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1. Introduction

Optimization is essentially the art, science and mathematics of choosing the best among a
given set of finite or infinite alternatives. Though currently optimization is an
interdisciplinary subject cutting through the boundaries of mathematics, economics,
engineering, natural sciences, and many other fields of human Endeavour it had its root in
antiquity. In modern day language the problem mathematically is as follows - Among all
closed curves of a given length find the one that closes maximum area. This is called the
Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in
the Calculus of Variations. However, most problems of antiquity came from geometry and
since there were no general methods to solve such problems, each one of them was solved
by very different approaches.

Generally, optimization algorithms can be divided in two basic classes: deterministic
probability algorithm. Deterministic algorithm are most often used if a clear relation
between the characteristic of possible solutions and their utility for a given problem exists. If
the relation between a solution candidate and its fitness are not so obvious or too
complicated, or the dimensionality of the search space is very high, it becomes harder to
solve a problem deterministically. Trying it would possible result in exhaustive enumeration
of the search space, which is not feasible even for relatively small problem.

Then, the probabilistic algorithm come in to play. The increased availability of computing
power in past two decades has been used to develop new techniques of optimization
Today's computational capacity and the widespread Availability of computers have enabled
development of new generation of intelligent computing techniques, such as genetic
algorithm.

Evolutionary Algorithm are population met heuristic optimization algorithms that use
biologic- inspired mechanisms like mutation, crossover, natural selection, and survival of
the fittest in order to refine a set of solution candidates iteratively [ Weise, 2009].

All evolutionary algorithms proceed in principle according to the scheme illustrated in
fig.(1).

A simple Genetic Algorithm sGA is search algorithms based on the mechanics of natural
selection and neutral genetics. They combine survival of fittest among string structures with
a structure yet randomized information exchange to form a search algorithm with some of
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Fig. 1. Cyeclic life of an evolutionary algorithms

the innovative flair of human search. In every generation; a new set of artificial creatures
(string) is created using bits and pieces of the fittest of the old; an occasional new part is
tried for good measure. They efficiently exploit historical information to speculate on a new
search points with expected improved performance. A hybrid genetic algorithm (HGA) is
the coupling of two processes: the simple GA and a local search algorithm. HGAs have been
applied to a variety of problems indifferent fields, such as optical network design
[Sinclair,2000], signal analysis [Sabatini, 2000], and graph problems [Magyar et al, 2000],
among others. In these previous applications, the local search part of the algorithm was
problem specific and was designed using trial-and-error experimentation without
generalization or analysis of the characteristics of the algorithm with respect to convergence
and reliability. The purpose of this study is to develop variants of hybrid simple genetic
algorithm with local search algorithm represent by gradient or global algorithm present by
evolution strategy to optimize solution of some functions where classifies as multimodal
function and unimodel functions. One of import function of this study is likelihood function
of time series autoregressive moving average ARMA(1,1) model, this function defined as a
unimodel function it is one of fundamental importance in estimation theory. The other
functions used in this study as a test function used widely as benchmark functions. This
study presents the( HGA1) which is represent hybrid of simple genetic algorithm with an
widely local search algorithm used steepest decent algorithm the other approach of hybrid
denoted by HGA2 is coupling simple genetic algorithm with global search algorithm
multimember evolution strategy, compares its performance with the simple(sGA), steepest
descent algorithm(SDA ), multimember evolution strategy ES; to study the behaviours many
of functions classified as its kind multimodal or unimodel function which is used as test
functions. The reminder of this chapter, section 2 presents definitions needed, section 3
giving a brief overview of genetic algorithms, representation of search points and their
fitness evolution, selection, recombination, and mutation mechanisms. Then to be consistent,
section 4 introduce the characteristic components of local search and its operators , also
section 5 issue of the multimember evolution strategy. Section 6 address the issue of
coupling simple genetic algorithm with multimember evolution strategy. Section 7 is an
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extension of the results of section, in which are representative of the classes of unimodel ,
and multimodal function. In which competition is raised.

2. Definitions

Definition 2.1 (Objective Function) An objective function f:X->Y with YSC R is a
mathematical function which is subject to optimization.

The co-domain Y of an objective function as well as its range must be a subset of the real
numbers Y € R. The domain X of f is called problem space and can represent any type of
element like numbers, lists, construction plans, and so on. It is chosen according to the
problem to be solved with the optimization process. Objective functions are not necessarily
mere mathematical expressions, but can be complex algorithms that, for example , involve
multiple simulations. Global optimization comprises all techniques that can be used to find
the best element x* € X with respect to such criteria f € F.

Definition 2.2 (local Maximum) A local maximum &, € X of one (objective) function f: X -
R is an input element f(%;) = f(x) for all x neighbouring &;. If X € R", we can write:

Vflaf > Of(J,C\l) > f(X)V-x € X; |x - fll <E€.

Definition 2.3 (Local Optimum). A (local) minimum X; € X of one (objective) function
f: X - R is an input element with

f(®)) < f(x) for all x neighbouring &, V%;3e > 0: (%)) < f(x)Vx € X, |x — &| < €.

Definition 2.4 (Local Optimum).A local optimum x* € X of one (objective) function f: X - R
is either a local maximum or a local minimum.

Definition 2.5 (Global Maximum). A global maximum X € x of one (objective)
function f: X - R is an input element with

F(R) = f(x)Vx € X.

Definition 2.6 (Global Maximum). A global maximum X € x of one (objective)
function f: X - R is an input element with

f®) < fx)vx € X.

Definition 2.7 (Local Optimum): A global optimum x* € X of one (objective) function
f: X — R is either a global maximum or a global minimum. Even a one-dimension function
f:X = R - R may have more than one global maximum, multiple global minimum, or even
both in its domain X. Take the sine or cosine function for example; for cosine function it has
global maximum X; = 2in, (i = 0,1,2,...) and global minimum X; = (2i + 1)w, (i = 1,2, ...).
Definition 2.8 (Solution Candidate): A solution candidate x is an element of the problem
space X

Definition 2.9 (Solution Space): we call the union of all solutions of an optimization
problem its solution spaceS. X* €S € X

This solution space contain (and can be equal to) the global optimal set X *. There may exist
valid solution x € S which are not elements of X, especially in the context of constraint
optimization.
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local minimum global maximum
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Fig. 2. An example of function with multi global and local maximum and minimum optimal
point.

Definition 2.10 (Search space ) :The search space G of an optimization problem is the set of all
elements g which can be processed by the search operations. The type of the solution
candidates depends on the problem to be solved. Since there are many different applications
for optimization, there are many different forms of problem spaces. It would be cumbersome
to develop search operations time and again for each new problem space encounter.
Definition 2.11 (Genotype): the elements g € G of the search space G of a given
optimization problem are called the genotypes.

The elements of the search space rarely are unconstraint aggregations. Instead, they often
consist of distinguishable parts, hierarchical units, or well-type data strictures. The same
goes for DNA in biology. It consists of genes, segments of nucleic acid, that contain the
information necessary to produce RNA strings in a controlled manner. A fish, for instance,
may have a gene for the colour of its scales. This gene, in turn, could have two possible
"values" called alleles, determining whether the scales will be brown or grey. The genetic
algorithm community has adopted this notation long ago and we can use it for arbitrary
search space.

Definition 2.12 (Gene). The distinguishable units of information in a genotype that encode
the phonotypical properties are called gene.

Definition 2.13 (Allele): An allele is a value of specific gene.

Definition 2. 14 (Locus): The locus is the position where a specific gene can be found in a
genotype.

Definition 2.15 (Search Operation): the search operation search OP are used by
optimization algorithm in order to explore the search space G.

Definition 2.16 (individual): An individual p is a tuple (p.g p.x)of an element p.g in the
search space G and the corresponding element p. x = gpmp. g in the problem space X.
Definition 2.17 (Population): A population (pop) is a list of individuals used during an
optimization process.

Pop €S GxXX:Vp = (p.g,p.x) € Pop = p.x = gpm(p. g)
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As already mention, the fitness v(x) of an element xin the problem space X often not solely
depends on the element itself. Normally, it is rather a relative measure putting the features
of x in to the context of a set of solution candidates x.

2.1 Genotype-phenotype mapping
The genotype —phenotype mapping (GPM, or ontogeny mapping) gpm: G — X is a left-total
binary relation which maps the elements of the search space G to elements in the problem space

X;VgeGIax e X: gpm(g) = x

S [oTaTaT1 1 1

1T1ToT1 : . — >

[1T1T1To 0o 1 2 3 —— >
tT1T1T1 15Gene allele' 2" Gene allele'11' o 1 2 3

locus 0 atlocus 1 \ ) \ )

Genome G Genome g€G phonotype x € X phenome X
Search space (solution candidate ) (problem space)

Fig. 3. The relation of genome, genes, and the problem space.

3. Genetic algorithm

3.1.1 Initialization

The first step is the creation of an initial population of solutions, or chromosomes. The
populations of chromosomes generally chosen at random, for example, by flicking a coin or
by letting a computer generate random numbers. There are no hard rules for determining
the size of the population. Larger populations guarantee greater diversity and may produce
more robust solutions, but use more computer resources. The initial population must span a
wide range of variable settings, with a high degree of diversity among solutions in order for
later steps to work effectively.

3.1.2 Fitness evaluation

In the next step, the fitness of the population's individuals evaluated. In biology, natural
collection means that chromosomes that are more fit tend to produce more offspring than do
those that are not as fit. Similarly, the goal of the genetic algorithm is to find the individual
representing a particular solution to the problem, which maximizes the objective function, so
its fitness is the value of the objective function for a chromosome. Genetic algorithms can of
course also solve minimization problems. The fitness function (also called objective function or
evaluation function) used to map the individual's chromosomes or bit strings into a positive
number, the individual's fitness. The genotype, the individual's bit string, has to be decoded
for this purpose into the phenotype, which is the solution alternative. Once the genotype has
been decoded, the calculation of the fitness is simple: we use the fitness function to calculate
the phenotype's parameter values into a positive number, the fitness. The fitness function
plays the role of the natural environment, rating solutions in terms of their fitness. To apply
the GA to real — valued parameters optimization problems of the form f:[[[u;,v;] - R(u; <
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v;), the bit string is logically divided in to n segments of (in most cases )equal length [, (I =
nl,) and each segment is interpreted as the binary code of the corresponding object variable
x; € [u;,v;] . A segment decoding function I':: {0,1}* — [u;, v;] typically looks like

v

DS a2 (1)

F‘(ailaiz ailx) = U; +

where (a;;a;; ... a;;,) denotes the ith segment of an individual @ = (a; a;y... ap, )el™= = I'.
Associated with each individual is fitness value. This value is a numerical quantification of
how good of solution to optimization problem the individual is .Individual with
chromosomal strings. Representing better solution has higher fitness values, while lower
fitness values attributed to those whose bit string represents inferior solution. Combining
the segment-wise decoding function to individual — decoding function I'=T1 X ...x ™",
fitness values are obtained by setting

(@) = 5(f(Ir(@)) (2)

where § denotes a scaling function ensuring positive fitness values such that the best
individual receives largest fitness.

3.1.3 Selection

In the third step, the genetic algorithm starts to reproduce. The individuals that are going to
become parents of the next generation selected from the initial population of chromosomes.
This parent generation is the "mating pool" for the subsequent generation, the offspring.
Selection determines which individuals of the population will have all or some of their genetic
material passed on to the next generation of individuals. The object of the selection method is
to assign chromosomes with the largest fitness a higher probability of reproduction.

3.1.4 Tournament selection

The tournament selection method select u times the best individual from a random subset S}
of size |B| =&, 2 <& <u Vk €{1,..,u} and transfers it to the mating pool (note hat there
may appear duplicates). The best individual within each subset S, selected according to the
relation >* (read: better then). A formal definition of the tournament selection operator
S:I* > [H* follows (Schowefel &Bick, 1997):

Let By c p(t) Yk € (1,...,1) be random subsets of P(t) each of size|By| =&. Vk € (1, ..., 1)

choose a € B, such that Vb € B:d, Xb where

G Kb (@) >0 Af(I(@) >0 < £(T(By)) (3)

3.1.5 Genetic operators
3.1.5.1 Crossover

The primary exploration operator in genetic algorithms is crossover, a version of artificial
mating. If two strings with high fitness values mated, exploring some combination of their
genes may produce an offspring with even higher fitness. Crossover is a way of searching the
range of possible existing solutions. There are many ways in which crossover can
implemented, such as one point crossover, two-point crossover, n-point crossover, or uniform
crossover. In the following, we will stay with the simplest form, Holland's one-point crossover
technique. Single-point crossover is the simplest form, yet it is highly effective.
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One point crossover, is often used in sGA, it work first randomly picking a point between 0
and [. The participating parent individuals X = (x;, ....x;) and y = (¥4, ....y;) are then split
at the point , followed by a swapping of the split halves to form two offspring individual

% and y as follows (Kargupta, 1995):

X = (X1 e s Xy, Xy Yy 1s oo 0 YOV = (V10 e Ym0 Yoo X1 00 05 X (4)
where ye{1,...,l — 1} denotes a uniform random variable .
3.1.5.2 Mutation

If crossover is the main operator of genetic algorithms that efficiently searches the solution
space, then mutation could called the "background operator" that reintroduces lost alleles into
the population. Mutation occasionally injects a random alteration for one of the genes. Similar
to mutation in nature, this function preserves diversity in the population. It provides
innovation, possibly leading to exploration of a region of better solutions. Mutation performed
with low probability. Applied in conjunction with selection and crossover, mutation not only
leads to an efficient search of the solution space but also provides an insurance against loss of
needed diversity, on a single individual , mutation operator m{p,,}: I — I formally works as
follows (Back & Schwefel, 1993): m{p,,} (x4, ..., x;) = (X, ..., ), (Vi € {1, ..., 1}):

=] X ,Xi > Pm
Pl =% X S Py

(5)

where x;€[0,1] is a uniform random variable, sampled anew for each bit.

3.1.6 Conceptual algorithm

The conceptual algorithm of sGA can then formulated as

t:=0; tis the generation number

Initialize P(0) = {d(0), ...,d,(0)}el*  Where I = {0,1}

Evaluate P(0) = {®(d;(0)), ..., ®(d,(0))}el*

Where ®(d,(0) = 6(f (I'(@1(0))),P(0)

While (z((P(T)) # true do// while termination criterion not fulfilled
Recombine:  d, (k) = r{pH(P(t)) Vke{l,..,p)

Mutate: a'v(®) = m{p,3(ak) Vke{l,..uw

Bvaluate  P'(t) = {a's(t), ... d"u(O)}: { @@ (®)), .., ®(a’, ()}

Where @ (?k(O)) =5 (f (r (E’k(t))) P(t — w));

end
Fig. 4. Pseudo code of sGA algorithm

3.2 Theorems and definitions needed

Definition 2.1

The directional derivatives of f(x, y) at the point (a, b) and in the direction of the unit vector
u = (uy, u,) is given by

f(a+huy,b+hu,)—f(a,b)
h

D,f(a,b) = limy,_,, (6)
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provided the limit exists.
Theorem 2.1
Suppose that f'is differentiable at (a, b) and u = (u,, u,) is any unit vector. Then we can write

D,f(xa,b) = f(a,b) + f,(a,b) (7)

Cleady 2.1

For convenience, we define the gradient of a function to be vector —valued function whose
component are the first —order partial derivatives of f . we denote the gradient of a function f
by grad of for Vfread "del f' and define by the given theorem .

Theorem 2.2

If f is a differentiable function of x and y and u is any unit vector, then

Dyf(x,y) =Vf(x,y).u (8)

Cleadly 2.2

This theorem clear how to compute directional derivatives. Further, writing directional
derivatives as a dot products. This theorem generalized to vector valued F:R™?! — R™¥1,
Theorem 2.3

Suppose that f'is differentiable function of x and y at the point (a, b). Then

i. the maximum rate of change of f at (a, b) is ||Vf(a, b)|| and occurs in the direction .

ii. of the gradient, u= ||ZEZ'Z§" the minimum rate of change of f at (a, b) is —||Vf(a, b)||

and occurs in the direction opposite the gradientu = — ||§£§Z'E;||'

iii. the gradient Vf(a,b) is orthogonal to the level curve f(x,y)=c at the point (a ,b), where
c=f(a, b).

Definition 2.2

We call f(a, b) a local maximum of f if there is an open disk R centred at (a, b), for which
f(a,b) = f(x,y) for (x,y) € R. Similarly , f(a, b) is called a local minimum of f if there is an
open disk cantered at (a, b), for which f(a,b) < f(x,y) for (x,y) € R. In either case f(a, b) is
called a local extreme of f.

Theorem 2.4

suppose that f(x,y) has continuous second order partial derivatives in some open disk
containing the point (a ,b) and that f,(a,b) = f,(a,b) = 0. Define the discriminant D for the
point (a, b) by

D(a, b) > fxx(a: b)fyy N [fxy(a: b)]z (9)

if D(a,b) > 0 and f,4(a,b) > 0, then f has a local minimum at (a, b).
(it) if D(a, b) > 0 and fy,(a,b) < 0, then f has a local maximum at (a, b).
(iii) if D(a,b) < 0, then f'has a saddle point at (a, b).
(iv) if D(a, b) = 0, then no conclusion can be drawn.

4. Local search

The local search operator looks for the best solution starting at a previously selected point,
in this case a solution in the sGA population. For this application, the steepest descent
method was chosen as the local search operator. This method moves along the direction of
the steepest gradient until an improved point found, from which a new local search starts.
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The algorithm ends when no new relationship shown point can found (this is equivalent to a
gradient equal to zero).

For functions with multiple local optimum, the method find one local optima but it is not
guaranteed to find the global minimum. For geometric with conical shape, for example, the
method finds the local optimum in one local search starting from any point in side the basin
of attraction. For other geometries, the local search operator required more than one
iteration to achieve the solution.

4.1 Descent method

Cauchy (1847), Kantorovich (1940-1945), Leven berg (1944), and Curry (1944) are the
originators of the gradient strategy, which started life as a method of solving equations and
systems of equations. It first referred to as aid to solving variation problems by Hadamard
(1908) and Courant (1943). This variant of the basic strategy, known under the name optimum
gradient method, or method of 'steepest descent. Theoretical investigations of convergence
and rate of convergence of the method can be found e.g. in Akaike (1960),Goldstein (1962),
Ostrowski (1967), Zangwill(1969) and Wolfe(1969,1970,1971)[6] The general rule of steepest
descent where used to find optimal solutions of nonlinear problems is

Where d¥ is an a suitably chosen direction and o is a positive parameters (called step-size)
that measures the step along the direction dX. This direction is a descent direction if

dVA(xK) <0 if PF(xK) %0

dk =0 if vi(x¥)=0 (11)

4.1.1 Steepest descent algorithm
To approximate a solution p to the minimization problem G(p) = mingcgn G(X)
Given an initial approximation x:
Step 1. setk=1
Step 2. While (k < N) do steps ( 3-8)
Step 8. Set g1 = G(Xq, ..., X,) // note:g; = G(x¥);
z = VG(Xq, .., Xp) / / note: z = VG(x®);
zo = ||z||;
Step 4. if zy, =0 then output ("zero Gradient') Output (xy,...,Xp, g1)// [Procedure
completed may have minimum check further]
Step 5. choose 6 s.t
g = min (G(xq + 62)
Step 6. Setx = x + 6z
Step 7. if |g —g4,| < Tol then
output (x4, ..., X, 81)// [ Procedure completed successfully ]
Stop
Step 8. set k=k+1;
Step 9. Output (‘(Minimum Iterations Exceeded')// ( Procedure completed unsuccessfully )
Stop

Fig. 5. Pseudo code of gradient algorithm

www.intechopen.com



228 Evolutionary Algorithms

4.2 Hybrid genetic algorithm

In this section we define a hybrid of sGA with gradient method and we denoted as (HGA1) A
hybrid genetic algorithm (HGA) is the coupling of two processes: the simple GA and a local
search algorithm. The local search part of the algorithm was problem specific and designed
using trial-and-error experimentation without generalization or analysis of the characteristics
of the algorithm with respect to convergence and reliability. The HGA algorithm is a standard,
which combines an sGA with local search. The local search step defined by three basic
parameters: frequency of local search, probability of local search, and number of local search
iterations. The first element for the definition of the algorithm is the frequency of local search,
which is the switch between global and local search. In the HGA algorithm, this switch
performed every "G!" global search generations, where "G!" is a constant number called the
local search frequency. The second element of the algorithm is the probability of local search P,
which is the probability that local search will be performed on each member of the sGA
population in each generation where local search is invoked. This probability is constant and
defined before the application of the algorithm. Finally, each time local search is performed, it
is performed a constant number of local search iterations before local search is halted.

4.2.1 Basic elements
4.2.1.1 Genetic algorithm

Three basic operators define the simple Genetic Algorithm (sGA): binary tournament selection,
single point crossover, elitism, and simple mutation. Through the successive application of
these three operators, an initial population of solutions evolved into a highly fit population.

4.2.1.2 Local search

The local search operator looks for the best solution starting at a previously selected point,
in this case a solution in the SGA population. For this application, the steepest descent
method was chosen as the local search operator. This method moves along the direction of
the steepest gradient until an improved point found, from which a new local search starts.
The algorithm ends when no new relationship shown point can found (this is equivalent to a
gradient equal to zero) and this satisfied in our formula adaptation [10].

4.3 Hybrid genetic algorithm with local search algorithm

A hybrid genetic algorithm (HGA) is the coupling of two processes: the sGA and a local search
algorithm. The local search part of the algorithm was problem specific and was designed using
trial-and-error experimentation without generalization or analysis of the characteristics of the
algorithm with respect to convergence and reliability. It is defined by three basic parameters:
frequency of local search, probability of local search, and number of local search iterations. The
first element for the definition of the algorithm is the frequency of local search, which is the
switch between global and local search. In the HGA1 algorithm, this switch performed every
"G!" global search generations, where "G!" is a constant number called the local search
frequency. For example, if G!=3, local search would perform every 3 generations during the
sGA. The second element of the algorithm is the probability of local search P, which is the
probability that local search will be performed on each member of the sGA population in each
generation where local search is invoked. This probability is constant and defined before the
application of the algorithm. Finally, each time local search performed; it performed for a
constant number of local search iterations before local search halted.
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4.3.1 Conceptual algorithm of

The coupling approach in this paper consist in the introduction of generation interval for
hybrid activation operator (HAO).Through selection, crossover, and mutation operators, the
canonical sGA works on population of bit string encoding scheme generation by generation.
When HAO is active (again implemented here every G? generation), the intermediate
generation created by GA is fed into an adopted selection strategy which select
subpopulation, usually of small size. Then each binary string individual in this
subpopulation is convert into a real number vector, to be the initial value of steepest
descent (sDA) algorithm that operate on this subpopulation for fixed small of generation.
The vectors converted back into bit string values to manipulate again by master GA, sDA
used here in this hybridization as a tool operates in small number of generation fashion in
an order to enhance the selected points driven from the master GA. It is appropriate that the
version of sDA tools to be of preservative survivor property to have worthy adjustment. The
conceptual algorithm of the (HGA) given by the following steps:

Input: sample size, number of generation, ..
Output : approximate value
Step1: Initialize GA(generate Initial population of parameters).
Step2.1: for t = 1to number of generation Do
Step2.2: for I = 1: population size Do
The canonical genetic algorithm (sGA) operators:
Step2.2.1: Local Recombination,
Step2.2.2: Mutation,
Step2.2.3 Selection,
Step3: Binary coded sGA individual remapped in to real vector individual.

1
Step4.1: Select <§ of population size ) use as initial solution of sDA perform for each generation

Step4.2. Start local search evaluation// Starting of Steepest Descent Algorithm (sDA).

Step4.3.: Real _coded local search algorithm individual remapped in to binary vector individual.
Step5. Repeat steps until all of generation complete or termination criterion is satisfied.

Step6: end

Fig. 6. Pseudo code of HGA algorithm

5. (u*, A)-Evolution strategies

H.-P. Schwefel proposed the multi-member evolution strategies, the so-called (u*, 1)-ES. In
their most general form, these strategies are described in the coming subsections.

5.1 Representation and fithess evaluation

Anindividual @ = (¥, d)el in (u*, 1)-ES can consist of the components (Robert, Roland, 2002):
xeR™: The vector of object variables.

GeR}’: A vector of step length or standard deviations (1 <n, <n) of the normal
distribution. The strategy parameter ¢ (also called the internal model) determines the
variances of the n-dimensional normal distribution, which is used for exploring the search
space. The user of an evolution strategy, depending on his feeling about the degree of
freedom required, can vary the amount of strategy parameters attached to an individual. As
a rule of thumb, the global search reliability increases at the cost of computing time when
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the number of strategy parameters is increased. The setting most commonly used which

form the extreme cases are:

* n, =1 : (Uncorrelated mutation with one single standard deviation controlling
mutation of all components of X ).

* n, = n: (Standard mutations with individual step sizes ay,.., g,, controlling mutation of
the corresponding object variables x; individually). The only part of @ entering the
objective function evaluation is X, and the fitness of an individual ¢ (a) is identical to its
objective function value f(X), i.e. (¢(X) = f(X)).

5.2 Mutation operator

The generalized structure of (u*,1)-ES mutation operator consists of the addition of a
normally distributed random number to each component of the object variable vector,
corresponding to a step in the search space. The variance of the step-size distribution is itself
subject to mutation as a strategy variable. Formally speaking, mutation operator
m{ty, t}: I - I, is defined as follows [5]

m{to, 7}(d) = my(X) e my(6) = (X', 0") (13)

Which proceeds by first mutating the strategy parameters o: m,: R, - R.’;

my(6) = 6" = (0, exp(z; + 2p), ..., Op, exp(zng + ZO)) (14)

Where z,~N(0,73), z;~N(0,72) Vi€ {l,...,n,} To prevent standard deviations from
becoming practically zero, a minimal value of ¢,is algorithmically enforced for all g;.
Secondly, modifying X¥ according to the new set of strategy parameters obtained from
mutating ¢: m,:R" —» R"

My (X) =X = (%1 + 24, o) X + Zp) (15)

5.3 Recombination operators

In (ut, 2)-ES, different recombination mechanisms are used in either local form, producing
one new individual from two randomly selected parent individuals, or in global form,
allowing components to be taken for new individual from potentially all individuals
available in the parent population. Furthermore, recombination is performed on strategy
parameters as well as the object variables, and the recombination type may be different for
object variables, and standard deviations.

Depending on the recombination types [4][6]:

0 No recombination
Rec = 1 Discrete recombination of pair of parents
< 2 Intermediate recombination of pair of parents (16)
3 Discrete recombination of all parents
4 Intermediate recombination of parents in pairs

.

Sometimes, the choice of a useful recombination operator for a particular optimization
problem is relatively difficult and requires performing some experiments [2].The rules of

recombination operator r:[* —» I for creating an individual, r{rec,,recs}(P) —a =
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(7, ?) € I, are given respectively by referring to arbitrary vectors band b’ where b and
b’denote here the part (i.e., either X or &) of a pre-selected parent individuals and the part of
an offspring vector receptively. Each of band b’ are of length m € {n,ny,},vi € {1, ..., m}

-
b; if rec=0
by, 07 by, if rec=1

b£= < (bXLi + b){z’i)' 05 lf rec = 2 (17)
byss if rec=3
(b)(s,i + b)(4,i)' 0.5 if rec=4%

-
Where x4, xo,~U({1, ..., u}for each offspring, and y;, x4,~U({1, ..., u} for each i.

5.4 Selection operator

There are two main classifications for selection according to the survival property of the
parents [6]:

Extinctive_ (u, 1) strategy; where parents live for a single generation only.S: [* — [#

S(P) = P'where |P| =1 &|P'|=u, & Va €P:3d€P P f(®) < f(x)

Preservative_(u + 1) strategy; where selection operates on the joined set of parents and
offspring, i.e., very fit individuals may survive indefinitely:

SiI#*A [k

S(P) = P' where |P| =u+ 14, &|P'| =u,,and Va’ € P:AGEP — P': f(X) < f(x)

The ratio ¥ / R known as selection pressure. In the choice of u and A, there is no need to
ensure that A is exactly divisible by u. The association of offspring to parents is made by a
random selection of evenly distributed random integers from the range [1,u]. It is only
necessary that 1 exceeds u by a sufficient margin that on average at least one offspring can

be better than its parent. Hoffeister and Béck in [7] have stated that */ 1= % are tuned for a

maximum rate of convergence, and as a result tend to reduce their genetic variability, i.e.,
the number of different alleles (specific parameter setting) in a population, as soon as they
are attracted by some local optimum.

6. Cross- fertilization space of conical GAS and Standard Variant (u*,1)-ES

The coupling approach followed in this section consists in the introduction of generation
interval for hybrid activation operator(HAO). Through selection , crossover, and mutation
operators, the simple GA works on population of bit string encoding scheme generation by
generation. When HAO is active ( implemented for every G? generation ), the intermediate
generation created by sGA is fed into adopted selection strategy which select ub population,
usually of small size. Then each binary string individual in this subpopulation is converted
in to a real number vector , to be the parents of the first generation of ES tool that operate on
this subpopulation for a fixed small number of generations. The vectors are converted back
in to bit string values to be manipulated a gain by the master GA. As ES is used here in this
hybridization as a tool operator in a small number of generation fashion in an order to
enhance the selected point driven from the master GA, then it is appropriate that the version
of the ES too is to be of preservative survivor property to have worthy adjustment i.e., a
(u*,1)-ESis used.

www.intechopen.com



232 Evolutionary Algorithms

t=0; {is the generation number}

Is=tmax {is the HAO age}

Initialize P(0) = {d(0), ...,d,(0)}e/*  Where I ={0,1}
where I € {0,1}};

Evaluate P(0) = {®(d,(0)), ..., (d,(0))}el*

where &(@(0)) = 5 (f(F (@), P©));

while (t(P(t)) # true) do {while termination criterion not fulfilled}
recombine: 3",.(t) = r{p}(P(V)) vke{l,...,u};
mutate: 3"y (t) = m{pp, }(3 (D)) vke{l,...,u};

evaluate P"(t) = {a"« (1), ...E"“(t)}: {@"k(D), .. P@E", (D)}
where (@"(1)) = 8(f(I'(a’ (1)), (P(t — w));

if (Is > 0 and HAW = true)do {if HAO still live and active
Select P, — pop(t) = {Bl (v, ---Bm el

Where | = R**"sp and

Bk(t) = (x5,0; Vi€{l..n}vj€{l,..ng};

{binary _coded GA individual is remapped in to (1 + A) — ES}

{real vector individual}
Fort, ay-gs = 1t0  tmax (uen)-gs {do tmax sexual propagation
Recombine : by (t) = r{rec,, rec,}(P(t)) vk e {1,..,7};

Mutate: b_")k(t(u+0')ES) = My, 1) <E) (tu1+}\1)ES)> vk € {1, vy )\}

EValuate . P" (t(u+}\)ES) = {bnl(t(u1+}\1) - ES) ) ey {b”}\l(t(ul+7\1) - ES)},
{‘D (b"1t(p1+)\1) - ES)>' vy ®(b 1t (u14a1) — ES))}

Where & (F}lt(u1+7\1) - ES) = f(X_n)lt(uH_;\l) - ES),

Select: P(t(4+a1) — ES!) = S(P(ta+an-gs+ U P (tasan-gs+)
End (u1 + A1) — ES generation loop
Evaluate

P'() = (P"(®) = Paubpop® ) U (Prpey isnnross)
={a'1(,..,a, (D} e*
Where [ = {0,1}!

and @ (a"l(t)) =8 (f <F (a"l(t)>> ,P(t— w)) ; re-evaluate fitness
end

Select P(t + 1) = S(P"))el*

Is = Is — 1; when 1s=0 then the loop is turned into pure GA phase
t=t+1

end

Fig. 7. Conceptual algorithm of HGA2 ( hybrid Genetic algorithm with multimember
evolution strategy)
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7.2 Test functions

In order to evaluate the behaviours of hybrid genetic algorithms, a set of test problem have
been carefully selected to illustrate the performance of the algorithms and to indicate that it
has been successful in practice. The nine test functions, which is classifies as multimodal or
unimodel function; these function given with more details in section below.

7.3 Simulations

Multi- functions used as a test functions classified as unimodel and multi model it is
deployed to verify the proposed hybrid genetic algorithms. The firs test function is likely
hood function of ARMA(1,1) model, this function classifies as a unimodel the simulating
experiment described in the following.

7.3.1 F;: Test function / Likelihood function

The likelihood function is one of fundamental importance in estimation theory. This principle
says that the data has to tell us about the parameters contained in the likelihood function, all
other aspects of the data being irrelevant. In moderate and large samples, the likelihood
function will be unimodel and can be adequately approximated over a sufficiently extensive
region near the maximum by a quadratic function. Hence, in these cases the log-likelihood
function can be described by its maximum and its second derivatives at the maximum. The
values of parameters which maximize the likelihood function, or equivalently the log-
likelihood function, are called maximum likelihood (ML) estimates. The second derivatives of
the log —likelihood provide measurers of “spread” of the likelihood function and can be used
to calculate approximate standard errors for the estimates [ ].

Now, to study the likelihood function of ARMA(1,1) let as suppose the N = n + d original
observations Z from a time series which can be denoted by Z_4.4,..,Z¢Z1,Z5,..,Zy

we assume that this series is generated by an ARMA(1,1) model. From these observations,
we can generate a series wofn =N —d differencesw;,w,,..,w, , wherew, = V%¢z,. The
stationary mixed ARMA(1,1) model in eq.7 may be written as [2]:

ar =Wy — p1we_q + 010, (18)

WhereE (w;) = 0. Suppose that {a;} has the normal distribution with zero mean and
constant variance equal to o3,, then the likelihood function can get as follows [2]:

L = 2no?) 7 |MOD |zexp (800 ey (19)

Where MOV = var — cov(py,0,) = 1" (¢4, 0;)

1(¢ 9 )adJ(I((ibp 61)) (20)
o2 o2
1(¢y,0,) = 0% 1;;)% 1_291 (21)
1-¢,6, 1-62
then the log- likelihood function is:
In(L) = -2 (2no,) + 1 In((MOD]) — X (22)
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where:

S(¢1,61) = Xt —wo(atlpq, 01, w)? (23)

is the sum squares errors,n is the sample size, and [a;|¢;, 6,1, W] = E([a;|¢1, 61, Ww])

denotes the expectation of a; conditional on¢,,8; and w. Sum squares errors can be found
by unconditional calculation of the [a]'s are computed recursively by taking conditional
expectations in eq.13. A back-calculation provides the values [W_ j], j=012,.

This back-forecasting needed to start off the forward recursion.

For moderate and large values of n in eq.17 is dominated by S(¢4,0,)/2062 and thus the
contours of the unconditional sum squares function in the space of the parameters (¢, 6,)
are very nearly contours of likelihood and of log likelihood . It follows, in particular, that the
parameter estimates obtained by minimizing the sum of squares in eq.17, called least square
estimates will usually provide very close approximation to the (maximum likelihood
estimator).

7.3.1.1 Drive formula of gradient of likelihood function

These section, we try to drive general form of steepest descent to estimate ARMA(1,1)
model parameters, sDA is an iterative strategy depends on the following rule for numerical
computation:

Bi_1 = Bi—1 — kVe? (24)

Where
Bi—1 Parameter model
k Constant value depend
— — 2 2 2
Ve? is the gradient which approximate by Ve? = Z%,Z%, ) ;Bi]
1 2 m
we can see that the estimation of parameters depend on iterative algorithm which start
with initial value f; (get by one of traditional estimation methods) this algorithm continue

in modified these estimators even we get the value which don’t have change in values

FMSE = Zklff—_‘ft)z (25)

where z;, actual value of observed time series; 2, predicted value of actual value.
We know, ARMA(1,1) model form is
Zt = P1eZe—1 + ap — 01004 (26)

Where a;s are a random variable with standard normal density function known as random
shock term.

then
af = (2t — P1We—q + 01¢a;1)? (27)
da? 2
(ad)lt 2a¢z¢_q, 30 —2aia;_1)
SO
(@1, 01¢) = [P1r + 2kacze_q, 01 — 2kaca;_4] (28)
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The value of k gets as follows

ar = Zt — P1tWe—q + 010444 (29)
a; =z — P1We_q + 010ar4 (30)
|Aa,| = |a; — a,| = 2ka,(z21 + a?_,)

Aag

v0<|=| <1 -50<2k(zi,+a? )<l so

ae

1
0<k<eziay

7.3.2 Results of likelihood function

In order to evaluate the behaviour of A , ES, SDA with HGA, and HGA,, we performed several
experiments to test the capabilities of the methods. The results of experiments given by the
following the conceptual algorithm for simple genetic algorithm and hybrid genetic
algorithms adopted for the likelihood estimator of ARMA(1,1). The experimental results
performed here are based on different sample size (i.e.n = 25,75,125),(¢,,6;) set-to
{(0.8,0.6), (0.4,0.5),(—0.1,0.2), (—0.3,—0.4). The random sample are generated using Box-
Muller formula which presented by using Delphi Pascal coding programming, MATLAP2008.
All results obtained by running each experiment 5 different runs and each iterates with 150
generations for population size 50 and averaging the resulting data for P. = 0.75, B, = 0.1.
Further, the results of (sGA, HGA) compared with those obtained by stepwise descent based on
initial value computed by moment method for the same value of (parameters)(¢,,6,) and
sample size (n) (with 1000 runs). The comparison made based on Mean square error

MSE = var(¢) + bias

SDA sGA HGA; HGA,
n o, | 6, best best best ES best
¢ | 60 | ¢ [ 6 | ¢ | 6 | & | 6 | ¢ | 6

0608 128 | 143 | 0473 | 0.693 | 0.2300 | 0.598 |0.3668 | 0.3631 | 0.01765 | 0.0342
95 04]105] 074 | 1.01 | 0517 | 0.51 | 0.276 | 0.419 |0.1703|0.0752 |0.012116| 0.0312
-0.1]1 02| 049 | 029 | 0.191|0.156 | 0.102 | 0.139 |0.1454 | 0.2404 | 0.09456 | 0.0104
-0.3]1-04| 055 | 095 | 0.393 | 0.436 | 0.182 | 0.421 |0.1351|0.2295| 0.01023 | 0.0353
0608 127 | 1.34 | 0415| 0.568 | 0.182 | 0.484 |0.3556| 0.3520 | 0.01198 | 0.0211
04]105] 071 | 0.88 | 0446 | 0.391 | 0.257 | 0.336 |0.1701|0.0751 | 0.01201 | 0.0024
& -0.1]1 02| 0.21 | 0.15 | 0.157 [ 0.154 | 0.054 | 0.093 |0.1437|0.2374| 0.0012 | 0.0065
-0..3]1-0.4] 0.52 | 0.715] 0.381 | 0.325 | 0.159 | 0.317 |0.1336| 0.2272 | 0.00543 | 0.0012
0608 123 | 1.32 | 0324 | 0.546 | 0.139 | 0.462 |0.1803| 0.0584 | 0.00156 | 0.0011
195 04]105] 066 | 0.87 | 0.186| 0.342 | 0.108 |0.3106| 0.169 | 0.0746| 0.009 |0.0013
-0.1] 0.2 | 0.27 [0.1237] 0.137 | 0.136 | 0.031 | 0.035 | 0.1451|0.2401| 0.0023 | 0.0015
-0..31-0.4] 0432 | 052 | 0.121 ] 0.306 | 0.013 | 0.213 | 0.1337| 0.2274 | 0.00161 | 0.0010

Table 1. Comparisons among ( GA,ES,SDA, HGA 1,HGA2) algorithm based on MSE of best
estimator after averaging 5 runs.
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Results given in Fig. 7.and table(1).The experiments on a set of data give some impressions
of the behaviours of (sGA, HGA) and sDA. As one can see that, MSE of HGA are smaller than
those of steepest descent (sDA). This indicates that HGA is more reliable than HGA and sDA
to give estimator of the parameters of the model under study. Moreover, one can see that
value of MSE decreases as the sample size increase. For (sGA, HGA we can also see that the
value of sum square decreases when increasing the number of generation and sample size.
In addition, the behaviour of (HGA when the objective function parameters(¢,,6,) take
positive values are better than when they are negative. The HGA3 algorithm was also more
robust than the sGA, ES and HGA ;1 performing optimally across a broad range of parameter
values. In addition we can see the second best algorithm converge to best solution is HGA 1.
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Fitness Values
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Fig. 8. Compression Among best fitness values respect to sample size and ARMA model
parameters getting by algorithms under study

7.3.2 Benchmark test functions
The reminder of test functions using the following parameterization of the algorithms
compared are used for experimental test runs

Genetic Algorithm with population size u = 200 mutation rate p,, = 0.1 , crossover rate
p. = 0.75 one-point crossover , binary code, and bit string length [ =24, this algorithm
denoted sGA

Evolution strategy ((30%,200) — ES with self adaption of n; = n standard deviation, no
correlated mutation, local discrete recombination on object variables rec, = 1, global
intermediate recombination on standard deviation rec, = 4 and standard deviation
initialize at 3.0. (30%,200) — ES was used for unimodel functions, while (30,200) — ES
used for multimodal function.

Steepest decent Algorithm(SDA): use maximum of iteration =15; with tolerance =10-3.
And initial size take randomly from x range .

Hybrid Es algorithm with the algorithm GA a master and (30+200) ES as a tool for the
master , for unimodel function, the best fit 30 GA individual are selected to be delivered
to the (30+200)ES tool. while for multimodal functions, an evenly random selected 30
GA individuals are delivered to that ES tool. HAO is active after 3 generations of the
cross-fertilization phase. HGA1

Hybrid steepest descent with genetic algorithm Genetic Algorithm with population
size u = 200 mutation rate p,, = 0.1 , crossover rate p. = 0.75 one-point crossover ,
binary code, and bit string length [ =24, this algorithm denoted sGA, use maximum of
iteration =15; with tolerance =10-3. And initial solution take as the best individual from
genetic algorithm for values equal (pop_size/ 3) from population. All results were
obtained by running 5 experiments per algorithm and averaging the resulting data.

F,: Test function
Ackley Function(multi), this function is named after Ackley who invented it

_ lsn 2 1wn
fR) = —20e 2=t _ B cos @mx) 490 46 (31)
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The original version was a two- dimensional function and it was later generalized to n
dimension by Back. In this study form defined on n=2. The values of X defined on
[-32.0,32.0]. The global minimum is located at the origin and its value is zero. The Ackley
function is a nonlinear multimodal function with regularly distributed local optima

Fig. 9. F; Test function shape.

The results showing the ability of HGAZ2 to give more robust results. Also HGA1 promise to
give robust results cleared in fig.16.
Fs: Test Function

f(x,%2) = [25 — (%, — 5)% — (x, — 5) (32)

-x2 +4x, <0
With constraints 4x, — x2 + 12x, < 58
X1, X

(le xZ) € [0'7]2'

Optimal solution get when x;, x,=5.

The first set of results of this function given in table(2) for describing the SDA algorithm
which is depended on experiment designed for studying the behaviour of algorithm under
study, where results in table (2) explained how the gradient algorithm depend on three
operators the first one is initial values xy generated randomly, tolerance of accuracy take
equal to 10-3; number of iterations (determined at the begging of experiment designed equal
to 50. from results increasing number iterations when increasing variation of parameter (S),
the best results get at (5.5419,5. 7225)where maximum value is(4.9178) where S=1.691,
number of iterations is 6. With xo= (3.5,3).

When applying sGA we get the best solution get at generation 15 with X=( 4.5035, 4.8091 )
and Flx1,x9) = 4.9716. Hybrid of sDA with GA gave the best results at generation 95 with
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x = (4.9904, 4.96268) and Flx1,x9) = 4.99976 the compression among algorithms used refer to

HGA2 And HGA1 to give more robust results with

R A ——

Fig. 10. F3 Test function shape.

Max Min
Ko=(xioxm) | ™ s | x| m e [ s | x| ox [fxum)
for 5 for 5
runs runs
(7,1) 20 |2.6676 | 4.349 | 6.302 |4.7834 6 2.381 | 4.5177 | 5.9647 |4.8823
(5 ,4.5) 20 (26412 | 5 [7.1406|4.5186 2 1.839 5 6.3387 |4.8175
(3.5,3) 38 |2.4953 |5.8697 |6.1596 | 4.7853 6 1.691 | 5.5419 | 5.7225 |4.9178
(2.5,1.2) 24 2.836 |5.8308|6.2628 | 4.766 8 2.729 | 55737 | 5.872 |4.8898
Table 2. Relation among number of iteration and( stepsize —s-) with initial value
Fy Test Function
This function with multiple basins of attraction
foy) =S@ - -2 g RB+yi<i? (33)

with constraints d;, r; generated randomly. The test functions given in eq.29 are multi-modal
functions with multiple basins of attraction. The coordinates (x,;,y, ;) are the coordinates of
the basin of attraction “i”, which has random geometry (radius and depth r;depth d;), The
basins of attraction for functions are randomly distributed. (Goldberg and Voessner, 1999)
has conical basins of attraction represents the best case for local search, in which only one
local search is required to find the local minimum.
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Fig. 11. F4 Test function shape

The simulation results cleared in fig.16.
F5. Single test function
This function is a nonlinear function with single input variable

f(x) = o ~2(n2)( i )2|sin (5mx)| (34)

Where x € [—1,1]. Actually, this simple function has several local maximum. However, there
is only one global maximum, as shown in Fig.11.

0.9r ]

0.8+ 4

0.7 q

0.6 B

0.4} 7

0.3r ]

0.2+ i

0.1r 4

0.8 -06 -04 -02 0 02 04 06 08

Fig. 12. F5 Test function shape
F6: Test function

f(x,y) = cos (x)? + sin (y)? (35)
X defined in[-5,5], this function has infinite global maximum in R? at points
mTt —_ —_
(T’ nT[) ,mn=+1,+2 ..
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f(x1,x2)

Fig. 13. Fs Test function shape

F7: Test Function

This function known as Rosenbrock function was invented by Rosenbrock, mathematically
defined as

fR) = T (100041 — XD)? + (x — 1)) (36)

Where X is an n-dimension vector located within the range[—30.0,30.0]". the global
optimum is located at (1,...,1) with a function value of zero. This function exhibit a
parabolic-shaped deep valley. In the optimization literature it is considered a difficult
problem due to the nonlinear interaction between variables [1].

|

|

|
BN

|

f(x1,x2)

Fig. 14. F; Test function shape

F8: Test function
The Salmon function is rotation — invariant and was proposed by Salmon ,it is defined as

f(X) =1 — cos(2m /Zi“:lxiz) +0.1 /Z{;lxiz (37)

Where X is an n-dimensional vector located within the range [—100,100] the global optimum
located at the origin with a function value of zero.
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Fig. 15. Fg Test function shape

F. Test function
This function also known as Schaffer's function or the sine envelope sine wave.
Mathematically define as

o sin?(yx2+x3)
fx) =05+ (1+0.001(x2+x3))? o

Where X is a two-dimension vector located within the range [[-100.0,100.0]". The global
optimal is located at the origin with a function value equal to zero.

0.506

0.504

0.502

0.5

f(x1,x2)

0.498

0.496

0.494
20

Fig. 16. Fy Test function shape

F10: Esom function

This function was proposed by Easom to evaluate global optimization techniques. It is n-
dimensional function with single minimum that is also the global optimum. The
mathematical expression of this function is

f@) = —TI%, cos (x;) . e~ Zimximm)* (39)
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Fig. 18. Compression among fitness values respect to number of generations for
benchmark test functions

7.3.3 General results getting from designing experiments

According to the results presented above, a general trend will be drawn about the course of
actions of the competent algorithms. Results show that sGA alone with its bit level crossover
and mutation operators can act as a heuristic for exploration with somewhat little emphasis
on search focus.

Sample GA showed to be trapped by local plateaus. One could return this behavior to the
main distinguished operator of the master GA, the one point crossover operator. one can
easily see that the canonical GA is the slowest of the algorithms under study. The behavior
of GA is almost identical on all the unimodel functions.

The collective nature of GA tournament selection, one point crossover, and mutation
operators give a clear demonstration of its missing emphasis on the convergence and local
optimization. On the other hand , the ES with self adaption of n, = n standard deviation is,
on overall, the faster by far and its results are superior to that obtained from (GA,HGA1).
The combination of self-adaption , recombination , and relatively strong selective pressure
as used in ES algorithm. The nature of the preservative survival of the best individual
implied by the plus selection strategy. Also, the self adaption role of the strategy parameters
through intermediate recombination and mutation is shown to be fascinating. Even if all the
parents start with equal 0, =0 =3.0Vi =1, ...,n,, and all the step length components are
varied by a common random factor in the production of the offspring , the og; of all
individuals will differ from each other in the subsequent generations through self adaption.
So in this way a better combination affords a higher chance of survival to its bearer. It can
therefore be expected that in the course of the optimum search, the currently best
combination of the {o;; Vi = 1,.., n,}prevails.

The HGA2 reduces the speed gap between the canonical GA and standard variant ESs
convergence , it does not outperformed ES with both its, variants, except for some cases .
The deviation in convergence velocity of the HGA2 from ES variants can be attributed to the
fact that although in the first cross-fertilization phase of HGA2, the best GA individuals are
enhanced by the coupling EA algorithm, the exploration power of the master GA still
remained an order of magnitude. A closer look is given here to compare the behavior of ES
and HGA2 one hand , and HGA2 with HGA1,GA, SDA. comparing the results of the overall
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hybridization established in HGA1 with the hybridization of HGAZ2, one could see that the
presented results of HGA2 are more powerful than that of HGA 1.

8. Conclusions

This chapter is devoted to global optimization algorithms, which are methods to find
optimal solutions for given problems. It especially focuses on two major groups of
optimization algorithms evolutionary computation by discussing evolutionary algorithms,
genetic algorithms, evolution strategy. Second group represent by hybrid algorithms which
are coupling simple GA with local algorithm steepest descent algorithm(HGA1) and GA
with self adaptive global algorithm evolution strategy (HGAZ2). The results , depending on
the standard functions presented in the test suite, it campers the performance of (sGA,
(u*,0)-ES, SDA, HGA1,HGA2) algorithms. The simulating experiments designed for sets of
benchmark test functions classifies as unimodel and multimodal, Four unimodel functions,
the hybridization was found to be advantageous for speeding up the performance of the
canonical GA so the speed gap difference between the very general purpose optimizer
algorithms as canonical GA and the specialized parametric optimization algorithm as
multimember ES is diminished . Also, the hybridization was found to be beneficial in
multimodal functions where convergence reliability is of interest. By taking the advantages
of both exploration power of the GA and the exploitation power of the multimember ES, the
HGA introduces more reliable solutions than GA or ES when worked individually.

9. References

A .Montes Marco; Rolda'n Oca ( 2006).0On the optimization of Particle Swarm Optimization,
Annee Academique

W. W. S. Wei, 1990, Time Series Analysis: Univariate and Multivariate Methods, Wesley
Publishing com. INC, New York.

G. E. B. Box, and G. M. Jknkins( 1976).Time Series Analyses is: forecasting and control”,
Holden-Day, San Francisco.

S. Makridakis, S. C. Wheelwright (1999). Forecasting Method and Application, John Wiley&
sons, New York.

T. Back, and H,-P, Schwefel, 1993, An overview of evolutionary algorithms for parameter
optimizations”, Evolutionary Computation, Cambridge, Vol. 1, No. 1, pp. 1-23,.

T. Béack, and H,-P, Schwefel ( 1995). Evolution strategies I: variants and their computational
implementation”, Genetic Algorithms in Engineering and Computer Science,
pp. 11-26.

H,-P, Schwefel(1981). Numerical Optimization of Computer Models. New York: John Wiley
& Sons,.

F.Hoffmeister, and T.Back, “Genetic Algorithms and Evolutionary Strategies: Similarities
and Differences”, Parallel Problem Solving from Nature PPSN I,. Vol. 496, pp.455-

B.A.Attea, B.A.Husssain (2006). An evolution strategy for likelihood Estimators of ARMA
(1, 1) Mode The 4th International Multiconference and Information Technology
CSIT2006 Vol.1, Amman-Jordan.

www.intechopen.com



246 Evolutionary Algorithms

B.A.Hussain, R.D.AL.Dabbagh (2007). A Conical Genetic Algorithm for Likelihood
Estimation of first order Moving Average Model parameter. Neural Network
World Vol.4, pp(271-285).

Adrian E. Drake, Robert E. Marks, Genetic algorithm in economic and Finance: forecasting
Stock Market Prices and Foreign Exchange, A Review, Internet

T. Smith Robert, B. Minton Roland (2002). Multivariable Calculus, second edition,
McGraw-Hill.

Thomas Weise ( 2009). Global Optimization Algorithms— Theory and Application — ;Version:
2009-06-26; Newest Version: http:/ / www.it-weise.de/ .

Attea, Bara'a Ali (2001). Interdigitation : Hybrid of Genetic Algorithms and Evolution
Strategies for Parametric Optimization; Doctoral theses, Iraq/ Baghdad.

Hussain . Basad Ali (2002) Comparison Among Forecasting Methods of Markov and Mixed
Model by Using Simulation; Master thesis; Iraq Baghdad.

Rabunal . Juan R, dulian Dorado( 2006).Artificial Neural Network in Real-Life Applications,
Idea Group Publishing,.

X. Wang, X.Z. Gao and S.J Ovaska ( 2008). A Novel Particle Swarm — based Method for
Nonlinear Function Optimization, International journal of Computational
Intelligence Research,Vol.4, No.3, pp.281-289.

Guoli Zhang, Haiyan Lu(2006). Hybrid Real coded Genetic Algorithm with Quasi-Simplex
Technique ,IJCSNS International Journal of computer Science and Network
Security, Vol.6 No.10,0ctober .

www.intechopen.com



Evolutionary Algorithms

EVOLUTIONARY . . .
ALGORITHMS Edited by Prof. Eisuke Kita

Tamed try Tnuke 0ty

ISBN 978-953-307-171-8

Hard cover, 584 pages

Publisher InTech

Published online 26, April, 2011
Published in print edition April, 2011

Evolutionary algorithms are successively applied to wide optimization problems in the engineering, marketing,
operations research, and social science, such as include scheduling, genetics, material selection, structural
design and so on. Apart from mathematical optimization problems, evolutionary algorithms have also been
used as an experimental framework within biological evolution and natural selection in the field of artificial life.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Basad Ali Hussain Al-Sarray and Rawa’a Dawoud Al-Dabbagh (2011). Variants of Hybrid Genetic Algorithms

for Optimizing Likelihood ARMA Model Function and Many of Problems, Evolutionary Algorithms, Prof. Eisuke
Kita (Ed.), ISBN: 978-953-307-171-8, InTech, Available from: http://www.intechopen.com/books/evolutionary-
algorithms/variants-of-hybrid-genetic-algorithms-for-optimizing-likelihood-arma-model-function-and-many-of-
prob

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE BHIERFARK6SS HiBEFR R ARIRE I AE40582TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.




