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1. Introduction 

The Traveling Salesman Problem (TSP) is a classic Combinatorial Optimization problem. 

Given a graph G=(N,M), where N={1,...,n} is the set of nodes and M={1,...,m} is the set of 

edges, and costs, cij, associated with each edge connecting vertices i and j, the problem 

consists in finding the minimum length Hamiltonian cycle. The TSP is NP-hard (Garey & 

Johnson, 1979) and one of the combinatorial optimization problems more intensively 

investigated. The size of the larger non trivial TSP instance solved by an exact method 

evolved from 318 cities in the 80’s (Crowder & Padberg, 1980), to 7397 cities in the 90’s 

(Applegate et al., 1994) and 24978 cities in 2004. The best mark was reached in 2006 with the 

solution of an instance with 85900 cities (Applegate et al., 2006). The TSP has several 

important practical applications and a number of variants (Gutin & Punnen, 2002). Some of 

these variants are classic such as the Peripatetic Salesman (Krarup, 1975) and the M-tour 

TSP (Russel, 1977), other variants are more recent such as the Colorful TSP (Xiong et al., 

2007) and the Robust TSP (Montemanni et al., 2007), among others. 

A new TSP variant is introduced in this chapter named The Car Renter Salesman Problem 

(CaRS). It models important applications in tourism and transportation areas and represents 

a complex variant that challenges the state of the art. In this paper the new problem and 

some variations are presented, its complexity is analyzed and some related problems are 

briefly overviewed. A memetic algorithm is proposed for the problem and it is compared to 

a hybrid GRASP/VND algorithm. 

CaRS Problem is introduced in Section 2, where several conditions under which this variant 

can be presented are introduced. Section 3 presents two metaheuristic methods for the 

investigated problem. In order to compare the performance of the proposed approaches, a 

set of instances introduced for the new problem, named CaRSLib. This set contains 

Euclidean and non-Euclidean symmetric instances with number of cities ranging from 14 to 

300 and number of cars between 2 and 5. A set of 40 instances is used in the computational 

experiments. The heuristics proposed in Section 3 establish the first upper limits for 

solutions of CaRSLib of instances. The results of computational experiments comparing the 

performance of the proposed approaches are presented in Section 4. Statistical tests are 

applied to support conclusions on the behavior of the proposed algorithms. According to 
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those results, the Memetic Algorithm is pointed as the best approach for CaRS considering 

the tested cases. Final conclusions and future directions for the research of algorithms for 

CaRS and its variations are addressed in Section 5. 

2. The car renter salesman problem 

2.1 The rental car industry 

Today over 90 significant economic size car rental companies exist in the world market (Car, 

2008). The importance of the car rental business can be measured both by the enterprise 

turnover as by the size of the companies that provide the service. For example, Hertz is a 

company in the car rental segment with wide accessibility of providing the services at 

approximately 8,000 locations in approximately 145 countries (Hertz, 2009). The Enterprise 

has more than 878,000 vehicles in its rental and leasing fleet and operates across 6,900 local 

markets (Enterprise, 2009). Avis operates in more than 3,800 locations all over Europe, 

Africa, the Middle East and Asia. In December 2007, the company operated an average fleet 

of 118,000 vehicles (Avis, 2009). Avis Budget Group Inc. earned $ 5.1 billion dollars in 2009 

(Avis, 2010). In 2009, the Enterprise Holdings Inc. which owns today the National Car 

Rental, Alamo Rent A Car and WeCar earned about 12.1 billion dollars (Conrad & Perlut 

2006; Wikipedia, 2010). These numbers represent only part of the market that also has other 

major car rental networks such as Dollar and Hertz. The world market in 2012 is estimated 

at 52.6 billion dollars (Car Rental, 2008). 

Besides being itself a major business, spending on car rentals may represent a significant 
portion of the activities involving tourism and business. Currently the rental options are 
becoming increasingly diversified with the expansion of the companies, justifying the search 
for rent schemes that minimize the total cost of this form of transport. 

2.2 Models of combinatorial optimization in the car rental industry 

Among the various logistical problems of this branch of activity, the literature describes 

specific studies of combinatorial optimization in the Fleet Assignment Problem (Lia &Tao, 

2010), the Strategic Fleet Planning and Tactical Fleet Planning (Pachon et al., 2003), the 

Demand Forecast (Edelstein & Melnyk, 1977) and the car fleet management problem with 

maintenance constraints (Hertz et al. 2009). Logistic problems that occur in the car rental 

industry are reviewed by Yang et al. (2008). These studies focus on the viewpoint of the car 

rental industry, however, the customer’s point of view has not yet been the subject of 

published research. 

2.3 The car renter salesman problem 

In general, under the viewpoint of a user of rented cars, the goal is to minimize the costs to 

move from a starting point to a destination.  On the other hand, when someone rents a car, it 

is assumed that it meets the requirements of comfort and safety. During the travel, in 

addition to the costs of renting the car, at least the costs of fuel and the payment of fees to 

travel on the road should be considered. Let G=(N, M, W) be a graph where N={1,...,n} 

represents the set of vertices, M ={1,...,m} is the set of edges and W={1,...,w} is the set of 

distances between the vertices or the length of the edges of the set M. The problem 

described in this paper has the following features: 
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1. Several types of cars are available for rent, each of them has own characteristics, that is, 
specific operational costs. These costs include fuel consumption, fees that have to be 
paid to travel on roads and the value of the rent. The fees that have to be paid to travel 
on the roads may depend on the type of the car and on the specific roads chosen for the 
route. The value of the rent can also be associated with a cost per kilometer. Thus, 
without loss of generality, these costs can be considered as a function of each car on a 
value associated to the edges (i,j) of graph G. The operational cost of a given car k to 
traverse an edge (i,j) is denoted by k

ijc . 
2. A car rented in a given company can only be returned in a city where there is an agency 

of the same company. It is therefore not allowed to rent a car of a given company to 
travel on a certain segment of the route, if that car cannot be returned on the last city of 
the segment – there is not an agency of this company in the last city of the segment. 

3. Whenever it is possible to rent a car in a city i and return it in city j, i≠j, there is an extra 
for returning the car to its home city. The variable k

ijd  represents the expense to return 
car k to city j when it was rented in city i, i≠j. 

4. The tour begins and ends in the city where the first car is rented, the city that is the 
basis for the CaRS. 

5. The return cost is null in case the tour is completed with a single car which is delivered 
in the same town it was rented. This case corresponds to the classic TSP considering the 
cost of other conditions associated only with the selected car. 

6. Cars with the same characteristics rented in a single rental car company can be hired 
under different costs, depending on the city they where rented or on the contract 
negotiation. Therefore, without loss of generality, the designation of rent can be 
efficiently controlled by decisions related to cars, not considering the companies. The 
set K={1,...,k}, |K|=k is the set of different cars that can be in the solution. 

7. The costs of returning the rented car may be strictly associated with the path between 
the city where the car is delivered and the city where the car was rented or these costs 
can be a result of independent calculation. 

The objective of the proposed problem it to find the hamiltonian cycle that, starting on an 

initial vertex previously known, minimize the sum of total operating costs of cars in the 

tour. The total operating costs are composed of a parcel that unifies the rent and other 

expenses in a value associated to the edges, and a parcel associated to return the car to a city 

that is not its basis, calculated for each car and for each pair of cities origin/return in the 

cycle. The CaRS cycle may also be understood as obtained by the union of up to t 

Hamiltonian paths developed on up to t disjoint subsets of vertices of G. Each of the paths is 

accomplished with a different car or a car different from those used for the neighboring 

paths in the cycle. Therefore the cities that compose the cycle can be grouped into up to t 

different subsets of vertices of G that are covered by cars at least distinct from each other in 

the neighboring paths in the cycle. 

Figure 1 illustrates, in a complete graph with six vertices, a typical instance of CaRS. In the 

example there are three different rental cars. Figures 1(a), (b) and (c) show the accounting of 

the costs involved in the displacement of each type of car. Note that, unlike the classical 

traveling salesman cycle, the solution of CaRS depends on the city chosen to be the starting 

point of the tour, the basis of the salesman. This fact is due to the rate of return is linked 

both to the starting city and the direction of devolution.  In the example this city is 

represented by vertex F. 
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(a) Costs of car A (b) Costs of car B (c) Costs of car C 

Fig. 1. Costs associated to each car 
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(a) Costs to return car 1 when 
rented on city F 

(b) Costs to return car 2 when 
rented on city B 

(b) Costs to return car 3 
when rented on city C 

Fig. 2. Return costs 

Figure 2 shows, for the example in Figure 1, some of the costs of returning the cars to their 

bases. Delivery costs appear as underlined numbers next to vertices. Figure 2(a) shows the 

graph of return of car 1 when rented on vertex F. Figure 2(b) shows the graph of return of 

car 2 when rented on vertex B and Figure 2(c) the return of car 3 when rented on vertex C. In 

the general case return costs are known of all cars when rented in any of the cities. 

A solution of the problem exemplified in Figures 1 and 2 is exhibited in Figure 3. This 

solution considers a case where all available cars are rented and no car is rented more than 

once. The cost of the cycle, according to the solution shown in Figure 3, corresponds to the 

cost of path F-A-B for car 1, added to the cost of path B-E-C for car 2, added to the cost of 

path C-D-F of car 3, in a total of 6 unities. To this value it is necessary to add the cost of 

returning the car to their bases. For car 1, the cost of the return from B to F is one unity. For 

car 2, the cost of the return from C to B is two unities and, for car 3, the cost to return to C 

when the car is delivered in F is two unities. Thus, the cost of the final solution is 11 unities. 

The CaRS Problem has several variants in accordance with the real conditions of the 
problem. The problem can be classified according to the availability of cars, the alternatives 
of return, the existence of symmetry of the cost matrix and the existent links between the 
cities, etc. 
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(a) Costs of the route of car 1 (b) Costs of the route of car 2 (b) Costs of the route of car 3 

Fig. 3. Costs of the route of the exemplified problem 

2.4 Variants of the car renter salesman problem 

The Renter Salesman admits several specific situations being classified according to: 
1. Availability of rental cars 
Since there is no guarantee that the rental companies are present in all cities of the tour, it 
may not necessarily be assumed that any car can be rented in any city. The case in which all 
cars can be rented in all cities is called total. In any other case the problem is called partial. In 
this study, when no observation is made otherwise, the problem is considered total. 
2. Alternatives to return the car to its basis 
Since there is no guarantee that the rental companies operate services for receiving cars in all 
cities, it may not necessarily be assumed that any rental car can be returned in any city. To 
distinguish these different situations, the case in which all cities can receive all cars is called 
unrestricted. In any other situation the problem is called restricted. In this paper, when no 
observation is made otherwise, the problem is considered unrestricted. 
3. The integrity of the contract 
When the problem does not allow the same type of car is rented more than once on the tour, 
the problem is called without repetition, in this case k≥t. The case without repetition where all 
cars have to be rented is called exact, in this case k=t. In any other situation the problem is 
called with repetition. In this paper, when no observation is made otherwise, the problem is 
considered without repetition. 
4. Calculation of the costs of returning a rental car 
The costs of returning the cars may be made of values independent of the topology or 
network restrictions. In this case the problem is called free. In the event that the cost of 
returning a car is calculated taking into account the route used by the car to return to its 
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base, the problem is said to be bonded. In this paper, when no observation is made otherwise, 
the problem is considered free. 
5. Symmetry of the distances between the cities 
When k

ijc = k
jic  for 1 ≤ i,j ≤ n, 1≤ k ≤ ncars, where ncars denotes the number of cars available in 

a given problem instance, the problem is said to be symmetric, otherwise the problem is said 
to be asymmetric. 
6. Existence of links in the connection graph that models the problem 
When the graph that models the problem is complete, the problem is called complete, 
otherwise the problem is called incomplete.  

2.5 The difficulty of solving CaRS 

The problem basically consists in determining a Hamiltonian cycle in a graph G by 
composition of paths developed on the vertices of G. Let T={1,...,t} denote the set of indices 

of up to t subgraphs Hr of G, r∈T. Calling V(Hr) the vertices of Hr, the subgraphs Hr of CaRS 
have the following properties. 

 ( )
2

t

r
r

V H N
=

=∪  (1) 

 ( ) ( ) 1s rV H V H ≤∩      ,r s∀  (2) 

Constraint (1) determines that the union of all paths visits all vertices of G. Constraints (2) 
implies that two different subgraphs never have more than one vertex in common, a 
condition to prevent formation of subcycles. Note that the constraints (1) and (2) are not 
sufficient to guarantee the cycle of the CaRS. It is also necessary that the t subgraphs 
considered three to three, four to four, and so on, until t-1 to t-1, do not have more than one 
vertex in common. 
Once this problem deals with Hamiltonian paths, each path done by a car in one subgraph 
Hr visits all vertices of Hr. The path of subgraph Hr has to be assigned to a car different from 
the cars assigned to neighbor paths during the construction of an Hamiltonian cycle in G. 
The costs of the edges of each subgraph correspond to the operation costs of the car 

traversing Hr. Furthermore, when t≥2 the total cost considers the return cost of each car 

rented in city i and returned in city j, i≠j. Hamiltonian cycle and Hamiltonian path problems 
are well known NP-complete problems (Garey & Johnson, 1979). Due to what was 
previously exposed, the difficulty of solving CaRS is at least the same as the TSP. 
Nevertheless, although some solutions of the TSP are also solutions of CaRS, the latter has a 
number of feasible solutions greater than the former and incorporates all the requirements 
of the TSP, like other several classes of vehicle routing problems which are known to be 
more difficult than the TSP (Ralphs et al., 2003). 
The Traveling Salesman Problem is a particular case of CaRS in the situation where there is 
only one vehicle available for rent. Note that the solution space of CaRS is exponentially 
greater than the solution space of the Traveling Salesman Problem. Considering G =(N,M) a 
complete graph and that CaRS is total, unrestricted and without repetition, any permutation 
of the vertices of G is a feasible solution for the rental car problem considering only one of 
the k possible cars. Once there are k cars available for rent, there are k.n! different feasible 

configurations that meet the condition of use of only one different car in CaRS. From k ≥2 
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each hamiltonian cycle of the car renter salesman can be partitioned in up to k-subpaths in 
sequence and to each possibility of composition of such partitions a distinct cost for the 
route can be assigned. The possibility of this single value is guaranteed due to the 
composition of the costs related to the return fee of the rented cars with the costs of the 
trajectories of independent costs of each car. The number of possible partitions associated to 
each hamiltonian cycle in G is equal to the number of different ways the set of n cities of the 
cycle can be divided in s groups of cities that are visited by s different cars, k ≥ s ≥ 2. The 
number that counts this process of division of a set in disjoint sets that go from 2 to k is the 
Stirling number of the second type. In this way, the number of configurations of the space of 
solutions of CaRS is at least O(2n) greater than the space of solutions of the Traveling 
Salesman Problem, since that for k = 2 the associated number of Stirling is O(2n) 
(Amdeberhan et al. 2008). For a general case of CaRS the dimension of the space of solutions 
is still greater once there is not a theoretical limit for the number of different cars to be 
considered in the problem. 

3. Metaheuristic algorithms 

This section presents two heuristics for the investigated problem. The first one is a Greedy 
Randomized Adaptive Search Procedure (GRASP) (Feo & Resende, 1995) combined with 
Variable Neighborhood Descent (VND) (Mladenović & Hansen, 1997) in the local search 
phase. The second heuristics is a Memetic Algorithm (Moscato, 1989).  

3.1 GRASP with VND 

This algorithm has a pre-processing phase where nCar optimal TSP solutions are obtained 
with the Concorde TSP Solver (Applegate et al., 2001), one for each available car, where nCar 
is the number of cars available for the instance being considered. The constructive phase of 
the GRASP hybridized with VND, named GVND, starts with a random selected car at the 
home city. A path is built each iteration between two cities: a known origin and a 
destination city randomly chosen among the cities yet not considered by the algorithm. A 

Restricted Candidate List (RCL), with size α, is built with the cities that have the cheapest 
return rates for the car being considered in the current iteration. The destination city is 
selected at random, based on a roulette wheel, from the RCL and a path between the origin 
and the destination city is built. Except for the last iteration, the path is built based on the 
tours built in the pre-processing phase. In the first iteration the path between the origin and 
destination cities is obtained in the optimal solution correspondent to the first selected car. 
The path of the i-th car, 1 < i < nCar, is also obtained from the optimal solution that 
corresponds to the i-th car, but in this case a procedure to remove cities already considered 
in paths constructed in previous iterations may be necessary. Suppose that city b, between 
cities a and c in the path built in the i-th iteration, is already in a path built in iteration j, j < i. 
Then the procedure removes city b from the i-th path and includes a link between cities a 
and c. The initial starting city is the origin of the first iteration. The origin city of iteration i, 
i > 1, is the destination city of iteration i-1. The destination city of the last iteration is the 
initial starting city. In the last iteration, the nearest neighbor heuristic is used to build the 
path of the last considered car.   
In the local search phase a VND metaheuristic was used to explore the search space of three 

neighborhood structures named InvertSol, Insert&Saving and Shift. InvertSol is a simple low 
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time consuming heuristics that reverses the sequences of cities of an input solution. With the 

reversal, though the same cars traverse the same sets of cities, the cost of rent and fees for 

returning the car to where they were rented change. The Insert&Saving procedure searches 

for a car insertion in a given solution that yields a decreasing of its cost. Let s be a solution in 

which there is at least one car that is not assigned to a path in s. Insert&Saving method 

randomly chooses a not assigned car and searches the best position to insert it in s. The 

procedure verifies the cost of the insertion of the new car in every point of s. If any of these 

insertions produces a solution with a cost lower than the cost of s, the new solution is set as 

the current solution in the local search. The procedure continues until all non-assigned cars 

have been considered for insertion. In the third procedure, Shift, a neighboring solution s’ of 

a solution s is generated by exchanging two cities within the path of one car of s. The whole 

neighborhood of each solution is searched in the local search procedures.  

3.2 Memetic algorithm  

Algorithm 1 shows the pseudo-code of the Memetic Algorithm (MA) developed for CaRS. 

The input parameters are: number of generations (nOffspring), population size (sizePop), 

recombination rate (txCros) (the number of individuals that reproduce in each generation), 

mutation rate (txMuta) and renewal rate of the population (txRenw).  

 

Algorithm 1 – Main Procedure of Memetic for CaRS 

1. main(nameInstance,sizePop,nOffspring,txCros,txMuta,txRenw) 
2.   instanceRead(nameInstance) 
3.   Pop[] ← generateInitPop(sizePop) 

4.   VNDlocalSearchPhase(Pop) 
5.   for i of 1 to nOffspring do 
6.     for j of 1 to sizePop*txCros do 
7.       dad,mom ←   parentsSelection() 

8.       son1, son2 ←  Crossover(dad,mom) 

9.       son1, son2 ←   carsMutation(son1,son2,txMuta) 

10.       VNDlocalSearchPhase(son1,son2) 
11.       if son1,son2 < Pop[dad],Pop[Mom] 
12.          Pop[dad] ←  son1, Pop[mom] ←  son2 

13.   generateNewIndividuals(sizePop*txRenw) 
14. return(Pop[0]) 

 

Chromosomes are represented in 2-dimensional arrays with n elements as illustrated in 
figure 4 for an instance with n = 11 and 5 cars. The second row corresponds to the sequence 
of cities visited in the tour. The elements in the first row correspond to cars. Let car c be 
assigned to the cities in the second row corresponding to indices i1 to im, that is, car c goes 
from city i1 to city im, then  the elements of the first row corresponding to indices i1 to im-1 are 
equal to c. The last city visited by a car is not assigned to that car in the chromosome, since 
the car is returned on that city and another car is rented there to continue the tour. The 
starting city (city 0) is not represented in the chromosome as the final destination. In figure 4 
four of the five available cars are used. The tour begins at city 0 with car 2 which passes 
through cities 6, 4, 3, 10 and is delivered in city 7 where car 1 is rented. Car 1 proceeds to 
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city 9 passing through city 1. Car 5 is rented in city 9, passes through cities 2 and 5 and is 
delivered in city 8 where the last car, 4, is rented. Car 4 is delivered in the starting city. The 
fitness of each chromosome is given by the inverse of the objective function, which means 
that the lower the value of the objective function the fittest the chromosome is. 
 

 

Fig. 4. Chromosome 

The initial population is generated with a version of the nearest neighbor heuristics adapted 
for CaRS in procedure generateInitPop( ) which receives the size of the population as input 
parameter. Let nCar be the number of available cars of a given instance. The algorithm 
randomly selects a car c and a destination city j for c, j ≠ 0. Then a path between cities 0 and j 
is built with the nearest neighbor heuristic. City j is set as the new origin and a new car and 
a new destination city are randomly selected. The procedure continues until all cities are 
added to the tour or until there is only one car available. In the latter case, the last available 
car is assigned to a path built with the same heuristics between the previous destination city 
and the starting city, closing the tour. In step 4, each individual of the initial population is 
subjected to the same VND procedure used in GVND. 
Parents for recombination are selected with the roulette wheel method. A multi-point 
recombination operation adapted for CaRS is used to generate two children. The 
recombination operator is illustrated in Figure 5, considering an instance with n = 11 and 3 
cars. Two parent chromosomes, A and B, generate offspring C and D. In Figure 5 a 2-point 
operator is used. The first and third parts of chromosomes A and B are inherited by 
chromosomes C and D, respectively. A restoration procedure may be necessary to restore 
feasibility regarding the routes and car assignments. For example, after recombination the 
route of chromosome C is [0 3 1 8 10 1 9 4 5 10 6] which is not feasible since cities 1 and 10 
appear twice each and cities 2 and 7 are missing. Thus the route of chromosome C is 
replaced by [0 3 1 8 10 * 9 4 5 * 6] with asterisks replacing the second time cities 1 and 10 
appears. Each asterisk is then replaced at random by cities 2 and 7. The row corresponding 
to the car assignment of chromosome C after recombination is [1 1 1 1 2 3 3 2 2 2 2 3] which 
is not feasible for the problem considered in this paper, since each car can be rented only 
once. Thus, the car assignment of chromosome C is replaced by [1 1 1 1 2 3 3 * * * * 3] and 
each asterisk is replaced by car 3. Chromosome D is analyzed similarly. 
 

 

Fig. 5. Recombination operator 
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The solutions resulting from the recombination are subjected to mutation. The mutation 
operator verifies which vehicles are not in the solution represented in the chromosome. Each 
of these vehicles is inserted in the chromosome in a given segment defined in advance. The 
maximum size of each segment is defined as the mutation rate. The mutation operator is 
illustrated in figure 6 considering an instance with n= 11, 5 cars, and the mutation rate sets the 
size of the segments to 3. Cars 3 and 4 are not used in the solution shown in chromosome A of 
figure 6. The mutation operator inserts the missing cars in the solution, resulting on 
chromosome B. Cities 10 and 5 are chosen at random to be the starting cities of cars 3 and 4, 
respectively. Therefore, vehicle 5 is replaced by vehicle 3 in cities 10, 7 and 1 and car 4 replaces 
car 1 in cities 5 and 8, since these are the last two cities of the tour.   The sequence of cars is the 
resulting chromosome is [2 2 2 5 3 3 3 5 1 4 4]. A repairing function has to be utilized to restore 
the feasibility of the resultant chromosome, since car 5 appears in two different paths. The 
second time car 5 appears in the solution is removed, resulting on [2 2 2 5 3 3 3 * 1 4 4]. The 
asterisks are replaced by the car that appears in the city immediately before to the ones which 
the asterisks are assigned. In this example, the asterisks are replaced by car 3.     
 

 

Fig. 6. Mutation operator 

After crossover and mutation, the offspring is subjected to the VND method presented at 
GVND. The resulting solutions are compared with their parents and the best two 
individuals survive. Finally, part of the current population is replaced by new solutions 
generated with the constructive method used to create the initial population. The number of 
new individuals created with that procedure is given by the renewal rate and the 
individuals chosen to be replaced are those with the worst values of fitness. This renewal 
process promotes diversification and prevents premature convergence. 

4. Computational experiments 

This section presents the comparison between the performance of the GRASP/VND and the 
Memetic Algorithm, called GVND and MA, respectively. Since the problem introduced in 
this paper is new, a library of instances, named CaRSLib, was created with the purpose of 
testing the proposed algorithms. These instances have the following features: total (all cars 
can be rented in all cities), unrestricted (all cars can be delivered in any city), without repetition 
(each type of car can be rented at most once), free (the return costs are not correlated with 
instance topology), symmetric (costs to go from city i to city j and vice-versa are equal) and 
complete (the graph that models the instance is complete). The set consists of Euclidean and 
non-Euclidean instances. For each set, three groups of instances were created, the first is 
based on real maps, the second was formed with randomly generated data and the third one 
is based on the TSPLIB instances. The dataset, the description of each group of instances and 
file formats are available at http://www.dimap.ufrn.br/lae/en/projects/CaRS.php. 
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An exact backtracking algorithm was developed and adapted to CaRS. This method 
enumerates all possible configurations utilizing permutations of the available cars for each 
instance. The results were used to evaluate the solutions generated by the metaheuristic 
algorithms on the instances solved by the exact method. The algorithm was implemented in 
C++ and executed on an Intel Core Duo 1.67 GHz, 2GB RAM running Linux. The algorithm 
solved eighteen Euclidean and non Euclidean instances with n between 10 and 16 and 2 cars. 
Table 1 presents the results for the backtracking algorithm (column Backtrack) and the best 
results obtained by GVND and MA. Columns gap show the deviation of the best solution 
(Best) found by the metaheuristic algorithm from the optimum (#Opt). 
Table 1 shows that the performance of the memetic algorithm is satisfactory for small 
instances, obtaining the optimum for all investigated instances. The success rate of GVND is 
78% and the maximal deviation from the best solution is 3%. 
 

INSTANCE BACKTRACK GVND MA 

Name City Car T(s) #Opt T(s) Best GAP T(s) Best GAP 

Mauritania10e 10 2 1 540 1 540 0.00 1 540 0.00 

Mauritania10n 10 2 1 571 1 571 0.00 1 571 0.00 

Colombia11e 11 2 19 620 1 620 0.00 1 620 0.00 

Colombia11n 11 2 14 639 1 640 0.00 1 639 0.00 

Angola12e 12 2 266 719 1 719 0.00 1 719 0.00 

Angola12n 12 2 144 656 1 656 0.00 1 656 0.00 

Peru13e 13 2 1953 672 1 672 0.00 1 672 0.00 

Peru13n 13 2 1847 693 1 693 0.00 1 693 0.00 

Libia14e 14 2 31273 730 1 730 0.00 1 730 0.00 

Libia14n 14 2 28331 760 1 764 0.01 1 760 0.00 

BrazilRJe 14 2 44104 294 1 297 0.01 1 294 0.00 

BrazilRJn 14 2 35263 167 1 170 0.02 1 167 0.00 

Congo15e 15 2 455788 756 1 756 0.00 1 756 0.00 

Congo15n 15 2 412212 886 1 886 0.00 1 886 0.00 

Argentina16e 16 2 7603200 955 1 955 0.00 1 955 0.00 

Argentina16n 16 2 7612310 894 1 894 0.00 1 894 0.00 

BrasilRN16e 16 2 7609203 375 1 375 0.00 1 375 0.00 

BrasilRN16n 16 2 7613217 188 1 194 0.03 1 188 0.00 

Table 1. Results of Backtrack, GVND, MA 

The results shown in the following tables for GVND and MA were obtained on a PC Intel 
Xeon QuadCore W3520 2.8 GHz, 8G of RAM running Scientific Linux 5.5 64bits. The results 
refer to 40 CaRS instances, 20 of them are Euclidean and 20 are non Euclidean. Each group 
of instances is formed with 10 instances based on real maps, 5 random instances and 5 
instances based on TSPLIB (Reinelt, 1995). Thirty independent executions of each algorithm 
were performed for each instance. Two groups of experiments were performed with fixed 
processing times. In the first group the average processing times spent by GVND to find its 
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best solution for each instance was given to both algorithms.  In the second group the 
average processing times of the MA for each instance was fixed for both algorithms. 
Preliminary tests to tune the parameters of the proposed algorithms were executed on a set 
of 20 CaRSLib instances, with number of cities ranging from 14 to 300 and 2 to 5 vehicles. 
Twenty independent executions were performed for each instance. Two groups of tests were 
performed with the GVND. First, the algorithm was executed without the VND method and 
then the VND was included. The parameter α was set to 0.25. The maximum number of re-
starts was set to 300. An additional stopping criterion fixed 90 re-starts without 
improvement of the best current solution. The parameters chosen for the Memetic 
Algorithms are: nOffspring = 20, sizePop = 30, txCros = 0.60, txMuta = 0.40 and txRenw = 0.15. 
The stopping criterion was maxGen = 0.30nOffspring generations without improvement of 
the best current solution.  
 

INSTANCE GVND MA 

Name City Car #Best Avg SD Best Freq Avg SD Best Freq 
T(s) 

p-
value 

BrasilRJ14e 14 2 294 297 0 297 0 294 0 294 29 1 0 

BrasilRN16e 16 2 375 375 0 375 30 375 2 375 29 1 0.85 

BrasilPR25e 25 3 510 510 0 510 29 515 5 510 16 2 1 

BrasilAM26e 26 3 467 495 1 495 0 485 9 469 0 3 0 

BrasilMG30e 30 4 563 603 2 595 0 599 7 575 0 5 0 

BrasilSP32e 32 4 611 633 5 626 0 621 4 611 2 8 0 

BrasilRS32e 32 4 510 537 9 529 0 522 6 510 1 8 0 

BrasilCO40e 40 5 779 807 2 805 0 822 10 779 1 18 1 

BrasilNO45e 45 5 886 1008 0 1008 0 978 34 886 1 23 0 

BrasilNE50e 50 5 822 963 5 940 0 954 27 822 1 43 0.08 

Betim100e 100 3 1401 1723 8 1708 0 1692 89 1410 0 78 0.99 

Vitoria100e 100 5 1598 1802 75 1642 0 1891 87 1598 1 155 1 

PortoVelho200e 200 3 2827 3142 29 3041 0 3149 129 2827 1 466 0.98 

Cuiaba200e 200 3 3052 3379 88 3212 0 3414 80 3217 0 686 1 

Belem300e 300 4 4031 4635 121 4563 0 4425 76 4031 1 1804 0 

berlin52eA 52 3 8948 9020 35 8991 0 9081 72 8948 4 20 1 

eil76eB 76 4 1940 2228 42 2158 0 2077 43 1940 1 87 0 

rat99eB 99 5 3339 3439 42 3351 0 3513 75 3365 0 194 1 

rd100eB 100 4 9951 10107 81 9951 1 10364 172 10054 0 103 1 

st70eB 70 4 2037 2201 44 2085 0 2151 46 2042 0 77 0 

Table 2. Results with time determined by GVND for Euclidean instances  

With the aim of comparing the algorithms on a fair basis, the same maximum processing 
time is given for both algorithms. These processing times were obtained in preliminary 
experiments with the stop conditions afore mentioned. The results are reported in Tables 2-
5. These tables show the name of the instance (Name), the number of cities (City), the number 
of available cars (Car), the best solution found (#Best), the average (Avg) solution, the best 
solution obtained by one of the tested algorithms (Best), the standard deviation (SD), the 
number of times (Freq) the best known solution, reported in column #Best, was found by 
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each algorithm, the maximum processing time in seconds (T) and the p-value obtained in 
the statistical U-test (Conover, 2001). Considering level of significance 0.05, values less than 
0.05 in the last column indicate that the performance of MA is significantly better than the 
performance of GVND and values greater than 0.95 indicate that GVND produced better 
results than MA. 
Tables 2 and 3 refer to Euclidean instances and show the results with the maximum 
processing time fixed by the stop conditions of GVND and MA, respectively. Similarly, 
Tables 4 and 5 show results for non Euclidean instances with the maximum processing time 
fixed by the stop conditions of GVND and MA, respectively. 
 

INSTANCE MA GVND 

Name City Car #Best Avg SD Best Freq Avg SD Best Freq 
T(s) 

p-
value 

BrasilRJ14e 14 2 294 294 1 294 25 297 0 297 0 1 0 

BrasilRN16e 16 2 375 376 4 375 27 375 0 375 30 1 0.96 

BrasilPR25e 25 3 510 515 5 510 17 510 0 510 30 2 1 

BrasilAM26e 26 3 467 481 10 467 3 495 0 495 0 4 0 

BrasilMG30e 30 4 563 596 10 563 1 602 2 595 0 6 0 

BrasilSP32e 32 4 611 624 5 615 0 632 4 626 0 8 0 

BrasilRS32e 32 4 510 523 7 512 0 536 9 529 0 8 0 

BrasilCO40e 40 5 779 824 7 801 0 806 2 806 0 17 1 

BrasilNO45e 45 5 886 993 27 897 0 1008 0 1008 0 25 0 

BrasilNE50e 50 5 822 963 2 953 0 962 11 908 0 31 0.43 

Betim100e 100 3 1401 1642 110 1401 1 1720 7 1708 0 128 0.30 

Vitoria100e 100 5 1598 1922 29 1814 0 1859 77 1676 0 98 1 

PortoVelho200e 200 3 2827 3134 117 2871 0 3128 22 3041 0 766 0.61 

Cuiaba200e 200 4 3052 3415 96 3052 1 3365 56 3334 0 701 1 

Belem300e 300 4 4031 4434 30 4282 0 4621 125 4563 0 2016 0 

berlin52eA 52 3 8948 9094 65 8948 4 9013 24 8991 0 27 1 

eil76eB 76 4 1940 2069 43 1986 0 2226 56 2129 0 61 0 

rat99eB 99 5 3339 3525 71 3339 1 3468 54 3348 0 128 1 

rd100eB 100 4 9951 10385 209 9994 0 10055 54 9951 1 161 1 

st70eB 70 4 2037 2158 67 2037 1 2212 31 2137 0 54 0 

Table 3. Results with time determined by Memetic Algorithm for Euclidean instances 

Provided that the same computational effort (processing time) is fixed, throughout this 

section a statistical test for proportions comparison is applied. The test proposed by Taillard 

et al. (2008) compare success rates between two methods. In this paper, given two methods 

A and B, success of method A is stated when A achieves a better result than B for the same 

problem instance. The values for this test presented here were calculated with the tool 

available at http://qualopt.eivd.ch/stats/?page=stats with the one-tailed Taillard Test. 

Column p-value of Table 2 shows that MA and GVND outperforms one another on 9 
instances each, considering level of significance 0.05. With the processing time of MA fixed 
for both algorithms, column p-value of Table 3 shows that MA presents the best performance 
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on 9 instances and the GVND on 8 instances. These results show that the algorithms present 
similar performance concerning the number of instances each of them is significantly better 
than the other. If hitting the lowest value solution is set as a target for the algorithms, then 
Table 2 and 3 show that MA hits this target 19 and 17 times, respectively, whilst GVND hits 
the target 3 and 5 times. For these results, the test to compare success rates between two 
methods (Taillard et al., 2008) shows that the confidence level of the hypothesis that MA has 
success rate higher than GVND is 1 and 0.999968 when the maximum processing times are 
fixed by the GVND and the MA, respectively. 
 

INSTANCE GVND MA 

Name City Car #Best Avg SD Best Freq Avg SD Best Freq 
T(s) 

p-

value 

BrasilRJ14n 14 2 167 171 0 171 0 167 0 167 4 1 0 

BrasilRN16n 16 2 190 203 0 203 0 194 2 192 0 1 0 

BrasilPR25n 25 3 235 311 9 305 0 255 7 239 0 5 0 

BrasilAM26n 26 3 204 242 6 239 0 213 4 206 0 5 0 

BrasilMG30n 30 4 279 375 11 352 0 330 14 298 0 11 0 

BrasilSP32n 32 4 285 336 16 298 0 295 5 285 1 12 0 

BrasilRS32n 32 4 297 372 15 344 0 337 14 297 1 15 0 

BrasilCO40n 40 5 655 826 42 755 0 718 37 655 1 39 0 

BrasilNO45n 45 5 664 889 42 770 0 753 39 664 1 55 0 

BrasilNE50n 50 5 707 1044 60 874 0 844 43 761 0 81 0 

Londrina100n 100 3 1450 1783 80 1629 0 1564 51 1450 1 192 0 

Osasco100n 100 4 1150 2000 60 1910 0 1443 109 1265 0 191 0 

Aracaju200n 200 3 2467 3686 212 3223 0 2802 136 2588 0 903 0 

Teresina200n 200 5 2192 3793 144 3261 0 2480 143 2192 1 1407 0 

Curitiba300n 300 5 3676 6125 202 5680 0 4081 202 3749 0 3388 0 

berlin52nA 52 3 1480 1777 82 1661 0 1640 51 1543 0 41 0 

ch130n 130 5 2487 4706 307 3855 0 2940 245 2487 1 478 0 

d198n 198 4 4807 7138 333 6529 0 5332 269 4807 1 1330 0 

kroB150n 150 3 3824 5368 434 4414 0 4312 194 3824 1 464 0 

rd100nB 100 4 1890 2953 169 2623 0 2274 118 2083 0 205 0 

Table 4. Results with time determined by GRASP/VND for non Euclidean instances  

Column Freq of Table 2 shows that, on average, 15% and 10% of the best solutions generated 
by one of the tested algorithms on the two experiments with fixed processing times are 
found by MA and GVND, respectively. Data presented in column Freq of Table 3 show that, 
on average, 13.5% and 10% of the best solutions are found by MA and GVND, respectively. 
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INSTANCE MA GVND 

Name City Car #Best Avg SD Best Freq Avg SD Best Freq 
T(s) 

p-
value 

BrasilRJ14n 14 2 167 167 0 167 2 171 0 171 0 1 0 

BrasilRN16n 16 2 190 195 3 190 1 203 0 203 0 1 0 

BrasilPR25n 25 3 235 256 10 235 1 316 12 305 0 4 0 

BrasilAM26n 26 3 204 212 4 204 1 242 5 239 0 5 0 

BrasilMG30n 30 4 279 328 15 279 1 378 14 352 0 8 0 

BrasilSP32n 32 4 285 296 7 287 0 331 14 300 0 13 0 

BrasilRS32n 32 4 297 340 16 304 0 378 18 344 0 9 0 

BrasilCO40n 40 5 655 743 33 668 0 839 41 710 0 20 0 

BrasilNO45n 45 5 664 764 39 667 0 919 43 814 0 32 0 

BrasilNE50n 50 5 707 861 61 707 1 1068 57 924 0 46 0 

Londrina100n 100 3 1450 1592 50 1471 0 1767 85 1629 0 146 0 

Osasco100n 100 4 1150 1442 139 1150 1 2046 80 1817 0 125 0 

Aracaju200n 200 3 2467 2744 135 2467 1 3594 236 3106 0 922 0 

Teresina200n 200 5 2192 2551 182 2233 0 3866 126 3611 0 836 0 

Curitiba300n 300 5 3676 4076 216 3676 1 6050 160 5647 0 2384 0 

berlin52nA 52 3 1480 1642 78 1480 1 1748 63 1661 0 38 0 

ch130n 130 5 2487 3020 228 2493 0 4863 345 3813 0 237 0 

d198n 198 4 4807 5449 318 4887 0 7407 378 6250 0 823 0 

kroB150n 150 3 3824 4259 208 3845 0 5313 272 4871 0 418 0 

rd100nB 100 4 1890 2271 143 1890 1 2962 180 2685 0 140 0 

Table 5. Results with time determined by Memetic Algorithm for non Euclidean instances  

The analysis of columns p-value of Tables 4 and 5 shows MA outperforms GVND on all non 

Euclidean instances, regardless the maximum processing time fixed for the experiments. All 

best results are found by MA. On average, MA finds approximately 2% of the best solutions 

on the 30 executions of each one of the 40 tested instances.  

5. Conclusion 

This chapter presented the Car Renter Salesman Problem (CARS), a new generalization of 
the classic Traveling Salesman Problem. An experimental investigation was carried out to 
compare two metaheuristic approaches proposed for this new problem: GRASP (Greedy 
Randomized Search Procedure) hybridized with VND (Variable Neighborhood Descent) 
and Memetic Algorithms. The algorithms were applied to 40 Euclidean and non Euclidean 
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instances of the CaRSLib benchmark which is proposed for this problem. An exact 
procedure established the optimal solutions of 4 from the 40 instances, whilst the proposed 
heuristics established the first upper limits for the remaining 36 instances. Statistical tests are 
applied to the results generated by the proposed algorithms in order to support conclusions 
on their behaviors concerning quality of solution. 
To establish a fair basis of comparison for the proposed algorithms, the effect of the 

computational effort demanded by each algorithm is neutralized by comparing the 

performance of each algorithm according to fixed processing times. These execution times 

are established in accordance to the requirements of each algorithm for its best performance. 

Therefore, the proposed algorithms are tested twice, first with the processing times fixed by 

the best performance of one algorithm and then with the processing times fixed by the best 

performance of the other. Thus, a superior qualitative behavior can be considered conclusive 

when it holds for both processing time conditions. 

The results of the computational experiments showed that for Euclidean instances the 

proposed algorithms present similar behavior with some advantage for MA concerning the 

number of best solutions found. For the set of non Euclidean instances, MA outperformed 

GVND on the whole set regardless the maximum processing time fixed for both algorithms. 

The MA also presented the best solution values for all non Euclidean instances. 

This chapter presented also other six variants for the introduced problem, opening up the 
topic for future research.  
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