculated in the same fashion. Finally, the outputs of H are calculated

with respect to βF

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

349

The process of functional decomposition based on blanket calculus consists of the following
steps:
- the selection of an appropriate input support V for block G (input variable partitioning),

- the calculation of the blankets βU, βV and βF,

- the construction of an appropriate multi-block blanket βG (this corresponds to the
construction of the multi-valued function of block G),

- the creation of the binary functions H and G by representing the multi-block blanket βG
as the product of a number of certain two-block blankets (this is equivalent to encoding

the multi-valued function of block G defined by blanket βG with a number of binary
output variables).

2.3 Functional decomposition based on BDDs

A Boolean function can be represented using binary decision diagrams. BDDs as a method
of representation of single-output Boolean functions were introduced by Lee (Lee, 1959) and
later Ackers (Ackers, 1978).
Definition 2. Binary decision diagram (BDD)
Binary decision diagram is a rooted directed acyclic graph Γ = (V, E) with node (vertex) set V

and arc set E. The graph has terminal nodes called leaves. To each leaf node there is

assigned a value 0 or 1. Each non terminal node v ∈ V is labeled with a Boolean variable

var(v) and has arcs directed towards two children: low(v) ∈ V corresponding to the case

where the variable is assigned 0, and high(v) ∈ V corresponding to the case where the

variable is assigned 1.

When a Boolean function is represented by binary decision diagram with a given

assignment to the variables, the value yielded by the function is determined by tracing a

path from the root to a terminal vertex, following the branches indicated by the values

assigned to the variables. The function value is then given by the terminal vertex label.

Definition 3. Ordered binary decision diagram (OBDD)
An ordered binary decision diagram is a BDD where an ordering < over set of variables
is defined, and for any node v and either nonterminal child u, their respective variables must

be ordered var(v) < var (u).

In (Bryant, 1986) Bryant presented algorithms that efficiently manipulated BDDs assuming

ordering of the variables. He developed a method to reduce the size of BDDs by removing

‘redundant’ nodes and subgraphs which occur more than once. Bryant also proved that the

reduced representation is canonical in respect to a given variable ordering.

Definition 4: Reduced Ordered Binary Decision Diagram (ROBDD) is an OBDD, that has

no vertex v such that low(v) = high(v) and for no pair {u, v} sub-graphs rooted in v and u are

isomorphic.

Binary decision diagrams made it possible to develop new algorithms for decomposition,

feasible for much larger functions than previously possible. In a BDD, the decomposition

can be easily computed by moving the bound variables V to the upper part of the graph and

counting the number of children below the boundary line, usually called cut line.

Definition 5. Cut-set
Let Γ be the ROBDD representing a function F with variable ordering O, let cut_set(Γ,O, l)

denote the set of nodes whose levels are greater than l and have edges from nodes of level

lower or equal to l (top node has level 1).

www.intechopen.com

Evolutionary Algorithms

350

Theorem 2. Existence of the serial decomposition.
Let F be Boolean function and (U, V) be the pair of sets: free variables and bound variables. Let
Γ be ROBDD representing function F with variable ordering such that bound variables are in
upper part of Γ. Let

 p=⎡log2(|cut_set(Γ,O, l)|)⎤ (15)

If p < l, there exists decomposition in the form F(X) = H(U, G(V)), where function G has p
outputs.
The size of cut_set from (15) plays the same role in BDD-based function decomposition as
number of blocks in blanket βG from (14).
Detailed description of functional decomposition based on BDD can be found in (Scholl,
2001).
Decomposition algorithms following a BDD-cut strategy proved to be orders of magnitude
faster than those based on decomposition charts and cube representations. However, they
require a reordering of the BDD to move the target set of variables to the top of the graph.

Fig. 2. ROBDD for function from Table 1.

Example 3. The ROBDD diagram Γ presented on Fig. 2 represents function F from Table 1
for ordering O={ x2, x3, x4, x1}. Let consider two cut-lines: at level 2 (dotted line) and at level 3
(dashed line). We have:

 q1=|cut_set(Γ,O, 2)| = 4, (16)

 q2=|cut_set(Γ,O, 3)| = 3. (17)
Following (15):

 p1=⎡log2(q1)⎤=2, (18)

 P2=⎡log2(q2)⎤=2. (19)
According to Theorem 2 decomposition with U = {x4, x1} and V = {x2, x3} does not exist since
p1 does not satisfy condition p1 < l, where l = 2. Block G would require 2 outputs, while
having 2 inputs.
However there exists decomposition with U = {x1} and V = {x2, x3, x4}, since p1= 2 and l = 3.
The size of block G will be 3 inputs and 2 outputs.

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

351

2.4 Evolutionary algorithms

An evolutionary computing is inspired by Darwin's theory of evolution. In other words,
problems are solved by an evolutionary process resulting in the best (fittest) solution
(survivor) – the solution is evolved. ‘Genetic algorithm’ term was introduced by John Holland
(Holland, 1975). Here an evolutionary algorithm is used, which is more general term.
The evolutionary algorithm is the heuristics, which not necessarily provides the best
possible solution. However, these sub-optimal solutions are considered as acceptable,
because in many problems it is not possible to find the best solution in reasonable time. It
means that evolutionary algorithms are especially useful for problems with a vast search
space and non-polynomial time algorithms solving the given problem.
The evolutionary algorithms need individuals that represent a solution attempt to the
problem they are trying to solve. The construction of an algorithm starts with mapping a
problem into a set of chromosome representations. The population needs to be tested to find
how well individuals perform, and new individuals are created that are combinations of
existing good solutions with some occasional variations. The cycle of testing and creation of
new individuals is repeated until a suitable solution is found, all the individuals represent
the same solutions, or the search is abandoned. The basic steps of an evolutionary algorithm
are presented on Fig. 3.
To construct the algorithm following qualities have to be defined:

• a population of individuals, where each individual represents an encoded form of a
possible solution to the problem being solved,

• methods for testing individual solutions and assigning fitness (how good the solution is),

• methods for selecting suitable parents that will be used to produce new individuals
(offspring),

• methods for manipulating the encoded forms of individuals, often called “genetic
operators”; these operators are used to create new children from parents (for example,
“crossover” techniques), and for introducing other variations (such as “mutation”) into
the population,

• parameters to manipulate the probability and effect of operators.

Evolutionary algorithm()
begin

t := 0
P 0 := create_initial_population()
evaluate_fitnes(P 0)
while (no_improvement_iterations > threshold) do
begin

T t := selection_operator (P t)
O t := crossover_operator (T t)
evaluate_fitnes(O t)
if (mutation_condition) then

O t := mutation_operator (O t)
P t +1 := O t
t := t +1

end
end

Fig. 3. Outline of an evolutionary algorithm.

www.intechopen.com

Evolutionary Algorithms

352

3. Evolutionary algorithm for input variable partitioning

The practical usefulness of functional decomposition for very complex systems is limited by
lack of an efficient method for the construction of the high quality subsystems (G function
from Fig. 1). In the subsystem construction process the following three factors play an
extremely important role: an appropriate input support selection for subsystems, decision
which (multi-valued) function will be computed by a certain subsystem and encoding of the
subsystem’s function with binary output variables. For function F of n input variables and the
size k of input set of subsystem the number of possible solution is described by formula (20).

n n!

l
k (n k)! k!

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠

 (20)

For large functions the solution space is so huge that heuristic method for solving this
problem has to be used.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

|U| = 10, |V| = 3, |βG| = 5
1 1 1 1 1 1 0 1 1 1 1 0 0
1 1 1 1 1 1 0 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1 0 0 1
1 1 1 1 1 0 0 1 1 1 1 0 1
1 1 1 1 0 1 0 1 1 1 1 0 1
1 1 1 1 0 0 1 1 1 1 1 0 1
1 1 1 0 1 1 0 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0 1 1 0
0 1 1 1 1 1 1 1 1 0 1 0 1
0 1 1 1 1 1 1 0 1 1 1 1 0
0 1 1 1 1 1 1 0 1 1 1 0 1
0 1 1 1 1 1 1 0 1 0 1 1 1
0 1 1 1 1 1 0 1 1 1 1 1 0
0 1 1 1 1 1 0 1 1 1 1 0 1
0 1 1 1 1 0 1 1 1 1 1 0 1
0 1 1 1 0 1 1 1 1 1 1 0 1
0 1 1 0 1 1 1 1 1 1 1 1 0

|U| = 9, |V| = 4, |βG| = 7
0 1 1 1 1 1 0 1 1 1 1 0 0

|U| = 8, |V| = 5, |βG| = 11
0 1 1 1 1 1 0 1 1 1 0 0 0
0 1 1 1 1 1 0 1 1 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0

|U| = 7, |V| = 6, |βG| = 17
0 1 1 0 1 1 0 1 1 0 1 0 0

Frequency of appearance in V set.
16 0 0 3 3 3 13 4 0 5 3 16 13

Table 2. Best input variable partitioning problem solutions of plan example.

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

353

The analysis of best possible solutions for given Boolean function results in interesting
observations (Rawski, 2007b). Table 2 presents the best solutions of input variable
partitioning for plan example Boolean function from standard Microelectronics Center of
North Carolina benchmark set (Yang, 1991). This function has 13 inputs and 25 outputs.
Each row of Table 2 describes one partitioning of input variable set X = {x1, …,x13} into
variables belonging to set U (marked by digit ‘1’) and belonging to set V that leads to

optimal decomposition (according to the number of blanket βG’s blocks). It presents the best
solutions for different sizes of sets V and U, as well as the frequency of appearance of given
input variable in V set. It can be easily noticed that certain variables appear in bound set
often than others. For example variable x1 appears in V set for 16 solutions listed in Table 2,
while x2 does not belong to V set for any of the best solutions. This suggests that some
variables are more predestined to be included in V and other to be included in U set when
constructing good input variable partitions.
There is another interesting observation that can be made analyzing this example. Let us
assume that the size of V set is 4. Now, let us create an input variable partitioning in such
way that V set consists of variables that according to Table 2 are least appropriate to be in
bund set: V = {x2, x3, x4, x9} and U = {x1, x5, x6, x7, x8, x10, x11, x12, x13}. As we could expect, the
quality of decomposition (according to the number of blanket βG’s blocks) is 16 – the worst
possible for this size of V set. However let us move “good” variable x1 from set U to set V
and “bad” variable x2 from set V to set U. The quality of decomposition is now 15, so it has
improved. If we now swap variables x3 and x12, the decomposition will have quality 11, so
further improvement has been obtained.
Let us assume that we have two variable partitioning solution (V1, U1) and (V2, U2). We can
create another solution by taking part of variables from V1 and part from V2 and construct
V3 (similarly for U3). Taking observation described above into account we can suspect that
after such variable exchange it is probable that “good” variables from V1 and V2 will be
included in V3. This should improve the quality of new solution in comparison to solution
used as “parents”. If we preserve improved solutions and eliminate worsen solution we can
apply this approach again. Such behavior is characteristic for evolutionary algorithms. This
means that evolutionary algorithm may be an efficient way for solving input variable
partitioning problem.
In (Rawski et al., 2004) the evolutionary algorithm has been proposed that solves input
variable partitioning problem for functional decomposition. The evolutionary algorithm
maintains a population of individuals (chromosomes), that represent potential solutions of a
given optimization problem (Fig. 3). A survival of the fittest individuals is implemented by
the selection mechanism. For the next population, as potential solutions, such single
organisms are chosen, which adaptation to the environment is the best. The adaptation
(quality) of a specific chromosome is evaluated by a fitness function. The chromosomes are
evolving through the process of selection, recombination (crossover) and mutation. After a
given number of algorithm loops (generations), it is expected that the algorithm has found a
satisfactory solution. Details of the evolutionary algorithm solving input variable
partitioning problem are discussed below.

3.1 Chromosome encoding

The single chromosome (organism) represents one, possible solution of the input variable
partitioning problem. In the method presented in this paper chromosomes are encoded by
the integer numbers, each of which represents the number of the input variable assigned to
the set V (bound variables) of the decomposition.

www.intechopen.com

Evolutionary Algorithms

354

Example 4.
For 4-input function F from Table 1 a possible solution of the variable partitioning problem
can be represented by the set U = {x1} and set V = {x2, x3, x3}.
The corresponding chromosome encoding is {2 3 4}.

3.2 Fitness function

In (Rawski et al., 1999) has been shown that there is a strong correlation of number of values in
the sub-functions of the serial functional decomposition (represented by the number of blocks

in βG or size of cut_set) with the decomposition's quality. However this number strongly
depends on the input variable partitioning chosen for the decomposition process. Therefore,

the number of blocks in the βG blanket or size of cut_set can be used as a good quality measure
of the input variable partitioning. In the presented method the fitness function depends on this
number – the less the number the better fitness of a given chromosome.

For the chromosome from Example 4 the number of blocks in a blanket βG is k = 3 (Example 2).

3.3 Initial population selection

The initial population P 0 is created randomly. Once it is completed, the algorithm checks
whether all the inputs (single genes) have been chosen at least once. If some are missing, the
additional organism is created with genes which are not included in other organisms of the
population.

3.4 Selection method

The selection method is combination of tournament selection and elitism. Tournament
selection chooses randomly two organisms from the population P t, compares them and
takes the better one to the T t population. The number of times such a tournament has to be
done to complete whole T t population depends on the population size. Elitism guarantees
that the best organism from P t is taken to T t population regardless it was taking part at any
tournaments or not.

3.5 Crossover (recombination)

Crossover operator chooses randomly two organism (called ‘parents’) and crosses their genetic
material (Fig. 4). The crossover probability parameter specifies how often the crossover
operator is performed. In proposed method this parameter is set to 0.9. The algorithm checks
whether parents have the same genes or not. If so, the crossover operator is not launched and
the other potential parents are chosen. If crossover is performed, two new organisms are
created (and taken to O t population). Otherwise parents are taken to O t population.

Fig. 4. Schematic representation of the crossover operator.

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

355

3.6 Mutation
Usually, mutation changes a single gene with very small probability (0.001). However, as
experiments proved, in the case of the variable partitioning problem this kind of mutation
does not bring any considerable profit for the algorithm performance.
The main problem with the presented algorithm is that it converges very fast to the local
optimum. Once the algorithm gets to this area, it is very unlikely to find the better solution
than this local optimum. To solve this problem, the special kind of mutation was
implemented. If the average fitness among the population is very close to the best organism
fitness, it is very likely the algorithm got stuck in the local optimum area. Then the special
mutation is performed. One gene in each organism is mutated so the mutation probability is
very high. As a result, the average fitness degenerates rapidly, but the algorithm gets out of
the local optimum area and in many cases the better solution is found.

4. Input variable partitioning algorithm for heterogeneous LUTs

The methods presented in (Rawski et al., 2004), as well as in (Morawiecki & Rawski, 2008)
were designed to solve the problem of input variable partitioning for given size of bound
variable set V. In practice, during decomposition process there is a need to check existence
of functional decomposition for several different sizes of V set before selecting the
appropriate one. This is the case of applying functional decomposition in logic synthesis for
FPGA architectures with heterogeneous logic resources. Such architectures are composed of
adaptive logic elements that can be configured as LUTs of different sizes. In such situation
application of concept presented in (Rawski et al., 2004) or (Morawiecki & Rawski, 2008)
comes down to executing the algorithm for every possible LUT size.
However, the careful analysis of best possible solutions for plan example presented in Tab. 2
yields in interesting observation. Input variables that are present in bound set of best
decompositions for set V of size k are often present in bound set of best decompositions for
set V of size k – 1.
For example there is only one best solution for decomposition with set V of size 6 where
V = {x1, x4, x7, x10, x12, x13} and U = {x2, x3, x5, x6, x8, x9, x11 }. If we remove variable x4 from set
V and move it to set U we will obtain input variable partitioning that is one of 3 best
solutions for decomposition with set V of size 5.

extended_evo_ivp(F , VSizeMin , VSizeMax)
begin

VVSizeMax := evo_ivp(F, VSizeMax)
for k from VSizeMax– 1 downto VSizeMin do
begin

for i from 1 to k +1 do
begin

Vtmp := VVSizeMax – { v i }
if (quality(V tmp) > best_quality) then

Vbest := V tmp
best_quality := quality(V tmp)

end
Vk := V best

end
end

Fig. 5. Outline of algorithm that solves the problem of input variable partitioning for
decomposition with V set of different sizes.

www.intechopen.com

Evolutionary Algorithms

356

This can be used to construct the algorithm that applies evolutionary concept to find

solution for largest size of set V only, and uses the found solution to construct solutions for

decomposition with smaller set V. Let assume that we have evolutionary algorithm

evo_ivp(F, VSize) that solves the problem of input variable partitioning for decomposition of

function F with the bound set V of size VSize. To find good quality functional

decompositions for V set of size from VSizeMin to VSizeMax the extended algorithm first

will find solution (V set) for VSizeMax and then, by removing appropriate variables from

found V set, it will construct solutions for decompositions with smaller sets V. The outline of

the algorithm is presented on Fig. 5. The algorithm returns a list of V sets (Vk, where k =

{VSizeMin, …, VSizeMax})

5. Results

The efficiency of evolutionary algorithm solving input variable partitioning problem for

functional decomposition has been verified in (Rawski et al., 2004). This method was

applied for number of combinational functions from MCNC logic synthesis benchmark set

(Yang, 1991) and results ware compared with those obtained with the method based o

information relationship measures presented in (Rawski et al., 2001) and with the systematic

method. The systematic method is based on searching through the whole solution space and

choosing an input support that produces blanket βG with minimum possible number of

blocks. All experiments were preformed on the computer with 512 Mbytes of RAM and

AMD Athlon XP 3200.

Table 3 shows the comparison of the number of blanket βG blocks for all methods for

examples from MCNC logic synthesis benchmark set converted to truth table format

(required by method from (Rawski et al., 2001). The results were obtained for

decompositions with 3, 4, 5, and 6 input variables in set V. For these experiments the

number of generations in the method based on the evolutionary algorithm was set to 30 and

the size of a population was set to 40. Results obtained by the decomposition with the

systematic search are optimal in the sense of the number of blocks of βG. The method based

on the evolutionary algorithm despite of its heuristic character produces results similar to

the systematic method.

Table 4 present the minimum number of blocks of blanket βG obtained by method based on

the evolutionary algorithm for few large examples. The comparison with other two methods

was impossible due to unacceptably long computation time for systematic method and due

to the fact that method from (Rawski, 2001) accepts only truth table format. However

examples from MCNC benchmark set are presented in espresso format, which in most cases

is not truth table format and it is very difficult to convert such description for large multi-

output systems into truth tables.

In Table 5 the comparison of execution time of the systematic method and the evolutionary-

based algorithm is presented for different sizes of set V. As can be noticed, for large Boolean

functions, method based on evolutionary algorithm is many times faster than the exact

method. The difference in processing time between these two methods grows very fast with

the function size. For the largest functions tried, the heuristic method was many thousands

times faster.

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

357

 Size Systematic method

Heuristic based on

information

relationship measures

Heuristic based on

evolutionary

algorithm

 inputs outputs terms 3 4 5 6 3 4 5 6 3 4 5 6

Con1 7 2 20 5 6 6 5 5 7 7 5 5 6 6 5

Donfl 7 6 64 8 14 25 37 8 14 25 37 8 14 25 37

z4 7 4 128 4 6 8 12 4 6 8 12 4 6 8 12

Misex1 8 7 18 4 6 7 9 4 6 7 9 4 6 7 9

Root 8 5 71 5 9 15 17 5 9 15 17 5 9 15 17

Sqrt 8 4 53 3 4 7 12 3 4 7 12 3 4 7 12

Opus 9 10 23 4 6 8 10 4 6 8 10 4 6 8 10

9sym 9 1 191 4 5 6 7 4 5 6 7 4 5 6 7

Clip 9 5 430 6 10 14 18 6 10 14 21 6 10 14 18

Mark1 9 20 27 4 6 8 10 4 6 8 10 4 6 8 10

Alu2 10 3 391 6 12 24 43 6 12 24 43 6 12 24 43

Sao2 10 4 60 4 6 9 11 4 6 9 11 4 6 9 11

Cse 11 11 86 3 4 6 9 3 4 6 9 3 4 6 9

Sse 11 11 39 4 6 8 11 4 6 8 11 4 6 8 11

Keyb 12 7 147 6 9 13 19 6 9 13 19 6 9 13 19

S1 13 11 110 5 8 13 19 6 8 13 19 5 8 13 19

Plan 13 25 115 5 7 11 17 5 7 11 18 5 7 11 17

Styr 14 15 140 4 6 9 13 5 7 10 14 4 6 9 13

Ex1 14 24 127 4 6 8 11 4 6 8 11 4 6 8 11

Kirk 16 10 304 4 4 5 6 4 5 5 7 4 4 5 6

Duke2_7 18 1 64 3 4 4 4 4 5 5 5 3 4 4 4

Vg2_2 25 1 56 3 3 3 3 4 4 4 4 3 3 3 3

Apex3_3 34 1 208 2 3 4 5 4 4 4 6 2 3 4 5

Seq_2 36 1 211 2 2 3 –*) 3 4 4 6 2 2 3 5

Seq_1 37 1 286 2 3 3 3 3 3 3 4 2 3 3 3

Apex3_7 39 1 227 3 4 4 5 4 5 6 7 3 4 4 5

Table 3. Comparison of the number of blocks in blanket βG obtained by the systematic
method, heuristic method based on information relationship measures and heuristic method
based on evolutionary algorithm for different size of set V. *) – too long computation time.

www.intechopen.com

Evolutionary Algorithms

358

 Size Heuristic based on evolutionary algorithm

 inputs outputs terms 3 4 5 6

duke2 22 29 405 4 5 7 8

misex2 25 18 102 2 2 2 2

seq 41 35 3137 4 5 5 5

apex1 45 45 1440 4 5 6 7

apex3 54 50 1036 4 5 7 8

e64 65 65 327 4 5 5 7

apex5 117 88 2849 1 3 4 3

Table 4. The number of blocks in blanket βG obtained by heuristic method based on
evolutionary algorithm for different size of set V.

 Systematic method *
Heuristic based on evolutionary

algorithm
[s]

 3 4 5 6 3 4 5 6

duke2 31s 2m 40s 10m 58s 34m 56s 37,7 38,9 40,4 58,5

misex2 10s 40s 4m 4s 13m 52s 10,2 12,4 14,9 24,9

seq > 2 h > 1 day > 8 days > 59 days 1656,8 1692,9 1704 1712,9

apex1 > 1 hour > 12 hours > 4 days > 39 days 463,3 506,3 506 524,6

apex3 > 1 hour > 16 hours > 8 days > 81 days 324 316,5 325 328,7

e64 31m 53s > 8 hours > 5 days > 68 days 136,5 137,1 79 191,2

apex5 > 6 days > 185 days > 11 years > 221 years 2849 3772,6 3799,5 3901,8

Table 5. Comparison of computation time of systematic method and heuristic method based
on evolutionary algorithm for different sizes of set V.

In (Morawiecki & Rawski, 2008) the input selection method based on evolutionary
algorithm was applied for decomposition based on BDDs. For manipulation on decision
diagrams CUDD package was used. All the experiments were performed on the computer
with 512 Mbytes of RAM and Pentium4 @ 2.8GHz.

 inputs terms Systematic method Heuristic based on evolutionary algorithm

duke2_7 18 64 4 5

vg2_2 25 56 3 3

seq_2 36 211 2 4

apex1_16 38 179 2 3

apex1_23 39 2216 2 3

Table 6. The sizes of cut_set obtained by the systematic method and heuristic method based
on evolutionary algorithm for size of set V equal to 4.

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

359

Table 6 presents the comparison of results obtained for single-output functions by applying

the exhaustive search and evolutionary algorithm. The size of V set was 4 (typical value for

FPGA-based synthesis). The size of cut_set is used as a quality measure. Results provided by

the exhaustive search method can be considered as optimal. The results obtained by

applying the evolutionary algorithm are very close to optimal or even optimal.

 Systematic method
Heuristic based on evolutionary algorithm

[s]

duke2_7 80 sec 70

vg2_2 6,5 min 90

seq_2 31,5 min 75

apex1_16 46 min 120

apex1_23 49 min 130

Table 7. Comparison of computation time of systematic method and heuristic method based
on evolutionary algorithm for sizes of set V equal to 4.

The comparison of execution time of the exhaustive search method and evolutionary

algorithm has been presented in Table 7. It can be noticed that advantage of heuristic

algorithm over exhaustive search grows fast with the size of decomposed Boolean function.

 Evolutionary algorithm Extended evolutionary algorithm

 3 4 5 6 3 4 5 6

duke2_7 4 4 5 5 4 4 4 5

vg2_2 3 3 3 3 3 3 3 4

seq_2 4 3 4 6 2 3 4 5

apex1_16 3 5 3 3 2 2 2 2

apex1_23 3 4 4 3 2 2 3 4

Table 8. Comparison of results of heuristic method based on evolutionary algorithm and its
improved version.

Table 8 presents the comparison of results obtained with evolutionary algorithm and

extended algorithm (Fig. 5) in case when existence of functional decomposition for several

different sizes of V set has to be checked. It can be noticed that both methods provide results

of comparable quality. However improved algorithm does it faster (Table 9). All the

experiments were performed on the computer with 6 Gbytes of RAM and Intel

Q9550 @ 2.83 GHz.

It has to be stressed that the multilevel decomposition consists of many single serial

decomposition steps. Thus, application of the heuristic methods can speed up the multi-

level decomposition process dramatically.

www.intechopen.com

Evolutionary Algorithms

360

 Evolutionary algorithm
[s]

Extended evolutionary algorithm
[s]

 3 4 5 6 Total Total

duke2_7 17.5 16.6 16.7 15.6 66.6 16.0

vg2_2 21.5 20.9 20.2 20.2 83.0 20.5

seq_2 15.9 16.0 15.1 16.1 63.3 16.6

apex1_16 17.1 16.6 15.7 14.6 64.2 16.0

apex1_23 17.1 15.2 15.1 15.4 63.0 15.5

Table 9. Comparison of computation time of heuristic method based on evolutionary
algorithm and its improved version.

6. Conclusion

The heuristic method of variable partitioning based on the evolutionary algorithm turns out
to be very efficient when applied for decomposition method based on cubes (Rawski,
2007a), as well on ROBDDs (Morawiecki & Rawski, 2008). The method delivers results of
similar or comparable quality to results obtained from the exhaustive search, but does it
many times faster. The algorithm parameters (the number of generations and the size of
population) can be used to control the trade-off between the search time and quality of
solutions. These features make the proposed heuristic method very useful for
decomposition-based synthesis of large systems.

7. Acknowledgments

This work was partly supported by the Ministry of Science and Higher Education of Poland
– research grant no. N N516 418538 for 2010-2012.

8. References

Akers, S. B. (1978). Binary decision diagrams. IEEE Transactions on Computers, Vol. 27, No. 6,

pp. 509–516.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, Vol. 35, No. 6, pp. 677–691.

Brzozowski, J. A. & Łuba, T. (2003). Decomposition of Boolean Functions Specified by

Cubes, Journal of Multiple-Valued Logic and Soft Computing. Vol. 9, pp. 377–417.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence.

MIT Press.

Khuri, S. (1994). An Evolutionary Approach to Combinatorial Optimization Problems.

Proceedings of CSC, pp. 66 – 73.

Lee, C. Y. (1959) Representation of switching circuits by binary-decision diagrams. The Bell

System Technical Journal, pp. 985–999.

www.intechopen.com

Evolutionary Algorithms in Decomposition-Based Logic Synthesis

361

Łuba, T.; Selvaraj, H.; Nowicka, M. & Kraśniewski, A. (1995). Balanced multilevel

decomposition and its applications in FPGA-based synthesis. G.Saucier,

A.Mignotte (ed.), Logic and Architecture Synthesis, Chapman&Hall.

Łuba, T. & Selvaraj, H. (1995). A general approach to Boolean function decomposition

and its applications in FPGA-based synthesis, VLSI Design, Vol. 3, No. 3-4,

pp. 289–300.

Morawiecki, P. & Rawski M. (2008) Method of Input Variable Partitioning in

Functional Decomposition Based on Evolutionary Algorithm and Binary Decision

Diagrams, Proc. of IEEE 2008 Conference Human Systems Interaction, publication on

CD,.

Noviskey, M.J.; Ross, T.D.; Gadd, D.A. & Axtell M. (1994). Application of Genetic

Algorithms to Functional Decomposition in Pattern Theory. Report WL-TR-94-

1015, Wright Laboratory, WL/AART-2. WPAFB, OH 4533-5543.

Perkowski, M. (1994) A Survey of Literature on Function Decomposition. Final

Report for Summer Faculty Research Program. Wright Laboratory. Sponsored by Air

Force Office of Scientific Research. Bolling Air Force Base. DC and Wright

Laboratory.

Perkowski, M; et al. (1997). Decomposition of Multiple-Valued Relations. International

Symposium on Multiple-Valued Logic, pp. 13-18.

Rawski, M.; Selvaraj, H & Morawiecki, P. (2004) Efficient Method of Input Variable

Partitioning in Functional Decomposition Based on Evolutionary Algorithms, Proc.

Euromicro Symposium on Digital System Design, Architectures, Methods and Tools,

IEEE Computer Society, Selvaraj H. (Editor), pp. 136-143.

Rawski, M. (2007a). Decomposition of Boolean function sets, Electronics and

Telecommunications Quarterly, Vol. 53, No. 3, pp. 231–249.

Rawski, M. (2007b). Efficient Variable Partitioning Method for Functional Decomposition,

Electronics and Telecommunications Quarterly, Vol. 53, No. 1, pp. 63-81.

Rawski, M.; Jóźwiak, L. & Łuba, T. (2001). Efficient Input Support Selection for Sub-

functions in Functional Decomposition Based on Information Relationship

Measures. Journal of Systems Architecture, Vol. 47 , No. 2, p. 137-155.

Rawski, M.; Jóźwiak, L. & Łuba, T. (1999). The Influence of the Number of Values in

Sub-Functions on the Effectiveness and Efficiency of Functional Decomposition.

Proceedings of the 25th EUROMICRO Conference, IEEE Computer Society,

pp. 86-93.

Rawski, M.; Tomaszewicz, P.; Selvaraj, H. & Łuba T. (2005). Efficient implementation

of digital filters with use of advanced synthesis methods targeted FPGA

architectures, Proceedings of Euromicro Symposium on Digital System Design,

Architectures, Methods and Tools, IEEE Computer Society, Wolinski C. (Editor),

pp. 460–466.

Sasao, T.; Matsuura, M.; Iguchi, Y. & Nagayama, S. (2001). Compact BDD Representations

for Multiple-Output Functions and Their Application, Proceedings of ISMVL,

 pp. 207-212.

Scholl, C. (2001). Functional Decomposition with Application to FPGA Synthesis. Kluwer

Academic Publisher.

www.intechopen.com

Evolutionary Algorithms

362

Steinbach, B. & Stokert, M. (1994). Design of Fully Testable Circuits by Functional

Decomposition & Implicit Test Pattern Generation. Proceedings of IEEE VLSI Test

Symposium, pp. 22–27

Wurth, B.; Schlichtmann, U.; Eckl, K. & Antreich, K. (1999). Functional multiple-output

decomposition with application to technology mapping for lookup table-based

FPGAs. ACM Trans. Design Autom. Electr. Syst. Vol. 4, No. 3, pp. 313-350.

Yang, S. (1991). Logic Synthesis and Optimization Benchmarks, Version 3.0. Tech. Report,

Microelectronics Center of North Carolina.

www.intechopen.com

Evolutionary Algorithms

Edited by Prof. Eisuke Kita

ISBN 978-953-307-171-8

Hard cover, 584 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary algorithms are successively applied to wide optimization problems in the engineering, marketing,

operations research, and social science, such as include scheduling, genetics, material selection, structural

design and so on. Apart from mathematical optimization problems, evolutionary algorithms have also been

used as an experimental framework within biological evolution and natural selection in the field of artificial life.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mariusz Rawski (2011). Evolutionary Algorithms in Decomposition-Based Logic Synthesis, Evolutionary

Algorithms, Prof. Eisuke Kita (Ed.), ISBN: 978-953-307-171-8, InTech, Available from:

http://www.intechopen.com/books/evolutionary-algorithms/evolutionary-algorithms-in-decomposition-based-

logic-synthesis

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

