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1. Introduction

Genetic algorithms (GA) and their general class – evolutionary algorithms (EA) belong to a
set of optimization methods that are nature inspired. In recent applications of computational
intelligence tools very often we deal with situation when imprecise data appear. The data can
be fuzzy. Hence, especially when an optimization of some object function has to be analyzed,
the problem appears which model of fuzzy data should be used. In the literature two
models of fuzzy numbers are mainly used: one is the classical model which follows from the
Zadeh fuzzy set model (Zadeh, 1965), restricted, however, to convex membership functions
defined on reals (Nguyen, 1978), and called convex fuzzy numbers (CFN), or the model with
restricted forms of membership functions, called (L, R)–numbers (Dubois & Prade, 1978).
The concept of convex fuzzy numbers has been introduced by Nguyen in 1978 in order to
improve calculation and implementation properties of fuzzy numbers. However, the results
of multiply operations on the convex fuzzy numbers are leading to the large grow of the
fuzziness, and depend on the order of operations since the distributive law, which involves
the interaction of addition and multiplication, does hold there. If one works with the second
model of fuzzy numbers, (L, R)–numbers, approximations of fuzzy functions and operations
are needed if one wants to follow the extension principle and stay within (L, R)–numbers
(Dubois & Prade, 1978). As long as one works with fuzzy numbers that possess continuous
membership functions the two procedures: the extension principle of Zadeh from 1975 and
the α-cut and interval arithmetic method give the same results (Buckley & Eslami, 2005). They
lead, however, to some drawbacks as well as to unexpected and uncontrollable results of
repeatedly applied operations (Wagenknecht et.al., 2001). From this several drawbacks of
convex fuzzy numbers and operations on them follow. One of them is non-existence of the
solution of the most general and simple algebraic equation A + X = C, when A and C are quite
arbitrary fuzzy numbers. In order to omit those drawbacks in 2002 the present author (W.K.)
with two co-workers developed a generalization of the classical concept of fuzzy numbers
and defined so-called ordered fuzzy numbers (OFN), in which membership function is not a
primitive concept, but a pair of real-valued functions defined on the unit interval [0, 1] ( cf.
(Kosiński et.al., 2002a; Kosiński et. al., 2003a;b)). Then all operations are natural defined
on those pairs, as a space of functions. The arithmetics of ordered fuzzy numbers becomes
an efficient tool in dealing with unprecise, fuzzy quantitative terms. Moreover, each convex
fuzzy number is included in this class, moreover it defines two different OFN: they differ
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by their orientations. The space of OFN is partially ordered, since a cone of positive fuzzy
numbers may be defined.
When data set of an optimization problem are not accurate, imprecise or just fuzzy, EA
methods may be difficult to apply. This is due to the fact that in the classical, Zadeh’s theory
(Zadeh, 1965; 1975) of fuzzy sets, the main object, namely fuzzy numbers, are not ordered.
Moreover, algebraic operations defined on classical fuzzy numbers (i.e. convex of Nguyen or
(L, R)-type of Dubois and Prade) which use either Zadeh’s extension principle or the interval
analysis on α-sections, do not have distributive property, which make the big problem when
repeated operations are performed (Wagenknecht et.al., 2001; Wagenknecht, 2001).
Order fuzzy numbers (OFN) invented by the present author and his two co-workers in
2002-2003 in order to omit these and other drawbacks, make possible to deal with fuzzy inputs
quantitatively, exactly in the same way as with real numbers. The space of OFN can give us
a natural setup to deal with optimization problems when data are fuzzy. Moreover, new
defuzzification functionals which attach to each fuzzy number a real, crisp, number, may be
used to supply the search space with additional fitness measure and order relations. The case
when fuzzy numbers are presented as pairs of step functions, with finite resolution, simplifies
all operations as well as the representation of defuzzification functionals. This helps us to
formulate a general optimization problem with fuzzy data.
In the paper we present model of OFN and show its application in formulation of optimization
problem when date for the object function are fuzzy. Those fuzzy data are regarded as
OFN. Then values of object function are fuzzy, as well. However, the space of OFN may be
equipped with the lattice structure, and hence the question of maximization of fuzzy-valued
fitness function may be solved. Some application will be given in the case, when we
confine our interest to step functions, appearing in the representation of OFN. Then each
fuzzy number can be identified with a point in 2K dimensional vector space, when K is
the resolution parameter, which is responsible for the maximal number of steps each fuzzy
number possesses. Then genetic algorithm can be formulated. The important role in dealing
with fuzzy evolutionary(genetic) algorithms play defuzzification functionals, which map each
OFN into reals. They should be homogeneous of order one and restrictive additive
The second problem considered in this chapter is related to the application of evolutionary
algorithms in finding forms of linear and nonlinear defuzzification functionals, knowing their
action on a subset of the space OFN. This forms a kind of approximation problem in which
data are given as fuzzy numbers.

2. Fuzzy numbers

Fuzzy numbers (Zadeh, 1965) are very special fuzzy sets defined on the universe of all real
numbers R. In applications the so-called (L, R)–numbers proposed by Dubois and Prade
(Dubois & Prade, 1978) as a restricted class of membership functions, are often in use. In
most cases one assumes that membership function of a fuzzy number A satisfies convexity
assumptions (Nguyen, 1978). However, even in the case of convex fuzzy numbers (CFN)
multiply operations are leading to the large grow of the fuzziness, and depend on the order
of operations.

This as well as other drawbacks have forced us to think about some generalization 1.
Our main observation made in (Kosiński et.al., 2002a) was: a kind of quasi-invertibility
(or quasi-convexity (Martos, 1975)) of membership functions is crucial. Invertibility of
membership functions of convex fuzzy number A makes it possible to define two functions

1 A number of attempts to introduce non-standard operations on fuzzy numbers has been made
(Drewniak, 2001; Klir, 1997; Sanschez, 1984; Wagenknecht, 2001)
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a1, a2 on [0, 1] that give lower and upper bounds of each α-cut of the membership function μA
of the number A

A[α] = {x : μA(x) ≥ α} = [a1(α), a2(α)] with a1(α) = μA|−1
incr(α) and a2(α) = μA|−1

decr(α) ,

where |incr and |decr denote the restrictions of the function μA to its sub-domains on which
is increasing or decreasing, respectively. Both functions a1(α), a2(α) were used for the first
time by the authors of (Goetschel & Voxman, 1986) in their parametric representation of fuzzy
numbers, they also introduced a linear structure to convex fuzzy numbers.

2.1 Ordered fuzzy numbers

In the series of papers (Kosiński et.al., 2002a; Kosiński et. al., 2003a;b) we have introduced
and then developed main concepts of the space of ordered fuzzy numbers (OFNs). In our
approach the concept of membership functions has been weakened by requiring a mere
membership relation .
Definition 1. A pair ( f , g) of continuous functions such that f , g : [0, 1]→R is called an ordered

fuzzy number A.
Notice that f and g need not be inverse functions of some membership function. If, however,
f is increasing and g – decreasing, both on the unit interval I, and f ≤ g, then one can
attach to this pair a continuous function μ and regard it as a membership function a convex
fuzzy number with an extra feature, namely the orientation of the number. This attachment

can be done by the formula f−1 = μ|incr and g−1 = μ|decr. Notice that pairs ( f , g) and
(g, f ) represents two different ordered fuzzy numbers, unless f = g . They differ by their
orientations.
Definition 2. Let A = ( fA, gA), B = ( fB, gB) and C = ( fC, gC) are mathematical objects called
ordered fuzzy numbers. The sum C = A + B, subtraction C = A − B, product C = A · B, and
division C = A ÷ B are defined by formula

fC(y) = fA(y) ⋆ fB(y) , gC(y) = gA(y) ⋆ gB(y) (1)

where "⋆" works for "+", "−", "·", and "÷", respectively, and where A÷ B is defined, if the functions
| fB| and |gB| are bigger than zero.
Scalar multiplication by real r ∈ R is defined as r · A = (r fA, rgA) . The subtraction of B is
the same as the addition of the opposite of B, and consequently B − B = 0, where 0 ∈ R is the
crisp zero. It means that subtraction is not compatible with the the extension principle, if we
confine OFNs to CFN. However, the addition operation is compatible, if its components have
the same orientations. Notice, however, that addition, as well as subtraction, of two OFNs
that are represented by affine functions and possess classical membership functions may lead
to result which may not possess its membership functions (in general f (1) needs not be less
than g(1)).
A relation of partial ordering in the space R of all OFN, can be introduced by defining the
subset of positive ordered fuzzy numbers: a number A = ( f , g) is not less than zero, and write

A ≥ 0 if f ≥ 0, g ≥ 0 , and A ≥ B if A − B ≥ 0 . (2)

In this way the space R becomes a partially ordered ring . Neutral element of addition in R is a
pair of constant function equal to crisp zero.
Operations introduced in the space R of all ordered fuzzy numbers (OFN) make it an
algebra, which can be equipped with a sup norm ||A|| = max(sup

s∈I
| fA(s)|, sup

s∈I
|gA(s)|) if

A = ( fA, gA) . In R any algebraic equation A + X = C for X, with arbitrarily given
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fuzzy numbers A and C, can be solved. Moreover, R becomes a Banach space, isomorphic
to a Cartesian product of C(0, 1) - the space of continuous functions on [0, 1]. It is also a
Banach algebra with unity: the multiplication has a neutral element - the pair of two constant
functions equal to one, i.e. the crisp one.
Some interpretations of the concepts of OFN have been given in (Kosiński et.al., 2009a).
Fuzzy implications within OFN are presented in (Kosiński et. al., 2009b).

Step functions

It is worthwhile to point out that a class of ordered fuzzy numbers (OFNs) represents the
whole class of convex fuzzy numbers with continuous membership functions. To include all
CFN some generalization of functions f and g in Def.1 is needed. This has been already done
by the first author who in (Kosiński, 2006) assumed they are functions of bounded variation.
Then operations are defined in the similar way, the norm, however, will change into the norm
of the cartesian product of the space of functions of bounded variations (BV). Then all convex
fuzzy numbers are contained in this new space RBV of OFN. Notice that functions from BV
(Łojasiewicz, 1973) are continuous except for a countable numbers of points.
Important consequence of this generalization is a possibility of introducing a subspace of OFN
composed of pairs of step functions. If we fix a natural number K and split [0, 1) into K − 1

subintervals [ai, ai+1), i.e.
K−1⋃

i=1
[ai, ai+1) = [0, 1), where 0 = a1 < a2 < ... < aK = 1, and

define a step function f of resolution K by putting ui on each subinterval [ai, ai+1), then each

such function f is identified with a K-dimensional vector f ∼ u = (u1, u2...uK) ∈ R
K , the K-th

value uK corresponds to s = 1, i.e. f (1) = uK . Taking a pair of such functions we have an
ordered fuzzy number from RBV . Now we introduce
Definition 3. By a step ordered fuzzy number A of resolution K we mean an ordered pair
( f , g) of functions such that f , g : [0, 1]→R are K-step function.

We use RK for denotation the set of elements satisfying Def. 3. The set RK ⊂ RBV has been
extensively elaborated by our students in (Gruszczyńska & Krejewska, 2008) and (Kościeński,

2010). We can identify RK with the Cartesian product of R
K ×R

K since each K-step function is
represented by its K values. It is obvious that each element of the space RK may be regarded as
an approximation of elements from RBV , by increasing the number K of steps we are getting

the better approximation. The norm of RK is assumed to be the Euclidean one of R
2K , then

we have a inner-product structure for our disposal.

2.2 Defuzzification functionals

In the course of defuzzification operation in CFN to a membership function a real, crisp
number is attached. We know a number of defuzzification procedures from the literature (Van
Leekwijck & Kerre, 1999). Continuous, linear functionals on R give a class of defuzzification
functionals . Each of them, say φ, has the representation by the sum of two Stieltjes integrals
with respect to two functions h1, h2 of bounded variation,

φ( f , g) =
∫ 1

0
f (s)dh1(s) +

∫ 1

0
g(s)dh2(s) . (3)

Notice that if for h1(s) and h2(s) we put λH(s) and (1 − λ)H(s), respectively, with 0 ≤ λ ≤ 1
and H(s) as the Heaviside function with the unit jump at s = 1, then the defuzzification
functional in (3) will lead to the classical MOM – middle of maximum, FOM (first of
maximum), LOM (last of maximum) and RCOM (random choice of maximum), with an
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appropriate choice of λ. For example if for h1(s) and h2(s) we put 1/2H(s) then the
defuzzification functional in (3) will represent the classical MOM – middle of maximum

φ( f , g) = 1/2( f (1) + g(1)) . (4)

New model gives a continuum number of defuzzification operators both linear and nonlinear,
which map ordered fuzzy numbers into reals. Nonlinear center of gravity defuzzification functional
(COG) calculated at OFN ( f , g) is

φ̄G( f , g) =

1∫

0

f (s) + g(s)
2

[ f (s) − g(s)]ds{
1∫

0

[ f (s) − g(s)]ds}−1 . (5)

If A = c‡ then we put φ̄G(c‡) = c . When
1∫

0

[ f (s) − g(s)]ds = 0 in (5) a correction needs to

be introduced. Here by writing φ̄(c‡) we understand the action of the functional φ̄ on the

crisp number c‡ from R, which is represented by a pair of constant functions (c†, c†), with

c†(s) = c , s ∈ [0, 1]. New model gives a continuum number of defuzzification operators both
linear and nonlinear, which map ordered fuzzy numbers into reals. Nonlinear functional can
be defined, see (Kosiński & Wilczyńska-Sztyma, 2010).
In our understanding a most general class of continuous defuzzification functionals φ should
satisfy three conditions:

1. φ(c‡) = c ,

2. φ(A + c‡) = φ(A) + c ,

3. φ(cA) = cφ(A) , for any c ∈ R and A ∈ R .

Here by writing φ(c‡) we understand the action of the functional φ on the crisp number

c‡ from R, which is represented, in the case of an element from RK , by a pair of constant

functions (c†, c†), with c†(i) = c , i = 1, 2, ..., K. The condition 2. is a restricted additivity, since
the second component is crisp number. The condition 3. requires from φ to be homogeneous

of order one, while the condition 1. requires
∫ 1

0 dh1(s) +
∫ 1

0 dh2(s) = 1, in the representation
(3).
On the space RK a representation formula for a general non-linear defuzzification functional

H : R
K × R

K → R satisfying the conditions 1.– 3., can be given as a linear composition
(Rudnicki, 2010) of arbitrary homogeneous of order one, continuous function G of 2K − 1
variables, with the 1D identity function, i.e.

H(u, v) = u1 + G(u2 − u1, u3 − u1, ..., uK − u1, v1 − u1, v2 − u1, ..., vK − u1) , (6)

with
u = (u1, ..., uK) , v = (v1, ..., vK) .

Remark. It can be shown from this representation that a composition of arbitrary
homogeneous of order one, continuous function F of k–variables, which is additionally
restrictive additive, with a set of k defuzzification functionals ϕ1, ϕ2, ..., ϕk, leads to a new
defuzzification functionals, i.e. F ◦ (ϕ1, ϕ2, ..., ϕk) on R (or on RK) is a new nonlinear (in
general) defuzzification functional. Moreover, the function F may be written in the form of
(6), in the case of RK . When the space R appears, we have to substitute its arguments with
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ϕ1, ϕ2, ..., ϕk; in general case it will be:

F(ϕ1, ϕ2, ..., ϕk) = ϕj + G(ϕ1 − ϕj, ϕ2 − ϕj, ..., ϕk − ϕj) , with some 1 ≤ j ≤ k , (7)

where the function G is homogeneous of order one and depends on k − 1 variables, since
between its arguments the difference ϕj − ϕj does not appear. In fact G is given by F in which
its j-th argument was put equal to zero.

Due to the fact that RK is isomorphic to R
K × R

K we conclude, from the Riesz theorem and
the condition 1. that a general linear defuzzification functional on RK has the representation

H(u, v) = u · b + v · d , with arbitrary b , d ∈ R
K , such that 1 · b + 1 · d = 1 , (8)

where · denotes the inner (scalar) product in R
K and 1 = (1, 1, ..., 1) ∈ R

K is the unit vector

in R
K , while the pair (1, 1) represents a crisp one in RK . It means that such functional is

represented by the vector (b, d) ∈ R
2K . Notice that functionals of the type φj = ej, j =

1, 2, ..., 2K, where ej ∈ R
2K has all zero component except for 1 on the j-th position, form a

basis of RK
∗ - the space adjoint to RK , they are called fundamental functionals .

Notice that each real-valued function ψ(z) of a real variable z ∈ R may be transformed to a
fuzzy-valued function on RBV , and even simpler on RK . Since each OFN from RK is a pair

of two vectors, each from R
K , say (u, v), the fuzzy counterpart of the function ψ at (u, v) will

be a pair of vectors (ψ(u1), ..., ψ(uK), ψ(v1), ..., ψ(vK)), which 2 are in RK . Further on for these
compositions we will use the denotation ψ ◦ u and ψ ◦ v, or ψ ◦ (u, v).

3. Optimization with fuzzy data

Let us assume that we face with an optimization problem on a set D, a subset of the space

R
2K and a fuzzy-valued fitness function Ψ : D ⊂ R

2K → R
2K has been constructed from a

real-valued one. The question is how to define an evolutionary algorithm for such problem?
Notice, that in case of fuzzy numbers A = (ua, va) and B = (ub, vb) from RK the relation
(2) means componentwise inequality uai − ubi ≥ 0 and vai − vbi ≥ 0 for i = 1, 2, ..., K. This
set of inequalities may be written in terms of inequalities between values of defuzzification
functionals forming the basis of RK

∗, namely φj(A) − φj(B) ≥ 0 for j = 1, 2, ..., 2K.

Notice, that for each two fuzzy numbers A, B as above, we may define inf(A, B) and sup(A, B),
both from RK , by the formula inf(A, B) = C =: (uc, vc), where each uci := min{uai, ubi}
and vci := min{vai, vbi} with i = 1, ..., K. Similarly we define sup(A, B) = D =: (ud, vd) .
It is evident that our definitions are in agreement with the relation (2), since inf(A, B) ≤
A , inf(A, B) ≤ B, and similarly sup(A, B) ≥ A , sup(A, B) ≥ B; moreover A = inf(A, B)
in the case when A ≤ B. Similar relation follows with sup(A, B). These definitions allow us
to define a lattice structure on the space of RK . It will be the subject of the next paper.
We know that due to the order relation (2) for two ordered fuzzy numbers A, B ∈ RK we may
have: either A ≥ B or A ≤ B, or we cannot say anything. Hence we should have for our
disposal another, additional set of measures, which will give us a chance to compare any two
different fuzzy values of the fitness function Ψ. We do this by introducing the next definition.
Definition 4. Let a set of defuzzification functionals (linear or nonlinear) Φ1, ..., ΦL be given

together with a fuzzy-valued fitness function Ψ : D ⊂ R
2K → R

2K . Let A, B be from RK . We
say that Ψ(A) ≻ Ψ(B) if Φk(Ψ(A)) ≥ Φk(Ψ(B)), for k = 1, ..., L.
Notice, that if L = 2K and each Ψ is equal to φk ∈ RK

∗ the relation ≻ corresponds to ≥ from
(2). We are rather interested in different ordering.

2 Here we have used the representation for u = (u1, ..., uK) and for v = (v1, ..., vK).

206 Evolutionary Algorithms

www.intechopen.com



However, if we use the convex combination of fundamental functionals given by the
defuzzification functional H from (8) and superpose it with the fitness function Ψ, then a

new real-valued fitness function Ψ̂(·) := H(Ψ(·)) : D → R may be defined, and use in further
evolutionary computation.
Finally we propose some genetic operators acting on arguments of the fitness function Φ. Let
two individuals A = (ua, va) and B = (ub, vb) be given. We may define a one (or many-point)
cross-over operator as an exchange at some position (positions) a part of components of two

vectors from R
2K . Another operator could be a two-point mutation when after selection of

two positions 1 ≤ j1, j2 ≤ K the corresponding components of vectors ua and va have to
be exchanged. It may be added that using different denotation for individuals, say A, as a
K-dimensional vector of pairs ((ua1, va1), ..., (uaK , vaK)) , next genetic operations can be easily
defined. It will be the subject of the next paper, when a numerical implementation will be
performed.

4. Approximation of defuzzification functionals

Ultimate goal of fuzzy logic is to provide foundations for approximate reasoning. It
uses imprecise propositions based on a fuzzy set theory developed by L.Zadeh, in a way
similar to the classical reasoning using precise propositions based on the classical set theory.
Defuzzification is the main operation which appears in fuzzy controllers and fuzzy inference
systems where fuzzy rules are present. In the course of this operation to a membership
function representing a classical fuzzy set a real number is attached. We know a number
of defuzzification procedures from the literature, such as: FOM (first of maximum), LOM
(last of maximum), MOM (middle of maximum), RCOM (random choice of maximum),
COG (center of gravity), and others which were extensively discussed by the authors of
(Van Leekwijck & Kerre, 1999). They have classified the most widely used defuzzification
techniques into different groups, and examined the prototypes of each group with respect to
the defuzzification criteria.
The problem arises when membership functions are not continuous or do not exist at all.
The present chapter is devoted to a particular subsets of fuzzy sets, namely step ordered fuzzy
numbers on which an approximation formula of a set of defuzzification functionals will be
searched based on some number of training data.

4.1 Problem formulation

Let us think how recent representation can help us in the following approximation problem.
Problem. Let a finite set of training data be given in the form of N pairs: ordered
fuzzy number and value (of action) of a defuzzification functional on it, i.e. TRE =
{(A1, r1), (A2, r2), ..., (AN , rN)} . For a given small ǫ find a continuous functional H : RK →
R which approximates the values of the set TRE within the error smaller than ǫ, i.e.
max

1≤p≤N
|H(Ap) − rp| ≤ ǫ , where (Ap, rp) ∈ TRE .

Problem may possess several solution methods, e.g. a dedicated evolutionary algorithm
((Kosiński, 2007; Kosiński & Markowska-Kaczmar, 2007)) or an artificial neural network.
We have use the representation (6) of the searched defuzzification functional in which a
homogeneous, of order one, function Ψ appears. It means that values of this function are
determined from its arguments situated on the unit sphere S2K−1 in 2K − 1 D space.
If a genetic algorithm is in use then the form of genotypes could be rather standard: it is a
vector of 2K components. Dedicated genetic operators could be constructed: crossover and
two-point mutation. Possible fitness function can be based on the inverse of an error function.
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Numerical examples will be given in the next subsection. First a genetic, evolutionary, method
will be presented; then artificial neural network will be in use.

4.2 Dataset

Training and test sets used in the further section (from now denoted as TRE and TES,
respectively) have the following form. A set of N elements is composed of N pairs of OFN
and a value of a defuzzification functional on it, i.e.: {(A1, r1), (A2, r2), ..., (AN , rN)}.
In order to create these sets we use the approach utilizing points on a unit sphere ϕ2K−1 in
2K − 1 D space. First, we select points on a sphere ϕ2K−1. Part of these points is completely
random and part of them has to fulfil a certain condition. Given a point on a sphere ϕ2K−1
in a form (u2, u3, ..., uK , v1, v2, ..., vK) we select points where ui < ui+1, for i = 2, 3, ..., K and
vj > vj+1 for j = 1, 2, ..., K. This allows us to create fuzzy numbers with trapezoidal shape.
Next step involves adding a component u1. Value of this component can be either 0 or selected
from range [−4; 4]. Value of component u1 is added to each other component from a point on
sphere ϕ2K−1.
Following sets were created using this method: 2 TRE sets, consisting of 40 OFNs that
meet restriction mentioned earlier and 20 completely random OFNs. TRE1=TRE0 set used
u1 component of value 0 while TRE2=TRE4 set has a u1 component from range [−4; 4].
Respective values of a defuzzification functional of each OFN were calculated. TES1 and
TES2 sets were created using the same approach, each of them having 30 elements.

4.3 Genetic algorithm for linear defuzzification functional approximation

Chromosome represents the vector in the defuzzification functional H. Then we use the
following procedure for approximation :

• chromosome is encoded using 2K real values represented as fractions and has the
following form: (c1, c2, ..., ck, d1, d2, ..., dk)

• ci, dj ∈ [0, 1]

•
K
∑

i=1
(ci + di) = 1

Given fuzzy number A and some chromosome we can calculate the defuzzified value:

H(A) =
K

∑
i=1

(ciui + divi) . (9)

Error and fitness

Having a set of P instances on which we validate a chromosome, we calculate the error with
the following formula:

Error =
1

P

i=P

∑
i=1

(H(Ai) − ri)2 .

For the fitness we have chosen the simple representation:

Fitness = 1/Error .

Genetic operations

Two genetic operations have been used:
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• mutation - a randomly chosen small value was added to the gene

• two-point crossover .

Repair operation was needed to ensure that the new values fulfill the aforementioned
constrains. In case when the values failed to meet the conditions they were increased or
decreased proportionally.

Results for genetic algorithm

Average from results from 10 runs was:

Set Fitness Error

TES0 426567.7056282262 2.344293735333886E-6

TES4 1.1362690028303238E7 8.800732903116319E-8

Table 1. Average results from 10 runs

Averaged and rounded chromosomes from 10 runs:

• for TRE0:
0, 0, 0, 0, 0, 0, 0, 0.04, 0.07, 0.37,0, 0, 0, 0, 0, 0, 0.01, 0.03, 0.13, 0.341

• for TRE4:
0, 0, 0, 0, 0, 0, 0, 0.01, 0.16, 0.37,0, 0, 0, 0, 0, 0, 0.01, 0.03, 0.15, 0.30

(a) Subfigure 1 (b) Subfigure 2

Fig. 1. Results for genetic algorithm: a) on TRE0, b) on TRE4

Best error equals 0 as the algorithm managed to find the exact operator.

4.4 Results obtained using genetic programming

In order to approximate a value of a nonlinear defuzzification functional, an algorithm using
genetic programming was used. Algorithm tried to build a tree, that, when evaluated, would
minimize the error value of the approximation. Possible nodes consisted of a parameter node
(in this case a value of ui or vi from processed OFN), integer constant node or a function
node. The following set of functions was available to the algorithm: addition, subtraction,
multiplication, division, power.
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Genetic operators consisted of mutation and crossover. Mutation replaced a selected subtree of
the function tree with a new tree. Crossover operation swapped a subtree between parents.
Initial population was created randomly using the described building blocks, with the tree
depth limit of 12. In each iteration algorithm evaluated current population of function trees,
maintained 5% of best solutions and created new population using one of the two methods.
First method consisted of a roulette selection of trees that were later subject to mutation and
crossover operations. Second method created completely new trees and added them to the
pool. 90% of population members were selected using roulette, while 10% were new trees
during each iteration.
Tables 2 and 3 contain approximation numerical results obtained using this genetic approach.

Dataset Best Average Worst

TRE1 0.010774742 0.0112900473 0.0109660603
TRE2 0.0084995761 0.0154348379 0.0124602126

Table 2. Genetic programming results, root mean square error, RMSE

Dataset Best Average Worst

TRE1 0.1552756869 0.213444347 0.1759717912
TRE2 0.1519504725 0.2586461938 0.1960008602

Table 3. Genetic programming results, approximation error

(a) Subfigure 1 (b) Subfigure 2

Fig. 2. Errors for both sets (figure a) and RSME error (figure b)

In Fig.3 a final tree is presented. Examples of evolved functions for TRE2 data set are:

Hu, v) = (v10 − ((v10 − u9)/
3
√

9) , H(u, v) = v10

√
u9/v10 .

4.5 Neural network simulations

Previous sections presented genetic algorithm method for the defuzzification approximation.
This problem can be solved by neural network approximation. We present in this section
our neural network approach, used for this purpose, and the results obtained of our neural
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Fig. 3. Example of function tree generated in genetic programming.

network defuzzification.

Data generation

The procedure to generate TRE and TES sets was the following.

1. Generate 60 random points on a 2K − 1 dimensional hyper-sphere, where K = 10. Let ϕ =
(u2, u3, ..., uK−1, v1, v2, ..., vK) be one of these points. All points fulfill the conditions un <

un+1 and vm > vm+1. This ensures that the generated fuzzy numbers have a trapezoidal
shape. In the further parts this assumption has been omitted.

2. Generate two sets of fuzzy numbers using the following methods of generating a value of
u
• u = 0

• u is a random value from (−4, 4)

3. For each fuzzy number find the defuzzified value and split the sets in ratio 2:1 to form:

• TRE0 and TES0 from fuzzy numbers with u1 = 0

• TRE4 and TES4 from fuzzy numbers with u1 ∈ (−4, 4)

4.6 Implementation of a neural network

In order to make approximation of linear and the nonlinear defuzzification functionals on step
ordered fuzzy numbers (SOFN) a package of artificial neural networks (ANN) has been used.
The following structure of three layered MLP neural network has been assumed:

• Since each SOFN is represented by a vector of 2K number, each input to artificial neural
networks has 2K real-valued components.

• one hidden layer composed of 5 neurons that build a weighted sum.

• one 1D output layer.

All of the NN Simulation was done with the help of GNU Octave 3.0.1. The structure of the
network is given below on Fig.12.
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4.7 Linear Defuzzification

4.7.1 ANN training

The general strategy was to train the network with data sets having 2K inputs and an
output representing the discrete values of fuzzy output values and the crisp output calculated
according to selected standard defuzzification algorithms. For the linear defuzzification we
have used: MOM (middle of maximum), LOM (last of maximum), FOM (first of maximum),
and COA (center of area).
Table 4 presents the final training MSE (for RSME[%]) for all the used methods. Table 5
presents the final training gradient for all the used methods.

Training Set MOM LOM FOM COA
TRE0 1.196156E-11 1.17966E-11 3.2052E-11 3.167E-8
TRE4 8.22773E-10 1.51997E-9 3.1339E-9 1.03805E-6

Table 4. Final training RMSE

Training Set MOM LOM FOM COA
TRE0 3.57907E-6 1.14851E-6 1.09344E-6 2.842E-5
TRE4 0.001232 0.0001864 0.00311 0.03940

Table 5. Final training gradient

4.7.2 ANN validation

The validation of our neural network is done by testing the network with TES0 and TES4 data
sets generated with all of the following defuzzification methods : MOM(middle of maximum),
LOM (last of maximum), FOM (first of maximum) and COA (center of area).
The validation of data TES0 and TES4 defuzzified with MOM strategy converges successfully.
The results are presented at the figures: for TRE0 MSE [%] (Figure 4), gradient (Figure 5),
for TRE4 RMSE (Figure 6), gradient (Figure 7). Similar results have been obtained for other
defuzzification methods.
Simulation results, conclusions

Performed simulation proved that ANN can successfully represent the defuzzification
strategies. Linear approximations of defuzzification functionals with MOM, LOM, FOM, and
COA were correct. The trained ANN approximations for all the methods were successfully
tested with TES0 and TES4 data sets. Table 6 presents the final validation RMSE for all the
used methods.

Testing Set MOM LOM FOM COA
TES0 1.781138E-5 3.020065E-5 0.0001056 0.00668950
TES4 4.300E-9 2.02054E-6 0.0006829 0.007569

Table 6. Final linear validating RMSE[%]

4.8 Nonlinear defuzzification functional

Similar method has been used for nonlinear defuzzification functional, namely for the center
of gravity (COG). The validation of data TES0 and TES4 defuzzified with COG strategy
converges successfully.
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Fig. 12. Neural network structure

4.8.1 Function representation of neural network

In this subsection we present the complex function composition realized by the neural
network. Its detailed structure is on Fig.12.
Transfer functions

The first layer transfer function is given by the formula :

f (x) =
2

1 + e−2x − 1

The hidden layer transfer function is given by g(x) = x , and the output is given by

Y = g(X) = X =
5

∑
j=1

Φjλj + B

where Φj = f (ϕj) = f (∑
20
i=1 ui ∗ ωi,j +bj) . Hence we have

Y =
5

∑
j=1

f (
20

∑
i=1

uiωi,j +bj))λj + B .

The weights and other parameters are listed below in tables.

5. Conclusion

The present paper brings an outline of a model of an evolutionary algorithm defined on
a space of fuzzy date represented by ordered fuzzy numbers. Moreover, it shows how
evolutionary algorithms and genetic programming can be used to find an approximation
formula of defuzzification functionals defined on the space of step ordered fuzzy numbers.
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Input ωi1 ωi2 ωi3 ωi4 ωi5
U1 -1.500000 1.500000 -0.500000 0.500000 0.100000
U2 -1.764203 1.721917 -1.163269 0.325977 -0.766464
U3 -0.909134 0.969637 -1.070874 0.164166 -0.183957
U4 -1.888874 1.870025 -1.096356 0.652329 -0.950350
U5 -1.551447 1.618123 -0.028711 -0.164044 -1.205991
U6 -1.339349 1.297634 0.030845 0.789391 -1.386863
U7 -0.924551 0.758894 -0.292342 0.406089 0.273688
U8 -1.444772 1.426924 0.270408 0.433603 -0.521424
U9 -2.290977 2.078550 0.003299 0.771404 1.510400
U10 -2.035505 1.984894 0.007624 .370735 -0.662857
U11 -1.543991 1.181070 0.511984 0.784363 0.820112
U12 -1.893619 1.545661 0.350312 0.843925 1.318368
U13 -1.690412 1.296557 -0.424741 1.410183 1.098513
U14 -1.583763 1.208434 0.315078 0.782784 1.159102
U15 -1.477475 1.123565 -0.048310 0.786998 0.350696
U16 -1.629397 1.389360 -0.185788 0.619010 0.175965
U17 -1.758531 1.715217 0.851437 0.196586 -0.565551
U18 -1.477277 1.287993 -0.478476 0.377743 1.132364
U19 -0.877315 0.820842 -0.353786 -0.066219 0.204631
U20 -2.090962 1.904204 -0.355554 0.233310 0.775427

Table 7. NN structure after learning

Training Set b1 b2 b3 b4 b5

Nonlinear TRE0 0.562239483 0.425288679 1.616618821 1.759599096 1.0704185326

Table 8. First layer bias

Training Set λ1 λ2 λ3 λ4 λ5

Nonlinear TRE0 0.0814377120 0.001417061 -28.63429759 -0.0005601 14.19819490

Table 9. Hidden layer weight

Moreover, the results of approximation have been compared with that obtained with a help of
different tool of the computational intelligence, namely of artificial neural networks. We can,
therefore, conclude that both tools are helpful. It is rather evident that further research in this
field should follow.
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Kosiński W., Prokopowicz P., (2004). Algebra of fuzzy numbers (in Polish), Matematyka
Stosowana. Matematyka dla Społeczeństwa, 5/46, 37–63.
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Wierzchoń, M. Michalewicz (eds.), Proc. IIS’2002, Sopot, June 3-6, 2002, Poland,
Physica Verlag, pp. 311-320.
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Kosiński, W. (2007), Evolutionary algorithm determining defuzzyfication operators,
Engineering Applications of Artificial Intelligence,ă20 (5),ă 2007, 619–627,
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