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1. Introduction 

Optimization is essentially the art, science and mathematics of choosing the best among a 

given set of finite or infinite alternatives. Though currently optimization is an 

interdisciplinary subject cutting through the boundaries of mathematics, economics, 

engineering, natural sciences, and many other fields of human Endeavour it had its root in 

antiquity. In modern day language the problem mathematically is as follows - Among all 

closed curves of a given length find the one that closes maximum area. This is called the 

Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in 

the Calculus of Variations. However, most problems of antiquity came from geometry and 

since there were no general methods to solve such problems, each one of them was solved 

by very different approaches.  

Generally, optimization algorithms can be divided in two basic classes: deterministic 

probability algorithm. Deterministic algorithm are most often used if a clear relation 

between the characteristic of possible solutions and their utility for a given problem exists. If 

the relation between a solution candidate and its fitness are not so obvious or too 

complicated, or the dimensionality of the search space is very high, it becomes harder to 

solve a problem deterministically. Trying it would possible result in exhaustive enumeration 

of the search space, which is not feasible even for relatively small problem.  

Then, the probabilistic algorithm come in to play. The increased availability of computing 

power in past two decades has been used to develop new techniques of optimization 

Today's computational capacity and the widespread Availability of computers have enabled 

development of new generation of intelligent computing techniques, such as genetic 

algorithm.  

Evolutionary Algorithm are population met heuristic optimization algorithms that use 

biologic- inspired mechanisms like mutation, crossover, natural selection, and survival of 

the fittest in order to refine a set of solution candidates iteratively [ Weise, 2009].  

All evolutionary algorithms proceed in principle according to the scheme illustrated in 

fig.(1). 

A simple Genetic Algorithm ܣܩݏ  is search algorithms based on the mechanics of natural 

selection and neutral genetics. They combine survival of fittest among string structures with 

a structure yet randomized information exchange to form a search algorithm with some of 
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Fig. 1. Cyclic life of an evolutionary algorithms 

the innovative flair of human search. In every generation; a new set of artificial creatures 

(string) is created using bits and pieces of the fittest of the old; an occasional new part is 

tried for good measure. They efficiently exploit historical information to speculate on a new 

search points with expected improved performance. A hybrid genetic algorithm (HGA) is 

the coupling of two processes: the simple ܣܩ and a local search algorithm. HGAs have been 

applied to a variety of problems indifferent fields, such as optical network design 

[Sinclair,2000], signal analysis [Sabatini, 2000], and graph problems [Magyar et al, 2000], 

among others. In these previous applications, the local search part of the algorithm was 

problem specific and was designed using trial-and-error experimentation without 

generalization or analysis of the characteristics of the algorithm with respect to convergence 

and reliability. The purpose of this study is to develop variants of hybrid simple genetic 

algorithm with local search algorithm represent by gradient or global algorithm present by 

evolution strategy to optimize solution of some functions where classifies as multimodal 

function and unimodel functions. One of import function of this study is likelihood function 

of time series autoregressive moving average  ܣܯܴܣሺͳ,ͳሻ model, this function defined as a 

unimodel function it is one of fundamental importance in estimation theory. The other   

functions used in this study as a test function used widely as benchmark functions. This 

study presents the( ܣܩܪͳ) which is represent hybrid of simple genetic algorithm with an 

widely local search algorithm used steepest decent algorithm the other approach of  hybrid 

denoted by ܣܩܪʹ is coupling simple genetic algorithm with global search algorithm 

multimember evolution strategy, compares its performance with the simple(ܣܩݏ), steepest 

descent algorithm(SDA), multimember evolution strategy ܵܧ; to study the behaviours many 

of functions classified as its kind  multimodal or unimodel function which is used as test 

functions. The reminder of this chapter, section 2 presents definitions needed, section 3 

giving a brief overview of genetic algorithms, representation of search points and their 

fitness evolution, selection, recombination, and mutation mechanisms. Then to be consistent, 

section 4 introduce the characteristic components of local search and its operators , also 

section 5 issue of  the multimember evolution strategy. Section 6 address the issue of 

coupling simple genetic algorithm with multimember evolution strategy. Section 7 is an 
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extension of the results of section, in which are representative of the classes of unimodel , 

and multimodal function. In which competition is raised.  

2. Definitions  

Definition 2.1 (Objective Function) An objective function f: ॿ ՜ ঀ with ঀ ك Թ is a 

mathematical function which is subject to optimization. 

The co-domain  ঀ of an objective function as well as its range must be a subset of the real 

numbers ঀ ك Թ. The domain ॿ of f is called problem space and can represent any type of 

element like numbers, lists, construction plans, and so on. It is chosen according to the 

problem to be solved with the optimization process. Objective functions are not necessarily 

mere mathematical expressions, but can be complex algorithms that, for example , involve 

multiple simulations. Global optimization comprises all techniques that can be used to find 

the best element כݔ א ॿ with respect to such criteria ݂ א  .ܨ

Definition 2.2 (local Maximum) A local maximum xො୪ א ॿ of one (objective) function ݂: ॿ ՜Թ is an input element ݂ሺݔො௟ሻ ൒ ݂ሺݔሻ for all x neighbouring xො୪. If ॿ א Թ୬, we can write: ݔ׊ො௟߳׌ ൐ Ͳ: ݂ሺݔො௟ሻ ൒ ݂ሺݔሻݔ׊ א ॿ, ݔ| െ |ො௟ݔ ൏ ߳. 
 

Definition 2.3 (Local Optimum). A (local) minimum xො୪ א ॿ of one (objective) function f: ॿ ՜ Թ is an input element with fሺxො୪ሻ ൑ fሺxሻ for all  x neighbouring xො୪,  ݔ׊ො௟߳׌ ൐ Ͳ: ݂ሺݔො௟ሻ ൑ ݂ሺݔሻݔ׊ א ॿ, ݔ| െ |ො௟ݔ ൏ ߳. 

Definition 2.4 (Local Optimum).A local optimum xכ א ॿ of one (objective) function f: ॿ ՜ Թ 

is either a local maximum or a local minimum. 

Definition 2.5 (Global Maximum). A global maximum ݔො א  of one (objective) ݔ

function f: ॿ ՜ Թ is an input element with  ݂ሺݔොሻ ൒ ݂ሺݔሻݔ׊ א ॿ. 
 

Definition 2.6 (Global Maximum). A global maximum ݔො א  of one (objective) ݔ

function f: ॿ ՜ Թ is an input element with  ݂ሺݔොሻ ൑ ݂ሺݔሻݔ׊ א ॿ. 
 

Definition 2.7 (Local Optimum): A global optimum xכ א ॿ of one (objective) function f: ॿ ՜ Թ is either a global maximum or a global minimum. Even a one-dimension function f: ॿ ൌ Թ ՜ Թ may have more than one global maximum, multiple global minimum, or even 

both in its domain ॿ. Take the sine or cosine function for example; for cosine function it has 

global maximum ݔො௜ ൌ ,ߨ݅ʹ ሺ݅ ൌ Ͳ,ͳ,ʹ, … ሻ  and global minimum ݔො௜ ൌ ሺʹ݅ ൅ ͳሻߨ, ሺ݅ ൌ ͳ,ʹ, … ሻ.  

Definition 2.8 (Solution Candidate): A solution candidate x is an element of the problem 

space ॿ 

Definition 2.9 (Solution Space): we call the union of all solutions of an optimization 

problem its solution  space ॺ. ࣲכ ك ॺ ك ॿ 

This solution space contain (and can be equal to) the global optimal set ࣲכ. There may exist 

valid solution x א ॺ which are not elements of ࣲכ, especially in the context of constraint 

optimization. 
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Fig. 2. An example of function with multi global and local maximum and minimum optimal 

point.   

Definition 2.10 (Search space ) :The search space ॳ of an optimization problem is the set of all 

elements ग़ which can be processed by the search operations. The type of the solution 

candidates depends on the problem to be solved. Since there are many different applications 

for optimization, there are many different forms of problem spaces. It would be cumbersome 

to develop search operations time and again for each new problem space encounter.  

Definition 2.11 (Genotype): the elements ग़ א ॳ of the search space ॳ of a given 

optimization problem are called the genotypes. 

The elements of the search space rarely are unconstraint aggregations. Instead, they often 

consist  of distinguishable parts, hierarchical units, or well-type data strictures. The same 

goes for DNA in biology. It consists of genes, segments of nucleic acid, that contain the 

information necessary to produce RNA strings in a controlled manner. A fish, for instance, 

may have a gene for the colour of its scales. This gene, in turn, could have two possible 

"values" called alleles, determining whether the scales will be brown or grey. The genetic 

algorithm community has adopted this notation long ago and we can use it for arbitrary 

search space. 

Definition 2.12 (Gene). The distinguishable units of information in a genotype that encode 

the phonotypical properties are called gene. 

Definition 2.13 (Allele): An allele is a value of specific gene. 

Definition 2. 14 (Locus): The locus is the position where a specific gene can be found in a 

genotype. 

Definition 2.15 (Search Operation): the search operation search OP are used by 

optimization algorithm in order to explore the search space ॳ. 

Definition 2.16 (individual): An individual p is a tuple ሺp. g, p. xሻof an element p. g in the 

search space ॳ and the corresponding element ݌. ݔ ൌ .݌݉݌݃ ݃ in the problem space ॿ. 

Definition 2.17 (Population): A population (pop) is a list of individuals used during an 

optimization process. 
݌݋ܲ  ك ॳ ൈ ॿ: ݌׊ ൌ ሺ݌. ݃, .݌ ሻݔ א ݌݋ܲ ֜ .݌ ݔ ൌ .݌ሺ݉݌݃ ݃ሻ  
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As already mention, the fitness ݒሺݔሻ of an element ݔin the problem space ॿ often not solely 
depends on the element itself. Normally, it is rather a relative measure putting the features 
of ݔ in to the context of a set of solution candidates ݔ.     

2.1 Genotype-phenotype mapping 
The genotype –phenotype mapping (GPM, or ontogeny mapping) ݃݉݌: ॳ ՜ ॿ is a left-total 
binary relation which maps the elements of the search space ॳ to elements in the problem space 

 ॿ; ݃׊ א ॳ ݔ׌ א ॿ ׷ ሺ݃ሻ݉݌݃  ൌ   ݔ

 

 

Fig. 3. The relation of genome, genes, and the problem space. 

3. Genetic algorithm  

3.1.1 Initialization 
The first step is the creation of an initial population of solutions, or chromosomes. The 

populations of chromosomes generally chosen at random, for example, by flicking a coin or 

by letting a computer generate random numbers. There are no hard rules for determining 

the size of the population. Larger populations guarantee greater diversity and may produce 

more robust solutions, but use more computer resources. The initial population must span a 

wide range of variable settings, with a high degree of diversity among solutions in order for 

later steps to work effectively.  

3.1.2 Fitness evaluation 
In the next step, the fitness of the population's individuals evaluated. In biology, natural 

collection means that chromosomes that are more fit tend to produce more offspring than do 

those that are not as fit. Similarly, the goal of the genetic algorithm is to find the individual 

representing a particular solution to the problem, which maximizes the objective function, so 

its fitness is the value of the objective function for a chromosome. Genetic algorithms can of 

course also solve minimization problems. The fitness function (also called objective function or 

evaluation function) used to map the individual's chromosomes or bit strings into a positive 

number, the individual's fitness. The genotype, the individual's bit string, has to be decoded 

for this purpose into the phenotype, which is the solution alternative. Once the genotype has 

been decoded, the calculation of the fitness is simple: we use the fitness function to calculate 

the phenotype's parameter values into a positive number, the fitness. The fitness function 

plays the role of the natural environment, rating solutions in terms of their fitness. To apply 

the GA to real – valued parameters  optimization problems of the form  ݂: ∏ሾݑ௜ , ௜ሿݒ  ՜ ܴሺݑ௜ ൏
www.intechopen.com



Evolutionary Algorithms 224 ݒ௜ሻ, the bit string is logically divided in to n segments of (in most cases )equal length ݈௫ሺ݈ ൌ݈݊௫ሻ   and each segment  is interpreted as the binary code of the corresponding object variable ݔ௜ א ሾݑ௜ , :௜ሿ . A segment decoding function Ȟ௜ݒ ሼͲ,ͳሽ௟ೣ ՜ ሾݑ௜ ,   ௜ሿ  typically looks likeݒ

 Ȟ௜(ܽ௜ଵܽ௜ଶ … . ܽ௜௟ೣሻ ൌ ௜ݑ ൅ ௩೔ି௨೔ଶ೗ೣషభ ሾ∑ ܽ௜௝ʹ௝ିଵሿ      (1) 

where ሺܽ௜ଵܽ௜ଶ … . ܽ௜௟ೣሻ denotes the ith segment of an individual Ԧܽ ൌ ൫ܽ௜ଵܽ௜ଶ. . . ܽ௡௟ೣೣ൯߳ܫ௡.௟ೣ ൌ  .௟ܫ
Associated with each individual is fitness value. This value is a numerical quantification of 

how good of solution to optimization problem the individual is .Individual with 

chromosomal strings. Representing better solution has higher fitness values, while lower 

fitness values attributed to those whose bit string represents inferior solution. Combining 

the segment-wise decoding function to individual – decoding function  Ȟ ൌ Ȟଵ ൈ … .ൈ Ȟ௡, 

fitness values are obtained by setting  

ሺߔ  Ԧܽሻ ൌ ሺ݂൫Ȟሺߜ Ԧܽሻ൯ሻ  (2) 

where ߜ denotes a scaling function ensuring positive fitness values such that the best 
individual receives largest fitness. 

3.1.3 Selection 
In the third step, the genetic algorithm starts to reproduce. The individuals that are going to 

become parents of the next generation selected from the initial population of chromosomes. 

This parent generation is the "mating pool" for the subsequent generation, the offspring. 

Selection determines which individuals of the population will have all or some of their genetic 

material passed on to the next generation of individuals. The object of the selection method is 

to assign chromosomes with the largest fitness a higher probability of reproduction.  

3.1.4 Tournament selection 
The tournament selection method select ߤ times the best individual from a random subset ߚ௞ 
of size |ߚ௞| ൌ ,ߦ ʹ ൑ ߦ ط ݇׊  ߤ א ሼͳ, … ,  ሽ and transfers it to the mating pool (note hat thereߤ
may appear duplicates). The best individual within each subset ߚ௞ selected according to the 

relation  ظ௞ (read: better then). A formal definition of the tournament selection operator ܵ: ఓܫ ՜  :ఓ follows (Schowefel &Bäck, 1997)ܫ
Let  ߚ௞ ؿ א ݇ ׊  ሻݐሺ݌ ሺͳ, … , |௞ߚ|ሻ each of sizeݐሻ be random subsets of ܲሺߤ ൌ א ݇ ׊  .ߦ ሺͳ, … ,  ሻߤ

choose ܽ௞ א ሬܾԦ׊  ௞  such thatߚ א :௞ߚ Ԧܽ௞  ሬܾሬԦ  வ௞    where  

  Ԧܽ௞  ሬܾሬԦ  வ௞ : ֞ Φሺ Ԧܽሻ ൐ Ͳ ר ݂൫Ȟሺ Ԧܽሻ൯ ൐ Ͳ ൑ ݂ ቀȞ൫ሬܾԦ௞൯ቁ  (3) 

3.1.5 Genetic operators 

3.1.5.1 Crossover 

The primary exploration operator in genetic algorithms is crossover, a version of artificial 

mating. If two strings with high fitness values mated, exploring some combination of their 

genes may produce an offspring with even higher fitness. Crossover is a way of searching the 

range of possible existing solutions. There are many ways in which crossover can 

implemented, such as one point crossover, two-point crossover, n-point crossover, or uniform 

crossover. In the following, we will stay with the simplest form, Holland's one-point crossover 

technique. Single-point crossover is the simplest form, yet it is highly effective. 
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One point crossover, is often used in ܣܩݏ, it work first randomly picking a point between 0 

and  ݈. The participating parent individuals ݔԦ ൌ ሺݔଵ, … . Ԧݕ ௟ሻ  andݔ ൌ ሺݕଵ, … .  ௟ሻ are then splitݕ

at the point , followed by a swapping of the split halves to form two offspring individual ̀ݔԦ ܽ݊݀ ̀ݕԦ as follows (Kargupta, 1995):  

Ԧݔ̀  ൌ ሺݔଵ, … . , ,஧ିଵݔ ,஧ݔ ,஧ାଵݕ … . , Ԧݕ௟ሻ̀ݕ ൌ ሺݕଵ, … . , ,஧ିଵݕ ,஧ݕ ,஧ାଵݔ … . ,  ௟   (4)ݔ

where ߯߳ሼͳ, … , ݈ െ ͳሽ  denotes a uniform random variable . 

3.1.5.2 Mutation 

If crossover is the main operator of genetic algorithms that efficiently searches the solution 

space, then mutation could called the "background operator" that reintroduces lost alleles into 

the population. Mutation occasionally injects a random alteration for one of the genes. Similar 

to mutation in nature, this function preserves diversity in the population. It provides 

innovation, possibly leading to exploration of a region of better solutions. Mutation performed 

with low probability. Applied in conjunction with selection and crossover, mutation not only 

leads to an efficient search of the solution space but also provides an insurance against loss of 

needed diversity, on a single individual , mutation operator ݉ሼ݌௠ሽ: ܫ ՜  formally works as ܫ

follows (Back & Schwefel, 1993): ݉ሼ݌௠ሽሺݔଵ, … , ௟ሻݔ ൌ ሺݔଵ̀, … , ,௟̀ሻݔ ሺ݅׊ א ሼͳ, … , ݈ሽሻ: 
ప̀ݔ   ൌ ൤ x୧ , χ୧ ൐ P୫ͳ െ x୧ , χ୧ ൑ P୫൨                  (5) 

where ߯௜߳ሾͲ,ͳሿ is a uniform random variable, sampled anew for each bit. 

3.1.6 Conceptual algorithm 
The conceptual algorithm of ܣܩݏ can then formulated as  
t:=0;  t is the generation number 

Initialize         ܲሺͲሻ ൌ ሼ ԦܽଵሺͲሻ, … , ԦܽఓሺͲሻሽ߳ܫఓ      Where  ܫ ൌ ሼͲ,ͳሽ௟      
Evaluate    ܲሺͲሻ ൌ ሼΦሺ ԦܽଵሺͲሻሻ, … , Φሺ ԦܽఓሺͲሻሻሽ߳ܫఓ     

Where   Φሺ Ԧܽ௞ሺͲሻ ൌ ሺ݂ߜ ቀȞ൫ ԦܽଵሺͲሻ൯ቁ , ܲሺͲሻ        

While ሺ߬ሺሺܲሺܶሻሻ ് / do    ݁ݑݎݐ /  while termination criterion not fulfilled 

Recombine:     ܽ̀Ԧ௞ሺ݇ሻ ൌ ݇׊    ሻ൯ݐ௖ሽ൫ܲሺ݌ሼݎ א ሼͳ, . . ,            ሻߤ

Mutate:            ܽ"ሬሬሬԦ௞ሺݐሻ ൌ ݉ሼ݌௠ሽሺ ܽ̀Ԧሺ݇ሻ      ݇׊ א ሼͳ, . . ,  {ߤ

Evaluate          ܲ"ሺݐሻ ൌ ቄܽ"ሬሬሬԦଵሺݐሻ, … , ܽ"ሬሬሬԦఓሺݐሻቅ : ሼ Φሺܽ"ሬሬሬԦଵሺݐሻሻ, … , Φሺܽ"ሬሬሬԦఓሺݐሻሻሽ                            
Where          Φ ൬ܽ"ሬሬሬԦ௞ሺͲሻ൰ ൌ ߜ ൭݂ ቆȞ ൬ܽ"ሬሬሬԦ௞ሺݐሻ൰ቇ , ܲሺݐ െ ሻ൱ݓ ;          
end 

Fig. 4. Pseudo code of ܣܩݏ algorithm 

3.2 Theorems and definitions needed 
Definition 2.1  
The directional derivatives of f(x, y) at the point (a, b) and in the direction of the unit vector u ൌ ,uଵۃ uଶۄ is given  by  

  D୳fሺa, bሻ ൌ lim୦՜଴ ୤ሺୟା୦୳భ,ୠା୦୳మሻି୤ሺୟ,ୠሻ୦    (6) 
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provided the limit exists. 

Theorem 2.1 

Suppose that f is differentiable at (a, b) and u ൌ ,uଵۃ uଶۄ  is any unit vector. Then we can write  

 D୳fሺxa, bሻ ൌ f୶ሺa, bሻ ൅ f୷ሺa, bሻ (7) 
 

Clearly 2.1  

For convenience, we define the gradient of a function to be vector –valued function whose 

component are the first –order partial derivatives of f . we denote the gradient of a function f 

by grad  of f or ׏f read "del f" and define by the given theorem . 
Theorem 2.2 

If f is a differentiable function of x and y and u is any unit vector, then 

,ݔ௨݂ሺܦ  ሻݕ ൌ ,ݔሺ݂ߘ .ሻݕ u (8) 

Clearly 2.2  

This theorem clear how to compute directional derivatives. Further, writing directional 

derivatives  as  a dot products. This theorem generalized to vector valued   ܨ: ܴ௡௫ଵ ՜ ܴ௡௫ଵ. 
Theorem 2.3 

Suppose that f is differentiable function of x and y at the point ሺܽ, ܾሻ. Then   

i. the maximum rate of change of f at  ሺܽ, ܾሻ is ԡ׏fሺa, bሻԡ and occurs in the direction . 

ii. of the gradient,     ݑ ൌ ఇ௙ሺ௔,௕ሻԡఇ௙ሺ௔,௕ሻԡ the minimum rate of change of f at (a, b) is  െԡ݂ߘሺܽ, ܾሻԡ 

and occurs in the direction  opposite the gradient u ൌ െ  .୤ሺୟ,ୠሻԡ׏୤ሺୟ,ୠሻԡ׏
iii. the gradient ׏fሺa, bሻ is orthogonal to the level curve fሺx,y)=c at the point (a ,b), where  

c=f(a, b). 

Definition 2.2 

We call f(a, b) a local maximum of f if there is an open disk R centred at (a, b), for which      fሺa, bሻ ൒ fሺx, yሻ for ሺx, yሻ א R. Similarly , f(a, b) is called a local minimum of f if there is an 

open disk cantered at (a, b), for which fሺa, bሻ ൑ fሺx, yሻ for ሺx, yሻ א R. In either case f(a, b) is 

called a local extreme of f. 

Theorem 2.4 

suppose that f(x,y) has continuous second order partial derivatives in some open disk 

containing the point (a ,b) and that f୶ሺa, bሻ ൌ f୷ሺa, bሻ ൌ Ͳ. Define the discriminant D for the 

point ሺܽ, ܾሻ by  

 Dሺa, bሻ ൌ f୶୶ሺa, bሻf୷୷ െ ሾf୶୷ሺa, bሻሿଶ (9) 
  if ܦሺܽ, ܾሻ ൐ Ͳ and f୶୶ሺa, bሻ ൐ Ͳ, then f has a local minimum at ሺܽ, ܾሻ. 

        ሺ݅݅ሻ if ܦሺܽ, ܾሻ ൐ Ͳ and f୶୶ሺa, bሻ ൏ Ͳ, then f has a local maximum at ሺܽ, ܾሻ. 
        ሺ݅݅݅ሻ  if ܦሺܽ, ܾሻ ൏ Ͳ , then f has a saddle point  at ሺܽ, ܾሻ. 
        ሺ݅ݒሻ if ܦሺܽ, ܾሻ ൌ Ͳ, then no conclusion can be drawn. 

4. Local search 

The local search operator looks for the best solution starting at a previously selected point, 
in this case a solution in the ܣܩݏ population. For this application, the steepest descent 
method was chosen as the local search operator. This method moves along the direction of 
the steepest gradient until an improved point found, from which a new local search starts. 
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The algorithm ends when no new relationship shown point can found (this is equivalent to a 
gradient equal to zero).  

For functions with multiple local optimum, the method find one local optima but it is not 

guaranteed to find the global minimum. For geometric with conical shape, for example, the 

method finds the local optimum in one local search starting from any point in side the basin 

of attraction. For other geometries, the local search operator required more than one 

iteration to achieve the solution. 

4.1 Descent method 
Cauchy (1847), Kantorovich (1940-1945), Leven berg (1944), and Curry (1944) are the 

originators of the gradient strategy, which started life as a method of solving equations and 

systems of equations. It first referred to as aid to solving variation problems by Hadamard 

(1908) and Courant (1943). This variant of the basic strategy, known under the name optimum 

gradient method, or method of 'steepest descent'. Theoretical investigations of convergence 

and rate of convergence of the method can be found e.g. in Akaike (1960),Goldstein (1962), 

Ostrowski (1967), Zangwill(1969) and Wolfe(1969,1970,1971)[6] The  general rule of steepest 

descent where used to find optimal solutions of nonlinear problems is 

  xሺ୩ାଵሻ ൌ xሺ୩ሻ ൅ Ƚ୩d୩    (10) 

Where d୩ is an a suitably chosen direction and Ƚ୩ is a positive parameters (called step-size) 

that measures the step along the direction d୩. This direction is a descent direction if   d୩୘׏f൫x୩൯ ൏ Ͳ        ݂݅  ݂ߘ൫x୩൯ ് Ͳ 

 d୩ ൌ Ͳ                 if      ׏f൫x୩൯ ൌ Ͳ  (11) 

4.1.1 Steepest descent algorithm 
To approximate a solution p to the minimization problem    Gሺpሻ ൌ min୶ୖא౤ Gሺxሻ 

Given an initial approximation x: 

Step 1.  set k ൌ ͳ 
Step 2. While ሺk ൑ Nሻ do steps ( 3-8 ) 

Step 3.  Set  gଵ ൌ Gሺxଵ, … , x୬ሻ  / /   note: gଵ ൌ G൫x୩൯; 
         z ൌ ,Gሺxଵ׏ … , x୬ሻ / /  note: z ൌ  ;G൫xሺ୩ሻ൯׏
         z଴ ൌ ||z||ଶ 

Step 4. if z଴ ൌ Ͳ then output ("zero Gradient'') Output (xଵ, … , x୬, gଵሻ/ / [Procedure 

completed may have minimum check further]  

Step 5. choose δ s.t 

  g ൌ min ሺGሺx଴ ൅ δzሻ 

 Step 6.  Set x ൌ x ൅ δz 

 Step 7. if |g െ gଵ| ൏  then  ݈݋ܶ

                output ሺxଵ, … , x୬, gଵሻ/ /     [ Procedure completed successfully ]  

               Stop 

 Step 8. set k=k+1; 

 Step 9. Output ('Minimum Iterations Exceeded') / /    ( Procedure completed unsuccessfully )  

               Stop 

Fig. 5. Pseudo code of gradient algorithm 
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4.2 Hybrid genetic algorithm 
In this section we define a hybrid of ܣܩݏ with gradient method and we denoted as (HGA1) A 

hybrid genetic algorithm (HGA) is the coupling of two processes: the simple ܣܩ and a local 

search algorithm. The local search part of the algorithm was problem specific and  designed 

using trial-and-error experimentation without generalization or analysis of the characteristics 

of the algorithm with respect to convergence and reliability. The HGA algorithm is a standard, 

which combines an ܣܩݏ with local search. The local search step defined by three basic 

parameters: frequency of local search, probability of local search, and number of local search 

iterations. The first element for the definition of the algorithm is the frequency of local search, 

which is the switch between global and local search. In the ܣܩܪ algorithm, this switch 

performed every "G!" global search generations, where "G!" is a constant number called the 

local search frequency. The second element of the algorithm is the probability of local search P, 

which is the probability that local search will be performed on each member of the ܣܩݏ 

population in each generation where local search is invoked. This probability is constant and 

defined before the application of the algorithm. Finally, each time local search is performed, it 

is performed a constant number of local search iterations before local search is halted. 

4.2.1 Basic elements 

4.2.1.1 Genetic algorithm 

Three basic operators define the simple Genetic Algorithm (ܣܩݏ): binary tournament selection, 

single point crossover, elitism, and simple mutation. Through the successive application of 

these three operators, an initial population of solutions evolved into a highly fit population. 

4.2.1.2 Local search 

The local search operator looks for the best solution starting at a previously selected point, 

in this case a solution in the SGA population. For this application, the steepest descent 

method was chosen as the local search operator. This method moves along the direction of 

the steepest gradient until an improved point found, from which a new local search starts.  

The algorithm ends when no new relationship shown point can found (this is equivalent to a 

gradient equal to zero) and this satisfied in our formula adaptation [10].  

4.3 Hybrid genetic algorithm with local search algorithm  
A hybrid genetic algorithm (HGA) is the coupling of two processes: the ܣܩݏ and a local search 

algorithm. The local search part of the algorithm was problem specific and was designed using 

trial-and-error experimentation without generalization or analysis of the characteristics of the 

algorithm with respect to convergence and reliability. It is defined by three basic parameters: 

frequency of local search, probability of local search, and number of local search iterations. The 

first element for the definition of the algorithm is the frequency of local search, which is the 

switch between global and local search. In the HGA1 algorithm, this switch performed every 

"G!" global search generations, where "G!" is a constant number called the local search 

frequency. For example, if G!=3, local search would perform every 3 generations during the ܣܩݏ. The second element of the algorithm is the probability of local search P, which is the 

probability that local search will be performed on each member of the ܣܩݏ population in each 

generation where local search is invoked. This probability is constant and defined before the 

application of the algorithm. Finally, each time local search performed; it performed for a 

constant number of local search iterations before local search halted. 
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4.3.1 Conceptual algorithm of  
The coupling approach in this paper consist in the introduction of generation interval for 

hybrid activation operator (HAO).Through selection, crossover, and mutation operators, the 

canonical ܣܩݏ works on population of bit string encoding scheme generation by generation. 

When HAO is active (again implemented here every G? generation), the intermediate 

generation created by GA is fed into an adopted selection strategy which select 

subpopulation, usually of small size. Then each binary string individual in this 

subpopulation is convert into a real number vector, to be the initial value of  steepest 

descent (ܣܦݏ) algorithm that operate on this subpopulation for fixed small of generation. 

The vectors converted back into bit string values to manipulate again by master GA, ܣܦݏ 

used here in this hybridization as a tool operates in small number of generation fashion in 

an order to enhance the selected points driven from the master GA. It is appropriate that the 

version of ܣܦݏ tools to be of preservative survivor property to have worthy adjustment. The  

conceptual algorithm of the (HGA) given by the following steps: 

 Input: sample size, number of generation, .. Output ׷ approximate value    Stepͳ: Initialize GAሺgenerate Initial population of parametersሻ. Stepʹ.ͳ: for t ൌ ͳto number of generation Do  Stepʹ.ʹ: for I ൌ ͳ: population size Do  The canonical genetic algorithm ሺsGAሻ operators:  Stepʹ.ʹ.ͳ: Local Recombination, Stepʹ.ʹ.ʹ: Mutation, Stepʹ.ʹ.͵ Selection, Step͵: Binary coded sGA individual remapped in to real vector individual.  StepͶ.ͳ: Select ൬ͳ͵ of population size  ൰   use as initial solution  of sDA  perform for each generation StepͶ.ʹ. Start local search evaluation// Starting of Steepest Descent Algorithm ሺsDAሻ. StepͶ.͵. : Real _coded local search algorithm individual remapped in to binary vector individual.  Stepͷ. Repeat steps until all of generation complete or termination criterion is satisfied. Step͸: end   
Fig. 6. Pseudo code of HGA algorithm 

5. ሺࣆା,  ሻ-Evolution strategiesࣅ

H.-P. Schwefel proposed the multi-member evolution strategies, the so-called ሺߤା,  ሻ-ES. Inߣ

their most general form, these strategies are described in the coming subsections. 

5.1 Representation and fitness evaluation 
An individual Ԧܽ ൌ ሺݔԦ, ,ାߤin ሺ ܫԦሻ߳ߪ Ԧܴ߳ା௡഑: A vector of step length or standard deviations ሺͳߪ .Ԧܴ߳௡: The vector of object variablesݔ :ሻ-ES can consist of the components (Robert, Roland, 2002)ߣ ൑ ݊ఙ ൑ ݊ሻ of the normal 

distribution. The strategy parameter ߪԦ (also called the internal model) determines the 

variances of the n-dimensional normal distribution, which is used for exploring the search 

space. The user of an evolution strategy, depending on his feeling about the degree of 

freedom required, can vary the amount of strategy parameters attached to an individual. As 

a rule of thumb, the global search reliability increases at the cost of computing time when 

www.intechopen.com



Evolutionary Algorithms 230 

the number of strategy parameters is increased. The setting most commonly used which 

form the extreme cases are:  

•  ݊ఙ ൌ ͳ : (Uncorrelated mutation with one single standard deviation controlling 

mutation of all components of ݔԦ ). 
• ݊ఙ ൌ ݊: (Standard mutations with individual step sizes ߪଵ, . . ,  ௡ controlling mutation ofߪ

the corresponding object variables ݔ௜ individually). The only part of Ԧܽ  entering the 

objective function evaluation is ݔԦ, and the fitness of an individual ߶ሺ Ԧܽሻ is identical to its 

objective function value ݂ሺݔԦሻ, i.e. ሺ߶ሺݔԦሻ ൌ ݂ሺݔԦሻ). 

5.2 Mutation operator 
The generalized structure of ሺࣆା,  ሻ-ES  mutation operator consists of the addition of aࣅ

normally distributed random number to each component of the object variable vector, 

corresponding to a step in the search space. The variance of the step-size distribution is itself 

subject to mutation as a strategy variable. Formally speaking, mutation operator ࢓ሼ࣎૙, ࣎ሽ: ࡵ ՜  is defined as follows [5]  ,ࡵ

 ݉ሼ߬଴, ߬ሽሺ Ԧܽሻ ൌ ݉௫ሺݔԦሻ ל ݉ఙሺߪԦሻ ൌ ሺݔԦᇱ, Ԧߪ ᇱሻ   (13) 

Which proceeds by first mutating the strategy parameters  ሬ࣌ሬԦ:  ࣌࢓: ࣌࢔ାࡾ ՜  ;࣌࢔ାࡾ

  ݉ఙሺߪԦሻ ൌ Ԧߪ ᇱ ൌ ሺߪଵ expሺݖଵ ൅ ଴ሻݖ , … , ௡഑ߪ exp൫ݖ௡഑ ൅  ଴ሻ൯  (14)ݖ

Where ݖ଴~ܰሺͲ, ߬଴ଶሻ, ,௜~ܰሺͲݖ ߬ଶሻ    ׊ ݅ א ሼͳ, … . , ݊ఙሽ To prevent standard deviations from 

becoming practically zero, a minimal value of ߝఙis algorithmically enforced for all ߪ௜. 
Secondly, modifying ݔԦ according to the new set of strategy parameters obtained from  

mutating ߪԦ: ݉ఞ: ܴ௡ ՜ ܴ௡ 

 ݉௫ሺݔԦሻ ൌ ᇱሬሬሬԦݔ ൌ ሺݔଵ ൅ ,ଵݖ … , ௡ݔ ൅  ௡ሻ  (15)ݖ

5.3 Recombination operators 
In ሺߤା,  ሻ-ES, different recombination mechanisms are used in either local form, producingߣ
one new individual from two randomly selected parent individuals, or in global form, 
allowing components to be taken for new individual from potentially all individuals 
available in the parent population. Furthermore, recombination is performed on strategy 
parameters as well as the object variables, and the recombination type may be different for 
object variables, and standard deviations. 

Depending on the recombination types [4][6]: 

 

 

ܴ݁ܿ  = 

 

0 No recombination 

1 Discrete recombination of pair of parents 

2 Intermediate recombination of pair of parents                                    (16) 

3 Discrete recombination of all parents 

4 Intermediate recombination of parents  in pairs  
 

Sometimes, the choice of a useful recombination operator for a particular optimization 

problem is relatively difficult and requires performing some experiments [2].The rules of 

recombination operator ݎ: ఓܫ ՜ ௫ܿ݁ݎሼݎ   ,for creating an individual ܫ , ఙሽሺܲሻܿ݁ݎ ൌ ܽᇱሬሬሬԦ ൌ
www.intechopen.com



Variants of Hybrid Genetic Algorithms for Optimizing  
Likelihood ARMA Model Function and Many of Problems 231 ሺݔᇱሬሬሬԦ, ᇱሬሬሬԦሻߪ א  of a pre-selected parent individuals and the part of (Ԧߪ Ԧ orݔ i.e., either) are given respectively by referring to arbitrary vectors ሬܾԦ and ܾᇱሬሬሬԦ where ሬܾԦ and ܾᇱሬሬሬԦdenote here the part ,ܫ

an offspring vector receptively. Each of ܾሬԦ and ܾᇱሬሬሬԦ are of length ݉ א ሼ݊, ݊ణఙሽ,݅׊ א ሼͳ, … , ݉ሽ  
 

ܾ௜ᇱ= 

ܾ௜ ݂݅ ܿ݁ݎ ൌ Ͳܾఞభ,೔ ఞమ,೔ܾ ݎ݋  ݂݅ ܿ݁ݎ ൌ ͳ ൫ܾఞభ,೔ ൅  ܾఞమ,೔൯. Ͳ.ͷ ݂݅ ܿ݁ݎ ൌ ʹ                                                   (17) ܾఞయ,೔ ݂݅ ܿ݁ݎ ൌ ͵ ൫ܾఞయ,೔ ൅  ܾఞర,೔൯. Ͳ.ͷ ݂݅ ܿ݁ݎ ൌ Ͷ 
 

Where ߯ଵ, ߯ଶ~ܷሺሼͳ, … , ,ሽfor each offspring, and ߯ଷߤ ߯ସ~ܷሺሼͳ, … ,  .݅ ሽ for eachߤ
5.4 Selection operator 
There are two main classifications for selection according to the survival property of the 

parents [6]: 

Extinctive_ ሺߤ, ܵ.ሻ strategy; where parents live for a single generation onlyߣ : ఒܫ ՜ ఓ  ܵሺܲሻܫ ൌ ܲᇱ where |ܲ| ൌ |ᇱܲ| & ߣ ൌ ᇱሬሬሬԦܽ׊   & ,ߤ א ܲᇱ: Ԧܽ ׍ א ܲ െ ܲᇱ: ݂ሺݔԦሻ ൑ ݂ሺݔᇱሬሬሬԦሻ        

Preservative_ሺߤ ൅  ሻ strategy; where selection operates on the joined set of parents andߣ

offspring, i.e., very fit individuals may survive indefinitely: ܵ: ఓାఒܫ ՜ ఓ      ܵሺܲሻܫ ൌ ܲᇱ where |ܲ| ൌ ߤ ൅ |ᇱܲ| & ,ߣ ൌ ᇱሬሬሬԦܽ׊  and , ,ߤ א ܲᇱ: Ԧܽ ׍ א ܲ െ ܲᇱ: ݂ሺݔԦሻ ൑ ݂ሺݔᇱሬሬሬԦሻ   

The ratio ߤ ൗߣ  is known as selection pressure. In the choice of ߤ and ߣ, there is no need to 

ensure that ߣ is exactly divisible by ߤ. The association of offspring to parents is made by a 

random selection of evenly distributed random integers from the range ሾͳ,  ሿ. It is onlyߤ

necessary that ߣ exceeds ߤ by a sufficient margin that on average at least one offspring can 

be better than its parent. Hoffeister and Bäck in [7] have stated that 
ߤ ൗߣ ൎ ଵ଺  are tuned for a 

maximum rate of convergence, and as a result tend to reduce their genetic variability, i.e., 

the number of different alleles (specific parameter setting) in a population, as soon as they 

are attracted by some local optimum.  

6. Cross- fertilization space of conical GAS and Standard Variant ሺૄା, ૃሻ-ES 

The coupling approach followed in this section consists in the introduction of generation 

interval for hybrid activation operator(HAO). Through selection , crossover, and mutation 

operators, the simple GA works on population of bit string encoding scheme generation by 

generation. When HAO is active ( implemented for every G? generation ), the intermediate 

generation created  by ܣܩݏ is fed into adopted selection strategy which select ub population, 

usually of small size. Then each binary string individual in this subpopulation is converted 

in to a real number vector , to be the parents of the first generation of ES tool that operate on 

this subpopulation for a fixed small number of generations. The vectors are converted back 

in to bit string values to be manipulated a gain by the master ܣܩ. As ܵܧ is used here in this 

hybridization as a tool operator in a small number of generation fashion in an order to 

enhance the selected point  driven from the master ܣܩ, then it is appropriate that the version 

of the ES too is to be of preservative survivor property to have worthy adjustment i.e., a  ሺߤା,  .ሻ-ES is usedߣ
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t=0; {is the generation number} 
ls=tmax            {is the HAO age} 

Initialize         ܲሺͲሻ ൌ ሼ ԦܽଵሺͲሻ, … , ԦܽఓሺͲሻሽ߳ܫఓ      Where  ܫ ൌ ሼͲ,ͳሽ௟      
where I א ሼͲ,ͳሽ୪; 
Evaluate    ܲሺͲሻ ൌ ሼΦሺ ԦܽଵሺͲሻሻ, … , Φሺ ԦܽఓሺͲሻሻሽ߳ܫఓ     

where Φ൫a୩ሬሬሬሬԦሺͲሻ൯ ൌ δ ൬f ቀȞ൫aሬԦ୩ሺͲሻ൯ቁ , PሺͲሻ൰ ; 
while (τሺPሺtሻሻ ് trueሻ do {while termination criterion not fulfilled} 

recombine:  aሬԦ"୩ሺtሻ ൌ rሼpୡሽ൫Pሺtሻ൯             ׊ k א ሼͳ, … . , µሽ; 
mutate: aሬԦ"୩ሺtሻ ൌ mሼp୫ሽ൫aሬԦ୩ሺtሻ൯             ׊ k א ሼͳ, … . , µሽ; 
evaluate P"ሺtሻ ൌ ሼaሬԦ"୩ሺtሻ, … aሬԦ"µሺtሻሽ: ሼΦሺaሬԦ"୩ሺtሻሻ, … ΦሺaሬԦ"µሺtሻሻሽ: 
where ΦሺaሬሬሬԦ"୩ሺtሻሻ ൌ  δሺfሺȞሺa"ሬሬሬԦ୩ሺtሻሻሻ, ሺPሺt െ wሻሻ; if ሺls ൐ Ͳ ܽ݊݀ ܹܣܪ ൌ  ሻdo ሼif HAO still live and active݁ݑݎݐ

Select :Pୱ୳ୠ െ popሺtሻ ൌ ሼbሬԦଵሺtሻ, … bሬԦµଵሺtሻሽ א Iµ 

Where I ൌ R୬ା୬౩౦ and bሬԦ୩ሺtሻ ൌ ሺx୧, σ୨    ׊i א ሼͳ … nሽ׊j א ሼͳ, … n஢ሽ; 
{binary _coded GA individual is remapped in to (µ ൅ λሻ െ ESሽ 
{real vector individual} 
For tµା஛ሻିEୗ ൌ ͳ to      t୫ୟ୶ _ሺµା஛ሻିEୗ {do tmax sexual propagation 

Recombine : b"ሬሬሬԦ୩ሺtሻ ൌ rሼrec୶, rec஢ሽ൫Pሺtሻ൯               ׊k א ሼͳ, … , λሽ; 
Mutate: b"ሬሬሬԦ୩൫tሺµା஢ሻEୗ൯ ൌ mሼதబ,தሽ ቆbሖሬԦ ቀtµభା஛భሻESቁቇ         ׊k א ሼͳ, … , λሽ Evaluate : P" ቀtሺµା஛ሻEୗቁ ൌ ቄb"ሬሬሬԦଵሺtሺµଵା஛ଵሻ െ ESቁ , … , ቄb"ሬሬሬԦ஛ଵሺtሺµଵା஛ଵሻ െ ESቁሽ; ൜Φ ቀb"ሬሬሬԦଵtሺµଵା஛ଵሻ െ ESቁ൰ , … , Φሺb"ሬሬሬԦଵtሺµଵା஛ଵሻ െ ESሻሻሽ  
Where Φ ቀb"ሬሬሬԦଵtሺµଵା஛ଵሻ െ ESቁ ൌ f ቀx"ሬሬሬԦଵtሺµଵା஛ଵሻ െ ESቁ ; 
Select: P൫tሺµଵା஛ଵሻ െ ESାଵ൯ ൌ SሺP൫tሺµଵା஛ଵሻିEୗశభ ׫  P"ሺtሺµଵା஛ଵሻିEୗశభ൯ 

End ሺµͳ ൅ λͳሻ െ ES generation loop 
Evaluate  P"ሺtሻ ൌ ቀP"ሺtሻ െ Pୱ୳ୠି୮୭୮ሺtሻቁ ׫ ሺP୲ౣ౗౮ _ሺµభశಓభሻషESሻ ൌ ሼa"ሬሬሬԦଵሺtሻ, … , a"ሬሬሬԦµሺtሻሽ א Iµ 

Where I ൌ ሼͲ,ͳሽ୪ 
and Φ ቀa"ሬሬሬԦଵሺtሻቁ ൌ δ ൭f ቆȞ ൬a"ሬሬሬԦଵሺtሻ൰ቇ , Pሺt െ wሻ൱ ; re-evaluate fitness 

end 

Select Pሺt ൅ ͳሻ ൌ SሺP"ሻሻԖIµ ls ൌ ls െ ͳ; when ls=0 then the loop is turned  into pure GA phase  t ൌ t ൅ ͳ 
end  
 
 

Fig. 7. Conceptual algorithm of HGA2 ( hybrid Genetic algorithm with multimember 

evolution strategy) 
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7.2 Test functions 
In order to evaluate the behaviours of hybrid genetic algorithms, a set of test problem have 

been carefully selected to illustrate the performance of the algorithms and to indicate that it 

has been successful in practice. The nine test functions, which is classifies as multimodal or 

unimodel function; these function given with more details in section below. 

7.3 Simulations 
Multi- functions used as a test functions classified as unimodel and multi model it is 

deployed to verify the proposed hybrid genetic algorithms. The firs test function is likely 

hood function of ARMA(1,1) model, this function classifies as a unimodel the simulating 

experiment described in the following. 

7.3.1 ۴૚: Test function / Likelihood function  
The likelihood function is one of fundamental importance in estimation theory. This principle 

says that the data has to tell us about the parameters contained in the likelihood function, all 

other aspects of the data being irrelevant. In moderate and large samples, the likelihood 

function will be unimodel and can be adequately approximated over a sufficiently extensive 

region near the maximum by a quadratic function. Hence, in these cases   the log-likelihood 

function can be described by its maximum and its second derivatives at the maximum. The 

values of parameters which maximize the likelihood function, or equivalently the log-

likelihood function, are called maximum likelihood (ML) estimates. The second derivatives of 

the log –likelihood provide measurers of “spread” of the likelihood function and can be used 

to calculate approximate standard errors for the estimates [  ]. 

Now, to study the likelihood function of ܣܯܴܣሺͳ,ͳሻ let as suppose the ܰ ൌ ݊ ൅ ݀ original 

observations ܼ from a time series which can be denoted by Zିୢାଵ, . . , Z଴Zଵ, Zଶ, . . , Z୬ 

we assume that this series is generated by an   ܣܯܴܣሺͳ,ͳሻ model. From these observations, 

we can generate a series w of n ൌ N െ d differencesݓଵ, ,ଶݓ . . , ௧ݓ௡ , whereݓ ൌ  ௧. Theݖௗ׏

stationary mixed ܣܯܴܣሺͳ,ͳሻ model in eq.7 may be written as [2]: 

 ܽ௧ ൌ ௧ݓ െ ߶ଵݓ௧ିଵ ൅  ଵܽ௧ିଵ  (18)ߠ

Whereܧሺݓ௧ሻ ൌ Ͳ. Suppose that ሼܽ௧ሽ has the normal distribution with zero mean and 

constant variance equal to σୟ౪ଶ , then the likelihood function can get as follows [2]: 

ܮ  ൌ ሺʹߪߨଶሻష೙మ ሺଵ,ଵሻ|భమexp ሺି௦ሺథభ,ఏభሻଶఙమೌܯ|   (19) 

Where  ܯሺଵ,ଵሻ ൌ ݎܽݒ െ ,ሺ߶ଵݒ݋ܿ ଵሻߠ ൌ ,ଵሺ߶ଵିܫ  ଵሻߠ

 ൌ ଵூሺథభ,ఏభሻ ݆ܽ݀ሺܫሺ߶ଵ,  ଵሻሻ  (20)ߠ

,ሺ߶ଵܫ  ଵሻߠ ൌ ௡ఙమೌ ቎ ఙమೌଵିథభమ ఙమೌଵିథభఏభఙమೌଵିథభఏభ ఙమೌଵିఏభమ
቏  (21) 

then the log- likelihood function is:  

 lnሺLሻ ൌ െ ୬ଶ ሺʹπσୟሻ ൅ ଵଶ ln൫หMሺଵ,ଵሻห൯ െ ୗሺமభ,஘భሻଶ஢౗మ    (22) 
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where: 

 ܵሺ߶ଵ, ଵሻߠ ൌ ∑ ሺܽ௧|߶ଵ, ,ଵߠ ሻଶ௡௧ୀିஶݓ    (23) 

is the sum squares errors,݊  is the sample size, and ሾܽ௧|߶ଵ, ,ଵߠ ሿݓ ൌ ,ሺሾܽ௧|߶ଵܧ ,ଵߠ   ሿሻݓ

denotes the expectation of ܽ௧  conditional on߶ଵ,  Sum squares errors can be found  .ݓ ଵ andߠ

by unconditional calculation of the ሾܽሿԢݏ  are computed recursively by taking conditional 

expectations in eq.13. A back-calculation provides the values ൣିݓ௝൧, ݆ ൌ Ͳ,ͳ,ʹ, .. 
This back-forecasting needed to start off the forward recursion.  

For moderate and large values of n in eq.17 is dominated by ܵሺ߶ଵ,  ௔ଶ  and thus theߪʹ/ଵሻߠ

contours of the unconditional sum squares function in the space of the parameters ሺ߶ଵ,  ଵሻߠ

are very nearly contours of likelihood and of log likelihood . It follows, in particular, that the 

parameter estimates obtained by minimizing the sum of squares in eq.17, called least square 

estimates will usually provide very close approximation to the (maximum likelihood 

estimator). 

7.3.1.1 Drive formula of gradient of likelihood function  

These section, we try to drive general form of steepest descent to estimate  ܣܯܴܣሺͳ,ͳሻ 

model parameters, ܣܦݏ is an iterative strategy  depends on the following rule for numerical  

computation: 

 Ⱦ୧ିଵכ ൌ Ⱦ୧ିଵ െ k׏ഥeଶ  (24) 

Where ߚ௜ିଵ  Parameter model ݇ Constant value depend ׏ഥ݁ଶ is the gradient which approximate by ׏ഥeଶ ൌ ሾபୣమபஒభ , பୣమபஒమ , … , பୣమபஒౣሿ                              
we can see that the  estimation of parameters depend on iterative algorithm  which start 

with initial value ߚ௜   (get by one of traditional  estimation methods) this algorithm continue 

in modified these estimators even we get the value which don’t have change in values 

ܧܵܯܨ  ൌ ∑ ሺ௭೟ି௭̂೟ሻమ೙೟సభ௡ିଵ   (25) 

where ݖ௧, actual value of observed time series; ̂ݖ௧  predicted value of actual value. 

We know,  ARMA(1,1) model form is 

௧ݖ  ൌ ߶ଵ௧ݖ௧ିଵ ൅ ܽ௧ െ  ଵ௧ܽ௧ିଵ   (26)ߠ

Where ܽ௧s are a random variable with standard normal density function known as random 

shock term. 

then 

 ܽ௧ଶ ൌ ሺݖ௧ െ ߶ଵ௧ݓ௧ିଵ ൅  ଵ௧ܽ௧ିଵሻଶ  (27)ߠ

ሺ ∂a୲ଶ∂Ԅଵ୲ ൌ െʹa୲z୲ିଵ, ∂a୲ଶ∂θଵ୲ ൌ െʹa୲a୲ିଵሻ 

S0 

 ሾ߶ଵ௧כ , כଵ௧ߠ ሿ ൌ ሾ߶ଵ௧ ൅ ʹ݇a୲z୲ିଵ, ଵ௧ߠ െ ʹ݇ܽ௧ܽ௧ିଵሿ  (28) 
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The value of k gets as follows 

 ܽ௧ ൌ ௧ݖ െ ߶ଵ௧ݓ௧ିଵ ൅  ଵ௧ܽ௧ିଵ  (29)ߠ

 ܽ௧כ ൌ ௧ݖ െ ߶ଵ௧כ ௧ିଵݓ ൅ |ଵ௧ܽ௧ିଵ  (30) |ȟܽ௧ߠ ൌ |ܽ௧כ െ ܽ௧| ൌ ʹ݇ܽ௧ሺݖ௧ିଵଶ ൅ ܽ௧ିଵଶ ׶ ( Ͳ ൏ | ᇞ௔೟௔೟ | ൏ ͳ      ՜ Ͳ ൏ ʹ݇ሺݖ௧ିଵଶ ൅ ܽ௧ିଵଶ ) <1    so 

 Ͳ ൏ ݇ ൏ ଵଶሺ௭೟షభమ ା௔೟షభమ ሻమ   

7.3.2 Results of likelihood function 
In order to evaluate the behaviour of ܣ , ES, SDA with ܣܩܪଵ and ܣܩܪଶ, we performed several 

experiments to test the capabilities of the methods.  The results of experiments given by the 

following the conceptual algorithm for simple genetic algorithm and hybrid genetic 

algorithms adopted for the likelihood estimator of ܣܯܴܣሺͳ,ͳሻ. The experimental results 

performed here are based on different sample size (i.e.݊ ൌ ʹͷ,͹ͷ,ͳʹͷሻ,ሺ߶ଵ, ,ଵሻ set-to ሼሺͲ.ͺ,Ͳ.͸ሻߠ ሺͲ.Ͷ,Ͳ.ͷሻ, ሺെͲ.ͳ,Ͳ.ʹሻ, ሺെͲ.͵, െͲ.Ͷሻ. The random sample are generated using Box-

Muller formula which presented by using Delphi Pascal coding programming, MATLAP2008. 

All results obtained by running each experiment 5 different runs and each iterates with 150 

generations for population size 50 and averaging the resulting data for ௖ܲ ൌ Ͳ.͹ͷ, ௠ܲ ൌ Ͳ.ͳ. 

Further, the results of ሺܣܩݏ,  compared with those obtained by stepwise descent based on (ܣܩܪ

initial value computed by moment method for the same value of (parametersሻሺ߶ଵ,  ଵሻ andߠ

sample size (݊) (with 1000 runs). The comparison made based on Mean square error    

ܧܵܯ  ൌ ሺ߶ሻݎܽݒ ൅    ݏܾܽ݅

 ݊ ߶ଵ ߠଵ 

 ܣܦܵ
best 

ܣܩݏ
best 

HGA1 

best 

 

ES 

HGA2 

best ߶ଵ ߠଵ ߶ଵ ߠଵ ߶ଵ ߠଵ ߶ଵ ߠଵ ߶ଵ ߠଵ 

25 

0.6 0.8 1.28 1.43 0.473 0.693 0.2300 0.598 0.3668 0.3631 0.01765 0.0342 

0.4 0.5 0.74 1.01 0.517 0.51 0.276 0.419 0.1703 0.0752 0.012116 0.0312 

-0.1 0.2 0.49 0.29 0.191 0.156 0.1 02 0.139 0.1454 0.2404 0.09456 0.0104 

-0.3 -0.4 0.55 0.95 0.393 0.436 0.182 0.421 0.1351 0.2295 0.01023 0.0353 

75 

0.6 0.8 1.27 1.34 0.415 0.568 0.182 0.484 0.3556 0.3520 0.01198 0.0211 

0.4 0.5 0.71 0.88 0.446 0.391 0.257 0.336 0.1701 0.0751 0.01201 0.0024 

-0.1 0.2 0.21 0.15 0.157 0.154 0.054 0.093 0.1437 0.2374 0.0012 0.0065 

-0..3 -0.4 0.52 0.715 0.381 0.325 0.159 0.317 0.1336 0.2272 0.00543 0.0012 

125 

0.6 0.8 1.23 1.32 0.324 0.546 0.139 0.462 0.1803 0.0584 0.00156 0.0011 

0.4 0.5 0.66 0.87 0.186 0.342 0.108 0.3106 0.169 0.0746 0.009 0.0013 

-0.1 0.2 0.27 0.1237 0.137 0.136 0.031 0.0 35 0.1451 0.2401 0.0023 0.0015 

-0..3 -0.4 0.432 0.52 0.121 0.306 0.013 `0.213 0.1337 0.2274 0.00161 0.0010 
             

Table 1. Comparisons among ( GA,ES,SDA, HGA1,HGA2) algorithm based on MSE of best 
estimator after averaging 5 runs. 
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Results given in Fig. 7.and table(1).The experiments on a set of data give some impressions 

of the behaviours of ሺܣܩݏ,  are smaller than   ܣܩܪ of ܧܵܯ ,As one can see that .ܣܦݏ and  (ܣܩܪ

those of steepest descent (ܣܦݏ). This indicates that ܣܩܪ is more reliable than  ܣܩܪ and ܣܦݏ 

to give estimator of the parameters of the model under study. Moreover, one can see that 

value of ܧܵܯ decreases as the sample size increase. For ሺܣܩݏ,  we can also see that the ܣܩܪ

value of sum square decreases when increasing the number of generation and sample size. 

In addition, the behaviour of ሺܣܩܪ when the objective function parametersሺ߶ଵ,  ଵሻ takeߠ

positive values are better than when they are negative. The HGA2 algorithm was also more 

robust than the ܣܩݏ, ES and HGA1 performing optimally across a broad range of parameter 

values. In addition  we can see the second best algorithm converge to best solution is HGA1.  
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           Simple size                                  Simple size                                    Simple size 

     n=25,( ߶ଵ=.6, ,ଵ=.8)                          n=75,( ߶ଵ=.6ߠ ,ଵ=.8)                        n=125,( ߶ଵ=.6ߠ  (ଵ=.8ߠ
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                  D1                                            D2                                              D3 

           Simple size                               Simple size                               Simple size 

    n=25,( ߶ଵ=-.3, ,ଵ=-.4)              n=75,( ߶ଵ=-.3ߠ ,ଵ=-.4)                     n=125,( ߶ଵ=-.3ߠ  (ଵ=-.4ߠ

Fig. 8. Compression Among best fitness values respect to sample size and ARMA model 

parameters getting by algorithms under study 

7.3.2 Benchmark test functions 
The reminder of test functions using the following parameterization of the algorithms 

compared are used for experimental test runs    

• Genetic Algorithm with population size ߤ ൌ ʹͲͲ mutation rate ݌௠ ൌ Ͳ.ͳ , crossover rate ݌௖ ൌ Ͳ.͹ͷ one-point crossover , binary code, and bit string length ݈ ൌ24, this algorithm 

denoted sGA 

• Evolution strategy ((͵Ͳା, ʹͲͲሻ െ with self adaption of ݊ఙ ܵܧ ൌ ݊ standard deviation, no 

correlated mutation, local discrete recombination on object variables ܿ݁ݎ௫ ൌ ͳ, global 

intermediate recombination on standard deviation ܿ݁ݎఙ ൌ Ͷ and standard deviation 

initialize at 3.0. (͵Ͳା, ʹͲͲሻ െ was used for unimodel functions, while ሺ͵Ͳ,ʹͲͲሻ ܵܧ െ  ܵܧ

used for multimodal  function. 

• Steepest decent Algorithm(SDA): use maximum of iteration =15; with tolerance =10-3. 

And initial size take randomly from x range .  

• Hybrid Es algorithm with the algorithm GA a master and (30+200) ES as a tool for the 

master , for unimodel function, the best fit 30 GA individual are selected to be delivered 

to the (30+200)ES tool. while for multimodal  functions, an evenly random selected 30 

GA individuals are delivered to that  ES tool.HAO is active after 3 generations of the 

cross-fertilization phase. HGA1 

• Hybrid steepest descent with genetic algorithm  Genetic Algorithm with population 

size ߤ ൌ ʹͲͲ mutation rate ݌௠ ൌ Ͳ.ͳ , crossover rate ݌௖ ൌ Ͳ.͹ͷ one-point crossover , 

binary code, and bit string length ݈ ൌ24, this algorithm denoted sGA, use maximum of 

iteration =15; with tolerance =10-3. And initial solution take as the best individual from 

genetic algorithm for values equal  (pop_size/ 3) from population. All results were 

obtained by running  5 experiments per algorithm and averaging the resulting data.  ܨଶ: Test function 

Ackley Function(multi), this function is named after Ackley who invented it 

  fሺxሬԦሻ ൌ െʹͲeି଴.ଶටభ౤ ∑ ሺ୶౟మሻ౤౟సభ െ eభ౤ ∑ ୡ୭ୱ ሺଶ஠୶౟ሻ౤౟సభ ൅ ʹͲ ൅ e  (31) 
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The original version was a two- dimensional function and it was later generalized to n 

dimension by Back. In this study form defined on n=2. The values of xሬԦ defined on  

[-32.0,32.0]. The global minimum is located at the origin and its value is zero. The Ackley 

function is a nonlinear multimodal function with regularly distributed local optima 

 
 

 

Fig. 9. F2 Test  function  shape. 

The results showing the ability of HGA2 to give more robust results.  Also HGA1 promise to 

give robust results  cleared  in fig.16 . 

F3: Test Function 

 fሺxଵ, xଶሻ ൌ ሾʹͷ െ ሺxଵ െ ͷሻଶ െ ሺxଶ െ ͷሻଶሿభమ  (32) 

With constraints   

– xଵଶ ൅ Ͷxଶ ൑ ͲͶxଵ െ xଶଶ ൅ ͳʹxଶ ൑ ͷͺxଵ, xଶ  

ሺݔଵ, ଶሻݔ א ሾͲ,͹ሿଶ. 

Optimal solution get when ݔଵ,  .ଶ=5ݔ

The first set of results of this function given in table(2) for describing the ܵܣܦ algorithm 

which is depended on  experiment designed for studying the behaviour of algorithm  under 

study, where results in table (2) explained how the gradient algorithm depend on three 

operators the first one is initial values x0 generated randomly, tolerance of accuracy take 

equal to 10-3; number of iterations (determined at the begging of experiment designed equal 

to 50. from results increasing number  iterations when increasing  variation of parameter (S), 

the best results get at (5.5419,5. 7225)where maximum value is(4.9178) where S=1.691, 

number of iterations is 6. With x0 = (3.5,3). 

When applying ܣܩݏ we get the best solution get at generation 15 with X=( 4.5035, 4.8091 ) 

and F(x1,x2) = 4.9716. Hybrid of ܣܦݏ with GA gave the best results at generation 95 with 
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x = (4.9904, 4.96268) and F(x1,x2) = 4.99976 the compression among algorithms used refer to 

HGA2 And HGA1 to give more robust results with  

 

 

 

Fig. 10. F3 Test  function  shape. 

 

 

X0=(x10,x20) 

Max 

iteration 

for 5 

runs 

s x1 x2 f(x1,x2)

Min 

iteration 

for 5 

runs 

s x1 x2 f(x1,x2) 

(7 ,1) 20 2.6676 4.349 6.302 4.7834 6 2.381 4.5177 5.9647 4.8823 

(5 ,4.5) 20 2.6412 5 7.1406 4.5186 2 1.839 5 6.3387 4.8175 

(3.5,3) 38 2.4953 5.8697 6.1596 4.7853 6 1.691 5.5419 5.7225 4.9178 

(2.5,1.2) 24 2.836 5.8308 6.2628 4.766 8 2.729 5.5737 5.872 4.8898 

Table 2. Relation among number of iteration and( stepsize –s-) with initial value  

F4: Test Function 

This function with multiple basins of attraction 

 fሺx, yሻ ൌ ୢ౟୰౟మ ሺxതଵଶ െ yതଵଶሻሺʹ െ ୶തభమା୷ഥభమ୰౟ െ d୧         xതଵଶ ൅ yതଵଶ ൑ r୧ଶ  (33) 

 

with constraints  d୧ , r୧ generated randomly. The test functions given in eq.29 are multi-modal 

functions with multiple basins of attraction. The coordinates (ݔ௢,௜ ,  ௢,௜) are the coordinates ofݕ

the basin of attraction “ i”, which has random geometry (radius and depth r୧depth d୧), The 

basins of attraction for functions are randomly distributed.  (Goldberg and Voessner, 1999) 

has conical basins of attraction represents the best case for local search, in which only one 

local search is required to find the local minimum. 
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Fig. 11. F4 Test  function  shape 

The simulation results cleared in fig.16.  

F5. Single test function 

This function is a nonlinear function with single input variable  

 ݂ሺݔሻ ൌ ݁ିଶሺ௟௡ଶሻሺ  ೣషబ.భ బ.ఴ ሻమ|sin ሺͷݔߨሻ| (34) 

Where ݔ א ሾെͳ,ͳሿ. Actually, this simple function has several local maximum. However, there 

is only one global maximum, as shown in Fig.11. 

 

 

Fig. 12. F5 Test  function  shape 

F6: Test function 

 ݂ሺݔ, ሻݕ ൌ cos ሺݔሻଶ ൅ sin ሺݕሻଶ  (35) xሬԦ defined in[-5,5], this function has infinite global maximum in Rଶ at points ቀ୫஠ଶ , nπቁ , m, n ൌ ,ͳט ʹט …  
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Fig. 13. F6 Test  function  shape 

F7: Test Function 

This function known as Rosenbrock function was invented by Rosenbrock, mathematically 

defined as 

 fሺxሬԦሻ ൌ ∑ ሺͳͲͲሺx୧ାଵ െ x୧ଶሻଶ ൅ ሺx୧ െ ͳሻଶሻ୬ିଵ୧ୀଵ   (36) 

Where xሬԦ is an n-dimension vector located within the rangeሾെ͵Ͳ.Ͳ,͵Ͳ.Ͳሿ୬. the global 
optimum is located at (1,…,1) with a function value of zero. This function exhibit a 
parabolic-shaped deep valley. In the optimization literature it is considered a difficult 
problem due to the nonlinear interaction between variables [1]. 
 

 

Fig. 14. F7 Test  function  shape 

F8: Test function 

The Salmon function is rotation – invariant and was proposed by Salmon ,it is defined as 

 fሺxሬԦሻ ൌ ͳ െ cosሺʹπට∑ x୧ଶሻ୬୧ୀଵ ൅ Ͳ.ͳට∑ x୧ଶ୬୧ୀଵ  (37) 

Where xሬԦ is an n-dimensional vector located within the range ሾെͳͲͲ,ͳͲͲሿ the global optimum 
located at the origin with a function value of zero. 
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Fig. 15. F8 Test  function  shape 

F9. Test function 

This function also known as Schaffer's function or the sine envelope sine wave. 

Mathematically define as  

 fሺxሬԦሻ ൌ Ͳ.ͷ ൅ ୱ୧୬మሺඥ୶భమା୶మమሻሺଵା଴.଴଴ଵሺ୶భమା୶మమሻሻమ (38) 

Where xሬԦ is a two-dimension vector located within the range [ሾെͳͲͲ.Ͳ,ͳͲͲ.Ͳሿ୬. The global 
optimal is located at the origin with a function value equal to zero. 
 

 

Fig. 16. F9 Test  function  shape 

F10 :  Esom function 

This function was proposed by Easom to evaluate global optimization techniques. It is n-

dimensional function with single minimum  that is also the global optimum. The 

mathematical expression of this function is 

 ݂ሺݔԦሻ ൌ െ ∏ cos ሺݔ௜ሻ௡௜ୀଵ . ݁ି ∑ ሺ௫೔ିగሻమ೙೔సభ  (39) 
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Fig. 17. F9 Test  function  shape 
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F8 Test Function Comparison    F9 Test Function Comparison    F10 Test Function Comparison 

Fig. 18. Compression among   fitness values respect to number of  generations for 

benchmark test functions 

7.3.3 General results getting from designing experiments  
According to the results presented above, a general trend will be drawn about the course of 

actions of the competent algorithms. Results show that sGA alone with its bit level crossover 

and mutation operators can act as a heuristic for exploration with somewhat little emphasis 

on search focus. 

Sample  GA showed to be trapped by local plateaus. One could return this behavior to the 

main distinguished operator of the master GA, the one point crossover operator. one can 

easily see that the canonical GA is the slowest of the algorithms under study. The behavior 

of GA is almost identical on all the unimodel functions. 

The collective nature of GA tournament selection, one point crossover, and mutation 

operators give a clear demonstration of its missing emphasis on the convergence and local 

optimization. On the other hand , the ES with self adaption of ݊ఙ ൌ ݊ standard deviation is , 

on overall, the faster by far and its results are superior to that obtained from (GA,HGA1). 

The combination of self-adaption , recombination , and relatively strong selective pressure 

as used in ܵܧ algorithm. The nature of the preservative survival of the best individual  

implied by the plus selection strategy. Also, the self adaption role of the strategy parameters 

through intermediate recombination and mutation is shown to be fascinating. Even if all the 

parents start with equal ߪ௜ ൌ ߪ ൌ ͵.Ͳ ݅׊ ൌ ͳ, … , ݊ఙ, and all the step length components are 

varied by a common random factor in the production of the offspring , the ߪ௜ of all 

individuals will differ from each other in the subsequent generations through self adaption. 

So in this way a better combination affords a higher chance of survival to its bearer. It can 

therefore be expected that in the course of the optimum search, the currently best 

combination of the ሼߪ௜; ݅׊ ൌ ͳ, . . , ݊ఙሽprevails. 

The HGA2 reduces the speed gap between the canonical GA and standard variant ESs 

convergence , it does not  outperformed ES with both its,  variants, except for some cases . 

The deviation in convergence velocity of the HGA2 from ES variants can be attributed to the 

fact that although in the first cross-fertilization phase of HGA2, the best GA individuals are 

enhanced by the coupling EA algorithm, the  exploration power of the master GA still 

remained an order of  magnitude. A closer look is given here to compare the behavior of ES 

and HGA2 one hand , and HGA2 with HGA1,GA, SDA. comparing the results of the overall 
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hybridization established in HGA1 with the hybridization of HGA2, one could see that the 

presented results of HGA2 are more powerful than that of HGA1. 

8. Conclusions 

This chapter is devoted to global optimization algorithms, which are methods to find 

optimal solutions for given problems. It especially focuses on two major groups of 

optimization algorithms evolutionary computation by discussing evolutionary algorithms, 

genetic algorithms, evolution strategy. Second group represent by hybrid algorithms which 

are coupling simple GA with local algorithm steepest descent algorithm(HGA1) and GA 

with  self adaptive global algorithm  evolution strategy (HGA2). The results , depending on 

the standard functions presented in the test suite, it campers the performance of (sGA, ሺµା, λሻ-ES, SDA, HGA1,HGA2) algorithms. The  simulating experiments designed for sets of 

benchmark test functions classifies as unimodel and multimodal, Four unimodel functions, 

the hybridization was found to be advantageous for speeding up the performance of the 

canonical GA so the speed gap difference between the very general purpose optimizer 

algorithms as canonical GA and the specialized parametric optimization algorithm as 

multimember ES is diminished . Also, the hybridization was found to be beneficial in 

multimodal functions where convergence reliability is of interest. By taking the advantages 

of both exploration power of the GA and the exploitation power of the multimember ES, the 

HGA introduces more reliable solutions than GA or ES when worked individually. 
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