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1. Introduction 

Particle Swarm Optimization (PSO) was introduced in 1995 by Russell Eberhart and James 
Kennedy (Eberhart & Kennedy, 1995). PSO is a biologically-inspired technique based 
around the study of collective behaviour in decentralized and self-organized animal society 
systems. The systems are typically made up from a population of candidates (particles) 
interacting with one another within their environment (swarm) to solve a given problem. 
Because of its efficiency and simplicity, PSO has been successfully applied as an optimizer in 
many applications such as function optimization, artificial neural network training, fuzzy 
system control.  However, despite recent research and development, there is an opportunity 
to find the most effective methods for parameter optimization and feature selection tasks. 
This chapter deals with the problem of feature (variable) and parameter optimization for 
neural network models, utilising a proposed Quantum–inspired PSO (QiPSO) method. In this 
method the features of the model are represented probabilistically as a quantum bit (qubit) 
vector and the model parameter values as real numbers. The principles of quantum 
superposition and quantum probability are used to accelerate the search for an optimal set of 
features, that combined through co-evolution with a set of optimised parameter values, will 
result in a more accurate computational neural network model. The method has been applied 
to the problem of feature and parameter optimization in Evolving Spiking Neural Network 
(ESNN) for classification. A swarm of particles is used to find the most accurate classification 
model for a given classification task. The QiPSO will be integrated within ESNN where 
features and parameters are simultaneously and more efficiently optimized. A hybrid particle 
structure is required for the qubit and real number data types. In addition, an improved search 
strategy has been introduced to find the most relevant and eliminate the irrelevant features on 
a synthetic dataset. The method is tested on a benchmark classification problem. The proposed 
method results in the design of faster and more accurate neural network classification models 
than the ones optimised through the use of standard evolutionary optimization algorithms. 
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This chapter is organized as follows. Section 2 introduces PSO with quantum information 
principles and an improved feature search strategy used later in the developed method. 
Section 3 is an overview of ESNN, while Section 4 gives details of the integrated structure 
and the experimental results. Finally, Section 5 concludes this chapter. 

2. Particle swarm optimization 

PSO is a population-based stochastic optimization technique. In common classifiers, PSO is 
a global optimization technique that is often used to seek a good set of weights. Similar to 
other evolutionary algorithms, PSO is initialized with a random population and searches for 
optimal solutions by updating the particles. Unlike Genetic Algorithms (GA), PSO has no 
evolution operators such as crossover and mutation. In PSO, the potential solutions, called 
particles, fly through the problem space by following the current optimum particles.  

To create a swarm of 1,...,i N=  particles, at all points in time, each particle i has 

1. A current position Xi or ( ),...,1X x xn i iD= , 
2. A record of the direction it follows to get to that position Vi or ( ,..., )1V v vn i iD= ,  

3. A record of its own best previous position ( ,..., )1pbest pbest pbestD= , 
4. A record of the best previous position of any member in its group 

( ,..., )1gbest gbest gbestD= . 
Given the current position of each particle, as well as the other information, the problem is 
to determine the change in direction of the particles. As mentioned above, this is done by 
reference to each particle’s own experience and its companions. Its own experience includes 
the direction it comes from Vi  and its own best previous position. The experience of others 
is represented by the best previous position of any member in its group. This suggests that 
each particle might move in 
1. The same direction that it comes from Vi , 
2. The direction of its best previous position pbest Xi− , 
3. The direction of the best previous position of any member in its group gbest Xi− . 
The algorithm supposes that the actual direction of change for particle i will be a weighted 
combination of (Shi & Eberhart, 1998); 

 * * ( ) * * ( )1 1 2 2, ,V W V C r G X C r P Xn x n n nbest n best n= + − + −  (1) 

where 

1r  and 2r  are uniform random numbers between [0,1] ,  

  01C 〉 and  02C 〉 are constants called the cognitive and social parameters, and  
  0w 〉  is a constant called the inertia parameter. 

For successive index periods (generations), n and 1n + , the direction of change, i.e., the 
new position of the particle will simply be: 

 X X Vn n n= +  (2) 

Given the initial values of Xi , Vi , pbest and gbest , Equation (1) and Equation (2) will 
determine the subsequent path that each particle in the swarm will follow. To avoid 
particles flying beyond the boundary, the velocities of each dimension are clamped to a 
maximum velocity, maxV . If the sum of accelerations causes the velocity of that dimension 
to exceed maxV ,  which is a pre-defined parameter, then the velocity is limited to maxV . 
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Obviously, from the above procedure, it seems that PSO shares many common features with 
GA. Both algorithms start with a randomly generated population, and have a fitness 
function to evaluate the population. Both methods update the population and search for the 
optimum solutions with random techniques. However, PSO does not have genetic operators 
like crossover and mutation. Particles update themselves with the internal velocity, and 

have memory as storage of history. In PSO, only gbest gives the information to others in the 

population, and it is a one -way information sharing mechanism. The evolution only looks 
for the best solution, and, in most cases, all the particles tend to converge to the best solution 
quickly.   

2.1 Application in parameter optimization 
In neural network models, an optimal combination of parameters can influence their 
performance. It is not feasible to manually adjust the parameters, particularly when dealing 
with different combinations for different datasets. Consequently, parameter optimization is 
vital and much research has been conducted on it (Bäck & Schwefel, 1993). Parameter 
optimization using PSO works when each particle in the swarm holds the parameter value. 
This value is considered a particle’s position. Updating the particle’s position means 
updating the parameter value. The process begins by initializing the population and all 
particles with random parameter values. Then, in every iteration, all particles’ position are 
updated based on two factors; the gbest  and pbest . Updating the parameter value based on 

these two values normally results in a better solution. This updating process is repeated in 
every iteration until stopping criteria is met, for example a desired fitness value or a 
maximum number of iterations. 

2.2 Quantum inspired probability concept for feature selection 

Feature optimization is considered as a crucial pre-processing phase in a classification task. 
This is because using a higher number of features does not necessarily translate into better 
classification accuracy. In some cases, having fewer significant features could help reduce 
the processing time and produce good classification results. Blum and Langley have 
classified the feature selection techniques into three basic approaches (Blum & Langley, 
1997):  Embedded approach adds or removes features in response to prediction error on 
new instances; Filter approach first selects features and then uses them in a classification 
model; Wrapper approach uses classification accuracy to evaluate features. However, the 
conventional PSO is inadequate for solving problems that require probability computation 
such as in the feature selection tasks. Therefore, the quantum information principle is 
embedded with principles of evolutionary computation in the PSO as a mechanism for 
feature probability calculation and consequent selection based on these probabilities. 
Referring to (Narayanan, 1999; Kasabov, 2007), quantum computing principles have been 
seen as a source of inspiration for novel computational methods. Two famous quantum 
applications are factorisation problem (Shor, 1994) and Grover's database search algorithm 
(Grover, 1996).   
According to the normal or classical computing concept, information is represented in bits 
where each bit must hold a value of either 0 or 1. However, in quantum computing, 
information is instead represented by a qubit in which a value of a single qubit could be 0, 1, 
or a superposition of both.  Superposition allows the possible states to represent both 0 and 
1 simultaneously based on its probability. The quantum state is modelled by the Hilbert 
space of wave functions and is defined as: 
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 0 1ψ α β= +  (3) 

where α and β  are complex numbers defining probabilities at which the corresponding 

state is likely to appear when a qubit collapses, for instance, when reading or measuring. 

Probability fundamentals stated that
2 2

1α β+ = , where 
2α gives the probability that a 

qubit is in the OFF (0) state and 
2β gives the probability that a qubit is in the ON (1) state. 

The probability of  
α
β
⎡ ⎤
⎢ ⎥
⎣ ⎦

 can be represented as quantum angle θ , where 
cos( )

sin( )

θ
θ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 satisfies 

the probability fundamental of
2 2

sin( ) cos( ) 1θ θ+ = . The θ  parameter is normally been 

used in quantum inspired Evolutionary Algorithms (EA) to calculate and update 
probability. There are several studies where quantum computation acts as probability 
computation in EA.  The Quantum Evolutionary Algorithm (QEA) was popularized by Han 
and Kim (Han & Kim, 2000). Since then, a lot of attention has been given by researchers 
around the world to this technique. Descended from the basic EA concept, QEA is a 
population-based search method which simulates a biological evolutionary process and 
mechanism, such as selection, recombination, mutation and reproduction. Each individual 
in a population is a possible solution candidate and is evaluated by a fitness function to 
solve a given task. However, instead of using normal real value values, information in QEA 
is represented in qubits.  This probability presentation has a better characteristic of diversity 
than classical approaches. QEA have been reported to successfully solve complex 
benchmark problems such as numerical (da Cruz et al., 2006), multiobjective optimization 
(Talbi et al., 2006) and real world problems (Jang et al., 2004).  

The quantum computation also has been extended to PSO and this is known as Quantum-

inspired Particle Swarm Optimization (QiPSO) (Sun et al., 2004). The main idea of QiPSO is 

to update the particle position represented as a quantum angleθ . The common velocity 

update equation in conventional PSO is modified to get a new quantum angle which is 

translated to the new probability of the qubit by using the following formula: 

 * * () * ( ) * () * ( )1 21
w c rand c randn n n ngbest pbestn nt

θ θ θ θ θ θΔ = Δ + − + −
−

 (4) 

Based on the new θ velocity, the new probability of α and β  is calculated using a rotation 

gate as follows: 

 
cos( ) sin( ) 1
sin( ) cos( ) 1

t

t

αα θ θ
β θ θ β

⎡ ⎤Δ − Δ⎡ ⎤ ⎡ ⎤ −= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎣ ⎦
 (5) 

In a feature selection task, each qubit denoted as quantum angleθ , represents one feature. 

In this case, the collapse qubit value 1 represents features selected while value 0 represents 
those not selected. 

2.3 Enhancement for parameter optimization and feature selection 

There are some problems when using QiPSO algorithms for parameter optimization and 
feature selection. Therefore, this chapter proposes an improved QiPSO algorithm called 
Dynamic Quantum-inspired Particle Swarm Optimization (DQiPSO). The problems include 
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a possibility of missing the optimal parameter value when using only binary QiPSO.  As the 
information is represented in a binary structure, the conversion from binary to real value 
will lead to such problems, especially if the selected number of qubits representing the 
parameter value is insufficient. To overcome this problem, a combination of QiPSO and 
conventional PSO is proposed. The DQiPSO particle is divided into two parts: the first part 
uses quantum probability computation for feature selection and another part holds the real 
value for parameters as shown in Figure 1. This method not only effectively solves this 
problem, but also eliminates one parameter which holds number of qubits representing the 
parameter value. 
 

 

Fig. 1. The proposed hybrid particle structure in DQiPSO  

In addition, the search strategy of QiPSO is based on random selection at the beginning of 
the process. Each particle will update itself based on the best solution subsequently found. A 
major problem with this approach is the possibility of not selecting the relevant features at 
the beginning; other particles in the entire process are thus affected. This is due to each 
particle updating its information without relevant features. Therefore, a new strategy is 
proposed in which five types of particles in the DQiPSO are considered. Apart from the 
normal particle, referred to as the Update Particle, which renews itself based on pbest and 
gbest  information, four new types of particles are added to the swarm. The first type is the 

Random Particle, which will randomly generate new sets of features and parameters in 
every iteration to increase the robustness of the search. The second type is the Filter Particle, 
which selects one feature at a time and feeds it to the network and calculates the fitness 
value. This process is repeated for each feature. Any features with above average fitness will 
be considered as relevant. This method is targeted at linear separation problems. The third 
particle type is the Embed In Particle in which input features are added to the network one 
by one. If a newly added feature improves fitness, it will be considered a relevant feature. 
Otherwise, the feature will be removed. The final particle type is the Embed Out Particle 
which starts the identification process with all features fed to the network to get the initial 
fitness value. These features are gradually removed one by one. If removing a feature causes 
decrement of the fitness value, then this feature will be considered relevant and hence will 
be kept. Otherwise, the feature will be considered irrelevant and removed. 
The main idea behind Filter, Embed In and Embed Out particles is to identify the relevance 
of each feature and to reduce the number of candidates until a small subset remains. For 
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subsequent iterations, features considered relevant will be selected randomly to find the 
best combination of significant features. This strategy helps to solve unevaluated relevant 
features, while reducing the search space and facilitating the optimizer in finding relevant 
features faster.  Similar to the standard PSO in updating the particles, if a new particle is 
found to be the best solution, then it will be stored as a gbest .  In this scenario, some 
improvements have also been proposed for the update strategy. This includes replacing the 
gbest particle with a new particle if the fitness value is higher or equivalent, but with a 

lower number of selected features.  Due to the robust search space provided by DQiPSO, 
fewer particles are needed to perform the optimization tasks; hence, less processing time can 
be achieved. The structure of this strategy is illustrated in Figure 2. 
 

 

Fig. 2. DQiPSO feature selection strategy 

3. Evolving spiking Neural Networks 

Many successful Artificial Neural Network (ANN) models have been developed and 
applied for learning from data and for generalization to new data (Arbib, 2003). 
Applications include: classification, time series prediction, associative storage and retrieval 
of information, robot and process control, medical and business decision support, and many 
others (Arbib, 2003). Most of these ANN use simple and deterministic models of artificial 
neurons, such as the McCulloch and Pitts model (McCulloch & Pitts, 1943). They also use 
rate coded information representation, where average activity of a neuron or an ANN is 
represented as a scalar value. Despite the large structural diversity of existing ANN, the 
limited functionality of the neurons and connections between them has constrained the 
scope of applications of ANN and their efficiency when modelling large scale, noisy, 
dynamic and stochastic processes such as ecological, environmental, physical, biological, 
cognitive, and others. 
Recently new knowledge about neuronal, genetic and quantum levels of information 
processing in biological neural networks has been discovered. For example, whether a 
neuron spikes or not at any given time could depend not only on input signals but also on 
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gene and protein expression (Kojima & Katsumata, 2009), physical properties of connections 
(Huguenard, 2000), probabilities of spikes being received at the synapses, emitted neuro-
transmitters, open ion channels and others. Many of these properties have been 
mathematically modelled and used to study biological neurons (Gerstner & Kistler, 2002), 
but have not been properly utilised for more efficient ANN for complex AI problems. 
Spiking Neural Networks (SNN) models are made up of artificial neurons that use trains of 
spikes to represent and process pulse coded information. In biological neural networks, 
neurons are connected at synapses and electrical signals (spikes) pass information from one 
neuron to another. SNN are biologically plausible and offer some means for representing 
time, frequency, phase and other features of the information being processed. A simplified 
diagram of a spiking neuron model is shown in Figure 3a. Figure 3b shows the mode of 
operation of a spiking neuron, which emits an output spike when the total spiking input – 
Post Synaptic Potential (PSP), is larger than a spiking threshold.  
 

 
(a) 

 

 
(b) 

Fig. 3. (a) A simplified diagram of a spiking neuron model. (b) A spiking neuron emits an 
output spike when the total spiking input – Post Synaptic Potential (PSP), is larger than a 
spiking threshold. 

Based on the SNN, Evolving SNN (ESNN) was introduced (Wysoski et al., 2006) where SNN 
evolve their structure through fast one-pass learning from data and have the potential for 
solving complex problems. ESNN have been applied for classification tasks, such as face 
recognition, person authentication based on audiovisual information, taste recognition. They 
achieved better results than previously published models. The ESNN architecture consists of 
an encoding method for real value data to spike time, neuron model and learning method.  
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3.1 Information encoding methods 
The information in ESNN is represented as spikes; therefore, input information must be 
encoded in spike pulses. The well-known encoding technique for ESNN is the Population 
Encoding (Bohte et al., 2002). Population Encoding distributes a single input value to 
multiple pre-synaptic neurons. Each pre-synaptic neuron generates a spike at firing 
time.The firing time is calculated using the intersection of Gaussian function. The centre of 
the Gaussian function is calculated using Equation (6) and the width is computed using 

Equation (7) with the variable interval of , maxminI I⎡ ⎤⎣ ⎦ . The parameter β  controls the 

width of each Gaussian receptive field. 

 (2 * 3) / 2 * ( ) /( 2)maxmin minI i I I Mμ = + − − −  (6) 

 1 / ( ) /( 2) 1 2max minI I M whereσ β β= − − ≤ ≤  (7) 

The illustration of this encoding process is shown in following figure. 
 

 

Fig. 4. Population Encoding Method.   

3.2 Neuron models 
Most of the SNN models have been well explained by Gerstner and Kistler (Gerstner & 
Kistler, 2002). For the ESNN, Thorpe’s neuron model (Thorpe, 1997) has been selected 
because of its effectiveness and simplicity. The fundamental concept of this model is that the 
earlier spikes received by a neuron have a stronger weight compared with later spikes. Once 
the neuron reaches a certain amount of spikes and the Post-Synaptic Potential (PSP) exceeds 
the threshold value, it fires and becomes disabled. The neuron in this model can only fire 
once. The computation of the PSP of neuron i  is presented in Equation (8). 

 

0

( )
*

if fired
PSP order ji elsew Modji i

⎧⎪= ⎨
∑⎪⎩

 (8) 

where wji  being the weight of pre-synaptic neuron j . Modi  being a parameter called 

modulation factor with an interval of [0,1]and ( )j
order  representing the rank of the spike 

emitted by the neuron. The ( )j
order  starts with 0 if it spikes first amongst all pre-synaptic 

neurons and increases according to firing time. 
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3.3 Learning method 

Learning in ESNN is a complex process since information is represented in spikes, which is 
time dependence. Spike Time Dependent Plasticity (STDP) is a form of Hebbian Learning 
where spike time and transmission are used in order to calculate the change in the synaptic 
weight of a neuron. If a pre-synaptic spike arrives at the synapse before the postsynaptic 
action potential, the synapse is potentiated; if the timing is reversed, the synapse is 
depressed (Markram et al., 1997).  
The One-Pass Algorithm is the learning algorithm for ESNN which follows both the SDTP 
learning rule and the time-to-first spike learning rule (Thorpe,1997). In this algorithm, each 
training sample creates a new output neuron. The trained threshold values and the weight 
pattern for that particular sample are stored in the neuron repository. However, if the 
weight pattern of the trained neuron greatly resembles a neuron in the repository, it will 
merge into the most similar one. The merging process involves modifying the weight 
pattern and the threshold of the merged neurons to the average value. Otherwise, it will be 
added to the repository as a newly trained neuron. The major advantage of this learning 
algorithm is the ability of the trained network to learn incrementally new samples without 
retraining. 

3.4 ESNN structure 

 

 

Fig. 5. A simplified ESNN structure 

In general, each input neuron in the ESNN (black neuron in Figure 5) is connected to 
multiple pre-synaptic neurons (blue neurons). This process will transform the input values 
into a highly dimensional structure where each pre-synaptic neuron generates a certain 
spike at a firing time. The firing time is calculated using the intersection of the Gaussian 
function with the input value. Based on the firing time, a weight for each connection to the 
output neuron (red neuron) is generated. In the training process, the output neuron stores 
the computed weight of all pre-synaptic neurons, a threshold value to determine when the 
output neuron will spike and the class label the input sample belongs to. In the testing 
process, similar to the training process, each testing sample is encoded to spikes by the 
multiple pre-synaptic neurons. Then, the Post-Synaptic Potential (PSP) of the output class 
neurons is calculated. Once the neuron reaches a certain amount of spikes and the PSP 
exceeds the threshold value, it fires an output spike and becomes disabled. The testing 
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sample belongs to an output class of the output neuron which fires first among all output 
neurons. A detailed ESNN training algorithm follows. 
 

Algorithm 1 ESNN Training Algorithm 

1: Initialize neuron repository { }R =  

2: Set ESNN parameters [0,1]Mod = , [0,1]C = and [0,1]Sim =  

3: for every input sample i  that belongs to the same output class do 

4:  Encode input samples into firing time of pre-synaptic neurons j  

Create a new output neuron for this class and calculate the connection weights 

as follows:
 

( )
( )

order j
w Modj =  

5:  
Calculate

( )
*max( )

order j
PSP w Modji = ∑  

6:  Get PSP threshold value *max( )PSP Ci iχ =  

7:  if the new neuron weight vector <= Sim of trained output neuron weight 

vector in R  then 

8:   Merge the weights and the threshold of the new neuron with the most 
similar neuron in  the same class output group 

9:   *

1

w w Nneww
N

+
=

+
 

10:   *

1

Nnew
N

χ χχ +
=

+
 

11:   where N  is the number of all previous merges of the merged neuron  

12:  Else 

13:   Add the new neuron to the output neuron repository R  

14:  end if 

15: end for (Repeat  to all input samples for other output classes) 

4. Integrated structure for parameter optimization and feature selection  

An integrated structure is presented in which the features and parameters are optimized 

simultaneously, and this leads to better optimization. This experiment further tests the 

efficiency of DQiPSO in selecting the most relevant features and also optimizing the ESNN 

parameters. Here the  DQiPSO optimizes the ESNN parameters: Modulation Factor ( Mod ), 

Proportion Factor ( C ) and Similarity ( Sim ), as well as identifies  the relevant features. All 

particles are initialized with random value and subsequently interact with each other based 

on classification accuracy. Since there are two components to be optimized, each particle is 

divided into two parts. The first part of each hybrid particle holds the feature mask where 

information is stored in a string of qubits. Another part holds parameters of ESNN. The 

proposed integrated framework is shown in Figure 6. 
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Fig. 6. An integrated ESNN-DQiPSO framework for feature selection and parameter 
optimization. 

4.1 Setup 

The proposed integrated ESNN-DQiPSO method was tested on a Uniform Hypercube 

dataset (Estavest et al., 2009). Thirty features were created where only 10 are the relevant 

features, where a sample belongs to class 1 when 1 *iri γ α−<  for i = 1 till 10. Parameters 

chosen were 0.8γ =  and 0.5α = . The features which are not relevant to determining the 

output class consist of 10 random features with the random value of [0,1] , and 10 redundant 

features copied from relevant features with an addition of Gaussian noise of 0.3. The 

features were arranged randomly to simulate the real world problem where relevant 

features are scattered in the dataset as follows: 
 

Features Arrangement 

Relevant 02, 04, 09, 10, 11, 15, 19, 20, 26, 30 

Redundant 03, 07, 12, 14, 17, 18, 21, 25, 27, 28 

Random 01, 05, 06, 08, 13, 16, 22, 23, 24, 29 

Table 1. Feature arrangement 

The problem consists of 500 samples, equally distributed into two classes. It was applied to 
the proposed framework and compared with the QiPSO method and ESNN with standard 
PSO. However, because standard PSO is inadequate for feature selection, it only optimizes 
the ESNN parameters. Based on the preliminary experiment, 20 ESNN’s pre-synaptic 
neurons were chosen. For the DQiPSO, 18 particles were used, consisting of six Update, 
three Filter, three Random, three Embed In and three Embed Out. For the QiPSO, 20 
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particles were used. 1C  and 2C  were set to 0.05 to balance the exploration between 
gbest and pbest with the inertia weight w  = 2.0.  Ten-fold cross validations were used and 

the average result was computed in 500 iterations.  

4.2 Results 

Figure 7 illustrates the comparison of selected features from DQiPSO and QiPSO during the 
learning process. The lighter colour means more frequent corresponding features are  
 

 

Fig. 7. Evolution of feature selection 
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selected and darker means otherwise. All the features have been ranked based on the 
number of selected features from 10 runs to determine their relevancy. From the figure, 10 
relevant features which contained the most information can be clearly identified and are 
constantly being selected by DQiPSO. In contrast, the redundant and random features are 
completely rejected during the optimization process. DQiPSO takes less than 100 iterations 
to identify the relevant and irrelevant features. Based on the feature ranking, the most 
relevant features found are: Feature 9 and Feature 20, followed by Feature 10, Feature 11, 
Feature 26, Feature 2, Feature 15, Feature 19, Feature 30 and Feature 4. In contrast, the ability 
of the QiPSO to reject the irrelevant features is unsatisfactory.  Most of the irrelevant 
features are still being selected, which contributes to the low classification accuracy and 
increased computation time. The most relevant features found by QiPSO are Feature 10 and 
15, followed by Feature 4, Feature 25, Feature 2, Feature 9, Feature 11, Feature 18, Feature 19 
and Feature 20. Other features are occasionally selected and can be considered as irrelevant 
features by QiPSO. Some relevant features are also being regarded as irrelevant due to the 
number of selected is low, while some irrelevant features which contain no information are 
considered as relevant by QiPSO. This situation has affected the results and overall 
classification performance of the ESNN-QiPSO. 
Figure 8 shows the results of parameter optimization. All parameters evolve steadily 
towards a certain optimal value, where the correct combination together with the selected 
relevant features leads to a better classification accuracy. In terms of the classification result, 
the average accuracy for ESNN-DQiPSO is 99.25% with the result of every single run 
consistently above 98%. For the ESNN-QiPSO algorithm, the average accuracy is 96.57%. 
The proposed DQiPSO and QiPSO methods are able to select relevant features with few or 
occasionally no irrelevant features, while simultaneously providing nearly optimal 
parameter combinations in the early stage of learning. This situation leads to acceptably  
 

 

Fig. 8. a) Classification accuracy and b) Parameter optimization result 
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high average accuracy at the beginning of the learning process. For the ESNN-PSO 
algorithm, although the classification accuracy is 94.43%, this algorithm is entirely 
dependent on the parameter optimization which has affected the results, giving the lowest 
accuracy. The testing results for ESNN-DQiPSO, ESNN-QiPSO and ESNN-PSO are 95.99%, 
91.58% and 83.93% respectively. 

5. Conclusion and future research 

This chapter has introduced a new PSO model and has shown how this optimizer can be 
implemented for parameter optimization and feature selection. Since feature selection is a 
unique task involving probability, quantum computation has been embedded into PSO and 
has been applied to an ESNN for classification. The new method results in a more efficient 
classification ESNN model with optimal features selected and parameters optimised. 
Future work is planned to improve the proposed optimization method and to apply it to the 
Probabilistic Spiking Neural Networks (PSNN) (Kasabov, 2010). In this PSNN, not only 
features will be represented by a quantum bit vector, but also all connections between the 
neurons. A neuronal connection is either existent (1) or nonexistent (0), or in another 
interpretation – either propagating a spike or not propagating it. A quantum bit vector 
would be a suitable representation of all connections that can be optimized using the 
modified PSO. Each particle will be divided into three parts; the first two parts use quantum 
probability computation for feature and connection selection and the last part holds the real 
value for the parameters. It is to be believed that the proposed method will be able to 
optimize the given problem in a far more efficient way. 
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