
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

A Memetic Particle Swarm Optimization
Algorithm for Network Vulnerability Analysis

Mahdi Abadi and Saeed Jalili
Tarbiat Modares University

Tehran, Iran

1. Introduction

As computer networks continue to grow, it becomes increasingly more important to
automate the process of evaluating their vulnerability to attacks. Despite the best efforts of
software architects and developers, network hosts inevitably contain a number of
vulnerabilities. Hence, it is not feasible for a network administrator to remove all
vulnerabilities present in the network hosts. Therefore, the recent focus in security of such
networks is on analysis of vulnerabilities globally, finding exploits that are more critical, and
preventing them to thwart an intruder.
When evaluating the security of a network, it is rarely enough to consider the presence or
absence of isolated vulnerabilities. This is because intruders often combine exploits against
multiple vulnerabilities in order to reach their goals (Abadi & Jalili, 2005). For example, an
intruder might exploit the vulnerability of a particular version of FTP to overwrite the
.rhosts file on a victim host. In the next step, the intruder could remotely log in to the victim.
In a subsequent step, the intruder could use the victim host as a base to launch another
exploit on a new victim, and so on.
(Phillips & Swiler, 1998) proposed the concept of attack graphs, where each node represents
a possible attack state. Edges represent a change of state caused by a single action taken by
the intruder. (Sheyner et al., 2002) used a modified version of the model checker NuSMV
(NuSMV, 2010) to produce attack graphs. (Ammann et al., 2002) introduced a monotonicity
assumption and used it to develop a polynomial algorithm to encode all of the edges in an
attack graph without actually computing the graph itself. These attack graphs are essentially
similar to (Phillips & Swiler, 1998), where any path in the graph from an initial node to a
goal node shows a sequence of exploits that an intruder can launch to reach his goal.
(Noel et al., 2005) presented a number of techniques for managing attack graph complexity
through visualization. (Mehta et al., 2006) presented a ranking scheme for the nodes of an
attack graph. Rank of a node shows its importance based on factors like the probability of an
intruder reaching that node. Given a ranked attack graph, the system administrator can
concentrate on relevant subgraphs to figure out how to start deploying security measures.
(Ou et al., 2006) presented logical attack graphs, which directly illustrate logical dependencies
among attack goals and configuration information. Their attack graph generation tool builds
upon MulVAL (Ou et al., 2005), a network security analyzer based on logical programming.
The aim of minimization analysis of network attack graphs is to find a minimum critical set
of exploits that completely disconnect the initial nodes and the goal nodes of the graph.

www.intechopen.com

Evolutionary Algorithms

86

(Sheyner et al., 2002) and (Jha et al., 2002) showed this problem is in fact NP-hard. They
proposed an approximation algorithm, ApproxNAG, that can find an approximately-
optimal set of exploits, which must be prevented to thwart an intruder. (Abadi & Jalili, 2006)
and (Abadi & Jalili, 2008) presented an ant colony optimization algorithm, AntNAG, and a
genetic algorithm, GenNAG, for minimization analysis of network attack graphs.
While it is currently possible to generate very large and complex network attack graphs,
relatively little work has been done for analysis of them.
Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) is a population based
stochastic optimization algorithm that was inspired by social behaviour of flocks of birds
when they are searching for food.
It has been shown in many empirical studies that global optimization algorithms lack
exploitation abilities in later stages of the optimization process. This is also true for the basic
PSO as shown in (Shi & Eberhart, 1999); (Hendtlass & Randall, 2001); (Braendler &
Hendtlass, 2002), however, it provides mechanisms to balance exploration and exploitation
through proper settings of the inertia weight, acceleration coefficients and velocity
clamping. Many variations of the basic PSO have been proposed to address this problem
(Engelbrecht, 2005). Most of them first allow the algorithm to explore new regions, and
when a good region is located, allow the algorithm to exploit the search space to refine
solutions. This is a sequential approach to balancing exploration and exploitation
(Engelbrecht, 2005).
Another approach is to embed a local optimizer in between the iterations of the global
search heuristics. By doing this, exploration and exploitation occur in parallel (Engelbrecht,
2005). Such hybrids of local and global search heuristics have been studied elaborately in the
evolutionary computation paradigm (Eiben & Smith, 2003), and are generally referred to as
memetic algorithms (Krasnogor et al., 2006). While evolutionary algorithms take inspiration
from biological evolution, memetic algorithms mimic cultural evolution. The term meme
refers to a unit of cultural information that can be transmitted from one mind to another
after reinterpretation and improvement that in the context of combinatorial optimization
corresponds to local search.
In this paper, we present a memetic PSO algorithm, called ParticleNAG, for minimization
analysis of large-scale network attack graphs (NAGs). We also compare the performance of
ParticleNAG with ApproxNAG (Sheyner et al., 2002); (Jha et al., 2002), AntNAG (Abadi &
Jalili, 2006), and GenNAG (Abadi & Jalili, 2008) for minimization analysis of several large-
scale network attack graphs.
The remainder of this paper is organized as follows: Section 2 provides an overview of PSO,
Section 3 introduces our network security model, and Section 4 describes the process of
minimization analysis of network attack graphs. Section 5 presents ParticleNAG. Section 6
reports the experimental results and finally Section 7 draws some conclusions.

2. Particle swarm optimization

Particle swarm optimization (PSO) is a population based stochastic optimization. It was

inspired by social behaviour of flocks of birds when they are searching for food. In PSO, the

potential solutions, called particles, fly through the problem space exploring for better regions.

The position of a particle is influenced by the best position visited by itself and the position of

the best particle in its neighbourhood. When the neighbourhood of a particle is the entire

swarm, the best position in the neighbourhood is referred to as the global best particle, and the

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

87

resulting algorithm is referred to as a gbest PSO. When smaller neighbourhoods are used, the

algorithm is generally referred to as a lbest PSO (Kennedy et al., 2001).

The performance of each particle is measured using a predefined fitness function, which is
related to the problem to be solved. Each particle in the swarm has a current position, ix , a
velocity (rate of position change), iv , and a personal best position, iy . The personal best
position of particle i shows the best fitness reached by that particle at a given time. Let f be
the objective function to be maximized. Then the personal best position of a particle at
iteration or time step t is updated as

(1) if (()) ((1))

()
() if (()) ((1))

i i i
i

i i i

y t f x t f y t
y t

x t f x t f y t

− ≤ −⎧
= ⎨ > −⎩

 (1)

For the gbest model, the best particle is determined from the entire swarm by selecting the
best personal best position. This position is denoted as ŷ. The equation that manipulates the
velocity is called the velocity update equation and is stated as

1 1

2 2

(1) () ()(() ())

ˆ()(() ())

ij ij j ij ij

j j ij

v t v t c r t y t x t

c r t y t x t

+ = + − +

−
 (2)

where (1)ijv t + is the velocity updated for the jth dimension, j = 1, 2, …, d. 1c and 2c are
the acceleration constants, where the first moderates the maximum step size towards the
best personal of the particle, while the second moderates the maximum step size towards
the global best particle in just one iteration. 1 ()jr t and 2 ()jr t are two random values in the
range [0,1] and give the PSO algorithm a stochastic search property.
Velocity updates on each dimension can be clamped with a user defined maximum velocity
Vmax, which would prevent them from exploding, thereby causing premature convergence
(Eberhart et al., 1996); (Shi, 2004). Each particle updates its position using the following
equation:

 (1) () (1)i i ix t x t v t+ = + + (3)

In swarm terminology, particle i is flying to its new position (1)ix t + . After the new position

is calculated for each particle, the iteration counter increases and the new particle positions

are evaluated. This process is repeated until some convergence criteria is satisfied.

(Kennedy & Eberhart, 1997) have adapted PSO to search in binary spaces. For binary PSO,

the elements of ix , iy and ŷ can only take the values 0 and 1. The velocity iv is interpreted

as a probability to change a bit from 0 to 1, or from 1 to 0 when updating the position of

particles. Therefore, the velocity vector remains continuous-valued. Since each ijv is a real

value, a mapping needs to be defined from ijv to a probability in the range [0,1]. This is

done by using a sigmoid function to squash velocities into a [0,1] range. The sigmoid

function is defined as

1

()
1 v

sig v
e−

=
+

 (4)

The equation for updating positions is then replaced by the following probabilistic update
equation:

www.intechopen.com

Evolutionary Algorithms

88

3

3

0 if () ((1))
(1)

1 if () ((1))

j ij

ij
j ij

r t sig v t
x t

r t sig v t

≥ +⎧⎪+ = ⎨ < +⎪⎩
 (5)

where 3 ()jr t is a random value in the range [0,1].
In binary PSO, the meaning and behaviour of velocity clamping differ substantially from

real-valued PSO. With the velocity interpreted as a probability of change, velocity clamping,

Vmax, sets the minimal probability for a bit to change its value from 0 to 1, or from 1 to 0

(Engelbrecht, 2005).

In this paper, we use the gbest model of binary PSO for minimization analysis of network

attack graphs.

3. Network security model

Our network security model is a tuple (S, H, C, T, E, M, R), where S is a set of services, H is a

set of hosts connected to the network, C is a relation expressing connectivity between hosts,

T is a relation expressing trust between hosts, E is a set of individual known exploits that

intruder can use to construct attack scenarios, M is a set of countermeasures that must be

implemented to prevent exploits, and R is a model of intruder.

Services

Each service s S∈ is a pair (,)svn p , where svn is the service name and p is the port on

which the service is listening.

Hosts

Each host h H∈ is a tuple (, , ,)id svcs plvl vuls , where id is a unique host identifier, svcs is a

set of services running on the host, plvl is the level of privilege that the intruder has on the

host, and vuls is a set of host-specific vulnerable components. For simplicity, we only

consider three privilege levels: none, user, and root.

Network Connectivity

Network connectivity is modelled as a relation C H H P⊆ × × , where P is a set of port

numbers. Each network connectivity c C∈ is a triple (sh , th , p), where sh is the source

host, th is the target host, and p is the target port number. Note that the connectivity

relation incorporates network elements such as firewalls that restrict the ability of one host

to connect to another.

Trust Relationships

Trust relationships are modelled as a relation T H H⊆ × , where (,)t sT h h indicates that a

user may log in from host sh to host th without authentication.

Exploits

Each exploit e E∈ is a tuple (pre , sh , th , post), where pre is a list of conditions that must

hold before launching the exploit, sh is the host from which the exploit is launched, th is

the host targeted by the exploit, and post specifies the effects of exploit on the network. An

exploit e E∈ is inevitable if its prevention is not feasible or incurs high cost. The set of

inevitable exploits is denoted by I .

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

89

Countermeasures

To prevent an exploit e E∈ , the security analyst must implement a suitable countermeasure
m M∈ , such as
• changing the firewall configuration

• patching the vulnerability that made this exploit possible

• deploying a host-based or network-based intrusion detection and prevention system

• modifying the configuration of network services and applications

• deleting user accounts

• changing access rights

• setting up a virtual private network (VPN)

Intruder

The intruder has some knowledge about the target network, such as known vulnerabilities,
user passwords, and information gathered with port scans. The intruder's knowledge is
modelled as a relation R ID PW VUL INF⊆ × × × , where ID is a set of host identifiers, PW
is a set of user passwords, VUL is a set of known vulnerabilities, and INF is a set of
information gathered through port scans and operating system identification techniques.

4. Minimization analysis of network attack graphs

Let { }1 2, ,..., nE e e e= be the set of exploits, I E⊆ be the set of inevitable exploits,

{ }1 2, ,..., pM m m m= be the set of countermeasures, and \: 2E Iprv M → be a function. An
exploit ()j ie prv m∈ if and only if implementing the countermeasure im prevents the
exploit je .

A network attack graph is a tuple 0(, , , ,)fG V A V V L= , where V is the set of nodes, A is the

set of directed edges, 0V V⊆ is the set of initial nodes, fV V⊆ is the set of goal nodes, and

:L A E→ is a labelling function, where () jL a e= if and only if an edge (,)a v v′=

corresponds to an exploit je E∈ . A path π in G is a sequence of nodes 1 2, ,..., mv v v , such

that iv V∈ and 1(,)i iv v A+ ∈ , where 1 i m≤ < . The label of path π is a subset of the set of

exploits E . Each attack scenario corresponds to a complete path that starts from an initial

node and ends in a goal node.
Let { }1 2, , ..., lS S S S= be the set of attack scenarios represented by the network attack graph
G . The attack scenario kS S∈ is hit by the exploit je E∈ if j ke S∈ .

Definition 1. Total Hit Value

For each exploit je E∈ , the total hit value ()t jhv e is defined to be the number of attack scenarios that
are hit by je .

 { }() |t j k j khv e S S e S= ∈ ∈ (6)

Definition 2. Redundant Exploit

Let U E⊆ be a subset of exploits and ()hs U be the set of attack scenarios hit by the exploits in U .

 { }() | for somek j k jhs U S S e S e U= ∈ ∈ ∈ (7)

An exploit je is redundant with respect to U if (\{ }) ()jhs U e hs U= .

www.intechopen.com

Evolutionary Algorithms

90

Definition 3. Partial Hit Value

Let U E⊆ be a subset of exploits. For each exploit je U∉ , the partial hit value (,)p jhv e U is defined
to be the number of attack scenarios that are hit by je , but that are not hit by any exploit in U .

 { }(,) | ()p j k j k khv e U S S e S S hs U= ∈ ∈ ∧ ∉ (8)

Definition 4. Exclusive Hit Value

Let U E⊆ be a subset of exploits. For each exploit je U∈ , the exclusive hit value (,)x jhv e U is
defined to be the number of attack scenarios that are hit by je , but that are not hit by any exploit in

\{ }jU e .

Definition 5. Critical Set of Exploits

A subset of exploits \CE E I⊆ is critical if and only if all attack scenarios are hit by the exploits in
it. Equivalently, CE is critical if and only if every complete path from an initial node to a goal node
of the network attack graph G has at least one edge labelled with an exploit je CE∈ .

Definition 6. Minimal Critical Set of Exploits

A critical set of exploits CE is minimal if it contains no redundant exploit.

Definition 7. Minimum Critical Set of Exploits

A critical set of exploits CE is minimum if there is no critical set of exploits CE′ such that

CE CE′ < .

Definition 8. Critical Set of Countermeasures

A subset of countermeasures CM M⊆ is critical if and only if all attack scenarios are prevented by
implementing the countermeasures in it. Equivalently, CM is critical if and only if every complete
path from an initial node to a goal node of the network attack graph G has at least one edge labelled
with an exploit ()je es CM∈ , where ()es CM is the set of exploits prevented by implementing the
countermeasures in CM .

 () ()
i

im CM
es CM prv m∈=∪ (9)

Definition 9. Minimal Critical Set of Countermeasures

A critical set of countermeasures CM is minimal if it contains no redundant countermeasure.

Definition 10. Minimum Critical Set of Countermeasures

A critical set of countermeasures CM is minimum if there is no critical set of countermeasures CM′
such that CM CM′ < .
In general, there can be multiple minimum critical set of exploits/countermeasures. We can
now state formally two problems: MCEP and MCCP (Sheyner et al., 2002); (Jha et al., 2002).

Definition 11. Minimum Critical Set of Exploits Problem (MCEP)

Given a network attack graph G and a set of exploits E , find a minimum critical subset of exploits
\CE E I⊆ for G .

Definition 12. Minimum Critical Set of Countermeasures Problem (MCCP)

Given a network attack graph G , a set of exploits E , and a set of countermeasures M , find a
minimum critical subset of countermeasures CM M⊆ for G .

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

91

There is a trivial reduction from MCEP to MCCP, and vice versa. Given an instance (,)G E of
MCEP, we can construct an instance (, ,)G E M of MCCP where { }{ }|j jM e e E= ∈ .
A typical process for solving MCEP or MCCP is shown in Fig. 1. First, vulnerability
scanning tools, such as Nessus (Deraison, 2010), determine vulnerabilities of individual
hosts. Using this vulnerability information along with exploit templates, intruder’s goals,
and other information about the network, such as connectivity between hosts, a network
attack graph is generated. In this directed graph, each complete path from an initial node to
a goal node corresponds to an attack scenario. The minimization analysis of the network
attack graph determines a minimum critical set of exploits/countermeasures that must be
prevented/implemented to guarantee no attack scenario is possible.

Fig. 1. Minimization analysis of network attack graphs

4. ParticleNAG

In this section, we present ParticleNAG, a memetic particle swarm optimization algorithm

for minimization analysis of large-scale network attack graphs. The aim of minimization

analysis of network attack graphs is to find a minimum critical set of exploits/

countermeasures. This problem is in fact a constrained optimization problem in which the

objective is to find a solution with minimum cardinality and the constraint is that the

solution must be critical (i.e., it must hit all attack scenarios).

Fig. 2 shows the pseudo-code of ParticleNAG. The first step is to initialize the swarm and

control parameters. Then repeated iterations of the algorithm are executed until some

termination condition is met (e.g., a maximum number of iterations is reached). Within each

iteration, if each particle’s current position xi does not represent a critical set of exploits, a

greedy repair algorithm is applied to it. Then redundant exploits of xi are eliminated. After

that, xi is improved by a local search heuristic procedure. Then the particle’s personal best

position yi is updated using equation (1). The global best position ŷ is then determined from

the entire swarm by selecting the best personal best position. Finally, the velocity and the

position of each particle are updated using equations (2) and (5).

www.intechopen.com

Evolutionary Algorithms

92

procedure ParticleNAG

 Set parameters, create and initialize the swarm

 while termination condition not met do

 for each particle i do

 if ix does not represent a critical set of exploits then

 Apply the greedy repair procedure to ix ;

 end if

 Eliminate redundant exploits of ix ;

 Apply the local search heuristic to ix ;

 Update the personal best position iy ;

 end for

 Update the global best position ŷ ;

 for each particle i do

 Update the velocity iv ;

 Update the position ix ;

 end for

 end while

end ParticleNAG

Fig. 2. The ParticleNAG algorithm

5.1 Problem representation

Let { }1 2, , ..., nE e e e= be the set of preventable exploits. Each particle position ix

corresponds to an n-bit vector 1 2(, , ...,)i i inx x x and represents a subset of exploits iE E⊆ in

which the exploit j ie E∈ if and only if the element 1ijx = .

 { }| 1i j ijE e E x= ∈ = (10)

Let { }1 2, , ..., lS S S S= be the set of attack scenarios represented by the network attack graph

G. The attack scenario kS S∈ is hit by the particle position ix if k iS E ≠ ∅∩ .

The particle position ix represents a critical set of exploits if all attack scenarios are hit by it.

The aim of minimization analysis of network attack graphs is to find a minimum critical

set of exploits. So ParticleNAG uses the following fitness function to evaluate the quality of

ix :

 () | | | |i if x E E= − (11)

5.2 Greedy repair

The set of exploits represented by a particle position xi may not be critical. In other words, it

may not hit all attack scenarios.

Let iE be the set of exploits represented by a particle position ix . As shown in Fig. 3, the

greedy repair algorithm chooses at each step an exploit ke E∈ such that k ie E∉ and it

maximizes the partial hit value (,)p k ihv e E . It then adds ke to iE and changes its

corresponding element ikx to 1. This is repeated until a critical set of exploits is obtained.

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

93

procedure GreedyRepair (ix)

 { }1| =∈= ijji xEeE ;

 while ix does not represent a critical set of exploits do

 Choose an exploit Eek ∈ such that ik Ee ∉ and it maximizes

 the partial hit value),(ikp Eehv ;

 }{ kii eEE ∪= ;

 1=ikx ;

 maxVvik = ;

 end while

 return ix ;

end GreedyRepair

Fig. 3. The greedy repair procedure

5.3 Greedy elimination

The critical set of exploits represented by a particle position ix may contain redundant
exploits, which must be eliminated. Let iE be the critical set of exploits represented by ix .
The exploit je is called candidate redundant with respect to iE if (,) 0x j ihv e E = . The set of
candidate redundant exploits of iE is denoted by iR .

 { }| (,) 0i j i x j iR e E hv e E= ∈ = (12)

For each candidate redundant exploit j ie R∈ , the selection value (,)j isv e E is calculated as

\{ }

(,) (, \{ })
k i j

j i x k i j
e E e

sv e E hv e E e
∈

= ∑ (13)

The selection value is used to evaluate candidate redundant exploits of a critical set of
exploits in order to choose a candidate redundant exploit to be removed from it.

procedure GreedyElimination (ix)

 { }| 1i j ijE e E x= ∈ = ;

 { }| (,) 0i j i x j iR e E hv e E= ∈ = ;

 while iR ≠ ∅ do

 Choose an exploit k ie R∈ that maximizes the selection

 value (,)k isv e E ;

 \{ }i i kE E e= ;

 0ikx = ;

 maxikv V= − ;

 { }| (,) 0i j i x j iR e E hv e E= ∈ = ;

 end while

 return ix ;

end GreedyElimination

Fig. 4. The greedy elimination procedure

www.intechopen.com

Evolutionary Algorithms

94

In Fig. 4 an algorithm is presented, which can be used to eliminate redundant exploits of ix .

Let iE be the critical set of exploits represented by ix . The algorithm is based on the idea

that it is good to remove an exploit ke from iE if ke is a candidate redundant exploit and

hits attack scenarios that are hit by too many other exploits in iE . Hence, at each step, the

algorithm chooses a candidate redundant exploit ke from iR that maximizes the selection

value (,)k isv e E . It then removes ke from iE and changes its corresponding element ikx to 0.

This is repeated until a minimal critical set of exploits is obtained.

5.4 Local search heuristic

Combining global and local search is a strategy used by many successful global
optimization approaches.

In ParticleNAG, a local search heuristic is applied to the current position of each particle to

improve them before their personal best positions are updated. The local search heuristic is

based on the following idea: given a particle position ix and its corresponding critical set of

exploits iE , suppose there is an exploit je E∈ such that j ie E∉ and { }i jE e∪ contains at

least two exploits other than je , say 1 ,..., re e′ ′ , with 2r ≥ that are redundant. Then we

conclude that 1(\{ ,..., }) { }i r jE e e e′ ′ ∪ is a better critical set of exploits than iE . The gain of

the exploit je with respect to iE is (,) 1j ig e E l= − . In this case, we call je a candidate

dominant exploit.

procedure LocalSearch(ix)

 { }| 1i j ijE e E x= ∈ = ;

 while improvement is possible do

 Choose an exploit ke E∈ such that k ie E∉ and (,) 0k ig e E > ;

 { }i i kE E e= ∪ ;

 1ikx = ;

 maxikv V= ;

 Eliminate redundant exploits of ix ;

 end while

 return ix ;

end LocalSearch

Fig. 5. The local search heuristic procedure

As shown in Fig. 5, the local search heuristic first chooses a candidate dominant exploit ke

and changes its corresponding element ikx to 1. It then eliminates the redundant exploits of

the new position using the algorithm already presented in Section 5.3 for eliminating

redundant exploits. This process is repeated until no further improvement is possible.

6. Experiments

In order to evaluate the performance of ParticleNAG, we performed our experiments over a

sample network attack graph and several randomly generated large-scale network attack

graphs.

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

95

6.1 Sample network attack graph

Consider the network shown in Fig. 6. There are three target hosts called RedHat, Windows

and Fedora on an internal network, and a host called PublicServer on an isolated

demilitarized zone (DMZ) network. One firewall separates the internal network from the

DMZ and another firewall separates the DMZ from the rest of the Internet. A number of

services are running on each of the hosts of RedHat, Windows, Fedora, and PublicServer. Also,

each of the above hosts has a number of vulnerabilities. Vulnerability scanning tools such as

Nessus (Deraison, 2010) can be used to find the vulnerabilities of each host.

Fig. 6. An example network

Different types of services and vulnerabilities available on the network hosts are introduced
in Table 1.

iis_bof(h) IIS web server has buffer overflow vulnerability on host h

exchange_ivv(h) Exchange mail server has input validation vulnerability on host h

squid_conf(h) Squid web proxy is misconfigured on host h

licq_ivv(h) LICQ client has input validation vulnerability on host h

sshd_bof(h) SSH server has buffer overflow vulnerability on host h

scripting(h) HTML scripting is enabled on host h

ftp(h) FTP service is running on host h

wdir(h) FTP home directory is writable on host h

fshell(h) FTP user has executable shell on host h

xterm_bof(h) xterm program has buffer overflow vulnerability on host h

at_bof(h) at program has buffer overflow vulnerability on host h

database(h) database service is running on host h

Table 1. Types of services and vulnerabilities running on the network hosts

www.intechopen.com

Evolutionary Algorithms

96

The RedHat host on the internal network is running FTP and SSH services. The Fedora host is
running several services: LICQ chat software, Squid web proxy, FTP and a database. The
LICQ client lets Linux users exchange text messages over the Internet. The Squid web proxy
is a full-featured web proxy cache. Web browsers can then use the local Squid cache as a
proxy server, reducing access time as well as bandwidth consumption. The PublicServer host
on the DMZ network is running IIS and Exchange services.
The connectivity information among the network hosts is shown in Table 2. In this Table,

each entry corresponds to a pair of (hs, ht) in which hs is the source host and ht is the target

host. Every entry has five boolean values. These values are ‘T’ if host hs can connect to host

ht on the ports of http, licq, ftp, ssh, and smtp, respectively.

Host Intruder PublicServer RedHat Windows Fedora

Intruder F,F,F,F,F T,F,F,F,T F,F,F,F,F F,F,F,F,F F,F,F,F,F

PublicServer F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

RedHat F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

Windows F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

Fedora F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

Table 2. Network connectivity information

The intruder launches his attack starting from a single host, Intruder, which lies on the

outside network. His goal is to disrupt the database service on the host Fedora. To achieve

this goal, the intruder should gain the root privilege on this host.

There are wdir, fshell, and sshd_bof vulnerabilities on the RedHat host, scripting vulnerability

on the Windows host, wdir, fshell, squid_conf, and licq_ivv vulnerabilities on the Fedora host,

and iis_bof and exchange_ivv on the PublicServer host. Also, at and xterm programs on the

RedHat and Fedora are vulnerable to buffer overflow. The intruder can use ten generic

exploits, described as follows:

• iis_r2r
Buffer overflow vulnerability in the Microsoft IIS web server allows remote intruders to
gain root shell on the target host.

• exchange_r2u
The OLE component in the Microsoft Exchange mail server does not properly validate
the lengths of messages for certain OLE data, which allows remote intruders to execute
arbitrary code.

• squid_ps
The intruder can use a misconfigured Squid web proxy to conduct unauthorized
activities such as port scanning.

• licq_r2u
The intruder can send a specially crafted URL to the LICQ client to execute arbitrary
commands on the target host.

• script_r2u
Microsoft Internet Explorer allows remote intruders to execute arbitrary code via
malformed Content-Disposition and Content-Type header fields that cause the

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

97

application for the spoofed file type to pass the file back to the operating system for
handling rather than raise an error message.

• ssh_r2r
Buffer overflow vulnerability in the SSH server allows remote intruders to gain root
shell on the target host.

• ftp_rhosts
Using FTP vulnerability, the intruder creates a .rhosts file in the FTP home directory,
creating a remote login trust relationship between his host and the target host.

• rsh_r2u
Using an existing remote login trust relationship between two hosts, the intruder logs in
from one machine to another, getting a user shell without supplying a password.

• xterm_u2r
Buffer overflow vulnerability in the xterm program allows local users to gain root shell
on the target host.

• at_u2r
Buffer overflow vulnerability in the at program allows local users to gain root shell on
the target host.

In Table 3, each generic exploit is represented by its preconditions and postconditions. More

information about each of the exploits is available in (NVD, 2010). Before an exploit can be

used, its preconditions must be met. Each exploit will increase the network vulnerability if it

is successful. Among the ten generic exploits shown in Table 3, the first eight generic

exploits require a pair of hosts and the last two generic exploits require only one host.

Therefore, there are 8 * 5 * 4 + 2 * 4 = 168 exploits in total, which the intruder can try. Each

attack scenario for the above network consists of a subset of these 168 exploits. For example,

consider the following attack scenario:

1. iis_r2r(Intruder, PublicServer)
2. squid_ps(PublicServer, Fedora)
3. licq_r2u(PublicServer, Fedora)
4. xterm_u2r(Fedora, Fedora)
The intruder first launches the iis_r2r exploit to gain root privilege on the PublicServer

host. Then he uses the PublicServer host to launch a port scan via the vulnerable Squid web

proxy running on the Fedora host. The scan discovers that it is possible to gain user privilege

on the Fedora host with launching the licq_r2u exploit. After that, a simple local buffer

overflow gives the intruder root privilege on the Fedora host. The attack graph for the above

network consists of 164 attack scenarios. Each attack scenario consists of between 4 to 9

exploits.

Experimental Results

We applied ParticleNAG for minimization analysis of the above network attack graph. To

evaluate the performance of the algorithm, we performed several experiments.

In the first experiment, we assumed that all exploits are preventable. Therefore, the aim was

to find a minimum critical set of exploits among 168 exploits. Using ParticleNAG, the

following minimum critical set of exploits was found:

CE = { iis_r2r(Intruder, PublicServer),
exchange_r2u(Intruder, PublicServer) }

www.intechopen.com

Evolutionary Algorithms

98

Exploit Preconditions Postconditions

iis_r2r(hs, ht)

iis_bof(ht)
C(hs, ht, http)

plvl(hs) ≥ user
plvl(ht) < root

¬iis(ht)

plvl(ht) := root

exchange_r2u(hs, ht)

exchange_ivv(ht)
C(hs, ht, smtp)

plvl(hs) ≥ user
plvl(ht) = none

plvl(ht) := user

squid_ps(hs, ht)

squid_conf(ht)

¬scan
C(hs, ht, http)

plvl(hs) ≥ user

scan

licq_r2u(hs, ht)

licq_ivv(ht)

scan
C(hs, ht, licq)

plvl(hs) ≥ user
plvl(ht) = none

plvl(ht) := user

script_r2u(hs, ht)

scripting(ht)
C(ht, hs, http)

plvl(hs) ≥ user
plvl(ht) = none

plvl(ht) := user

sshd_r2r(hs, ht)

sshd_bof(ht)
C(hs, ht, ssh)

plvl(hs) ≥ user
plvl(ht) < root

¬ssh(ht)

plvl(ht) := root

ftp_rhosts(hs, ht)

ftp(ht)
wdir(ht)
fshell(ht)
¬T(ht, hs)

C(hs, ht, ftp)

plvl(hs) ≥ user

T(ht, hs)

rsh_r2u(hs, ht)
T(ht, hs)

plvl(hs) ≥ user
plvl(ht) = none

plvl(ht) := user

xterm_u2r(ht, ht)
xterm_bof(ht)
plvl(ht) = user

plvl(ht) := root

at_u2r(ht, ht)
at_bof(ht)

plvl(ht) = user
plvl(ht) := root

Table 3. Exploit templates

In the second experiment, we assumed that the generic exploits iis_r2r, exchange_r2u, and
xterm_u2r are inevitable, i.e., the prevention of them is not feasible or incurs high cost.
Therefore, the aim was to find a minimum critical set of exploits among 124 exploits. Using
ParticleNAG, the following minimum critical set of exploits was found:

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

99

CE = { licq_r2u(PublicServer, Fedora),
licq_r2u(RedHat, Fedora),
script_r2u(PublicServer, Windows),
ftp_rhosts(PublicServer, Fedora),
ftp_rhosts(RedHat, Fedora) }

It should be mentioned that the exact cardinality of the minimum critical set of exploits for

this network attack graph is 5, so the above critical set of exploits found by ParticleNAG is

minimum. While using ApproxNAG (Sheyner et al., 2002); (Jha et al., 2002), the following

minimum critical set of exploits was found:

CE = { script_r2u(PublicServer, Windows),
at_u2r(Fedora, Fedora),
sshd_r2u(PublicServer, RedHat),
ftp_rhosts(PublicServer, RedHat),
squid_ps(PublicServer, Fedora),
ftp_rhosts(PublicServer, Fedora) }

The second experiment shows ParticleNAG can find a critical set of exploits with less

cardinality.

In the experiments, the parameters were set to c1 = 2, c2 = 2, and Vmax = 4, which are values

commonly used in the binary PSO literature. The swarm size was set to m = 10 and the

maximum number of iterations was set to tmax = 50.

6.2 Large-scale network attack graphs

A large computer network builds upon multiple platforms, runs different software packages

and supports several modes of connectivity. Despite the best efforts of software architects

and developers, each network host inevitably contains a number of vulnerabilities.

Several factors can make network attack graphs larger so that finding a minimum critical set

of exploits/countermeasures becomes more difficult. An obvious factor is the size of the

network under analysis. Our society has become increasingly dependent on networked

computers and the trend towards larger networks will continue. For example, there are

enterprises today consisting of tens of thousands of hosts. Also, less secure networks clearly

have larger network attack graphs. Each network host might have several exploitable

vulnerabilities. When considered across an enterprise, especially given global internet

connectivity, network attack graphs become potentially large (Ammann et al., 2005).

In order to further evaluate the performance of ParticleNAG, we randomly generated 14

large-scale network attack graphs, denoted by 1NAG , 2NAG , ..., 14NAG . For each network

attack graph, we considered different values for the cardinalities of E and S , where E is

the set of preventable exploits and S is the set of attack scenarios represented by the

network attack graph.

In 1NAG , ..., 7NAG , attack scenarios consists of between 3 to 9 exploits, while in 8NAG ,

..., 14NAG , attack scenarios consists of between 3 to 12 exploits. Table 4 shows the

cardinality of the set of preventable exploits, the cardinality of the set of attack scenarios,

and the average cardinality of attack scenarios for each generated large-scale network attack

graph.

www.intechopen.com

Evolutionary Algorithms

100

Network

Attack Graph

Cardinality of the Set
of Exploits (|E|)

Cardinality of the Set of
Attack Scenarios (|S|)

Average Cardinality of
Attack Scenarios

1NAG 200 2000 6.01

2NAG 400 4000 5.99

3NAG 400 6000 5.99

4NAG 600 6000 6.03

5NAG 600 8000 5.95

6NAG 800 8000 6.01

7NAG 1000 10000 6.05

8NAG 200 2000 7.55

9NAG 400 4000 7.52

10NAG 400 6000 7.48

11NAG 600 6000 7.53

12NAG 600 8000 7.55

13NAG 800 8000 7.48

14NAG 1000 10000 7.47

Table 4. Large-scale network attack graphs

Experimental results

We applied ParticleNAG for minimization analysis of the above large-scale network attack

graphs. We performed 10 runs of the algorithm with different random seeds and reported

the best cardinality and the average cardinality of critical sets of exploits obtained from

these 10 runs. We also applied ApproxNAG (Sheyner et al., 2002); (Jha et al., 2002), AntNAG

(Abadi & Jalili, 2006), and GenNAG (Abadi & Jalili, 2008) for minimization analysis of the

above network attack graphs. As shown in Table 5, ParticleNAG outperforms all the

algorithms referenced above and finds a critical set of exploits with less cardinality. On

average, the cardinalities of critical sets of exploits found by ParticleNAG, AntNAG,

GenNAG are, respectively, 10.77, 9.21, and 8.95 percent less than the cardinality of critical

set of exploits of exploits found by ApproxNAG. Accordingly, we conclude that

ParticleNAG is more efficient than ApproxNAG, AntNAG, and GenNAG.

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

101

In ParticleNAG experiments, the parameters were set to c1 = 2, c2 = 2, and Vmax = 4, which
are values commonly used in the binary PSO literature. The swarm size was set to m = 20
and the maximum number of iterations was set to tmax = 100.

ParticleNAG AntNAG GenNAG Network

Attack

Graph Best Average Best Average Best Average

ApproxNAG

1NAG 87 87.3 88 88.6 87 88.8 98

2NAG 175 176.5 177 178.9 176 179.0 197

3NAG 194 196.6 197 199.6 197 200.2 221

4NAG 264 265.9 268 270.7 264 271.3 296

5NAG 287 288.4 291 293.7 291 293.8 317

6NAG 351 352.8 356 360.9 358 361.3 397

7NAG 439 442.8 448 451.7 449 453.9 503

8NAG 80 80.8 81 82.1 81 82.0 91

9NAG 158 159.6 159 161.9 161 162.5 182

10NAG 178 179.4 179 181.9 180 182.8 200

11NAG 239 240.8 242 244.7 244 245.6 267

12NAG 257 259 262 264.4 263 265.6 293

13NAG 322 323.6 325 329.1 327 331.2 362

14NAG 401 404 409 413.1 410 414.9 450

Table 5. The cardinality of critical set of exploits found by ParticleNAG, AntNAG, GenNAG,
and ApproxNAG

Figures 7 to 10 show the progress of the average cardinality of the global best position

of ParticleNAG, the global best solution of AntNAG, and the best chromosome of GenNAG

in the experiments for minimization analysis of 4NAG , 7NAG , 12NAG , and 14NAG ,

respectively. As it can be seen in these figures, ParticleNAG is able to quickly converge to a

good solution for large-scale network attack graphs and can maintain the balance

between the exploration and exploitation reasonably well in comparison to AntNAG and

GenNAG.

www.intechopen.com

Evolutionary Algorithms

102

262

265

268

271

274

277

280

283

286

289

292

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

C

a
rd

in
a

li
ty

Iteration

ParticleNAG

AntNAG

GenNAG

Fig. 7. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for
minimization analysis of NAG4

436

442

448

454

460

466

472

478

484

490

496

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

C

a
rd

in
a

li
ty

Iteration

ParticleNAG

AntNAG

GenNAG

Fig. 8. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for
minimization analysis of NAG7

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

103

258

261

264

267

270

273

276

279

282

285

288

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

C

a
rd

in
a

li
ty

Iteration

ParticleNAG

AntNAG

GenNAG

Fig. 9. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for
minimization analysis of NAG12

396

402

408

414

420

426

432

438

444

450

456

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

C

a
rd

in
a

li
ty

Iteration

ParticleNAG

AntNAG

GenNAG

Fig. 10. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for
minimization analysis of NAG14

www.intechopen.com

Evolutionary Algorithms

104

6.3 Algorithm parameters

We performed experiments to analyze the effect of different settings of parameters on the

performance of ParticleNAG.

The effect of using the local search heuristic on the performance of ParticleNAG was

analyzed by comparing the results of running the algorithm with and without the local

search heuristic. Figures 11 and 12 show the progress of the average cardinality of the global

436

442

448

454

460

466

472

478

484

490

496

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

C

a
rd

in
a

li
ty

Iteration

ParticleNAG

ParticleNAG without LS

Fig. 11. Comparison of the performance of ParticleNAG and ParticleNAG without the local
search heuristic for minimization analysis of NAG7

176

179

182

185

188

191

194

197

200

203

206

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

C

a
rd

in
a

li
ty

Iteration

ParticleNAG

PaeticleNAG without LS

Fig. 12. Comparison of the performance of ParticleNAG and ParticleNAG without the local
search heuristic for minimization analysis of NAG10

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

105

best position, obtained from 10 runs of ParticleNAG and 10 runs of ParticleNAG without the
local search heuristic in the experiments for minimization analysis of 7NAG and 10NAG ,

respectively.
As the figures show, ParticleNAG significantly performs better than ParticleNAG without
the local search heuristic and finds a critical set of exploits with less cardinality. This is
because before updating the personal best position of a particle, its current position is
improved by the local search heuristic. Hence, the personal best position of the particle
shows a locally optimized solution.
To analyze the effect of the swarm size on the performance of ParticleNAG, the algorithm
was run with the parameter settings from Section 6.2 but this time with the swarm size, m,
set to 2, 5, 15, and 20, respectively.
As it can be seen in Table 6, when using a very small number of particles, ParticleNAG
shows a poor performance. This is because the fewer the number of particles, the less the

SwarmNAG Network
Attack Graph

2m= 5m= 15m= 20m=

1NAG 89.1 88.6 87.8 87.3

2NAG 179.7 178.1 176.9 176.5

3NAG 201.0 198.1 197.0 196.6

4NAG 271.6 267.8 265.7 265.9

5NAG 294.1 290.4 288.7 288.4

6NAG 361.8 355.1 354.2 352.8

7NAG 451.1 446.0 442.8 442.8

8NAG 82.7 81.8 81.5 80.8

9NAG 163.2 160.6 160.4 159.6

10NAG 184.2 181.2 179.1 179.4

11NAG 245.0 242.2 241.3 240.8

12NAG 263.8 261.6 259.9 259.0

13NAG 330.5 326.9 323.8 323.6

14NAG 413.1 408.1 404.7 404.0

Table 6. Effect of the swarm size on the performance of ParticleNAG

www.intechopen.com

Evolutionary Algorithms

106

exploration ability of the algorithm, and consequently the less information about the search

space is available to all particles.

7. Conclusions

Each attack scenario is a sequence of exploits launched by an intruder for a particular goal.

To prevent an exploit, the security analyst must implement a suitable countermeasure such

as the firewall configuration or patch the vulnerabilities that made this exploit possible. The

collection of possible attack scenarios in a computer network can be represented by a

directed graph, called network attack graph. In this directed graph, each path from an initial

node to a goal node corresponds to an attack scenario.

The aim of minimization analysis of network attack graphs is to find a minimum critical set

of exploits/countermeasures so that by preventing/implementing them the intruder cannot

reach his goal using any attack scenarios. This problem is in fact a constrained optimization

problem in which the objective is to find a solution with minimum cardinality and the

constraint is that the solution must be critical.

Several factors can make network attack graphs larger so that finding a minimum critical set

of exploits/countermeasures becomes more difficult. An obvious factor is the size of the

network under analysis. Our society has become increasingly dependent on networked

computers and the trend towards larger networks will continue. Also, less secure networks

clearly have larger network attack graphs. Each network host might have several exploitable

vulnerabilities. When considered across an enterprise, especially given global internet

connectivity, network attack graphs become potentially large.

Particle swarm optimization (PSO) is a population based stochastic optimization algorithm

that was inspired by social behaviour of flocks of birds when they are searching for food.

While evolutionary algorithms take inspiration from biological evolution, memetic

algorithms mimic cultural evolution. The term meme refers to a unit of cultural information

that can be transmitted from one mind to another after reinterpretation and improvement

that in the context of combinatorial optimization corresponds to local search.

In this paper, we presented a memetic particle swarm optimization algorithm, called

ParticleNAG, for minimization analysis of network attack graphs. A greedy repair method

was used to convert the constrained optimization problem into an unconstrained one. We

reported the results of applying ParticleNAG for minimization analysis of 14 large-scale

network attack graphs. We also applied an approximation algorithm, ApproxNAG (Sheyner

et al., 2002); (Jha et al., 2002), an ant colony optimization algorithm, AntNAG (Abadi & Jalili,

2006), and a genetic algorithm, GenNAG (Abadi & Jalili, 2008), for minimization analysis of

the above large-scale network attack graphs.

On average, the cardinality of critical sets of exploits found by ParticleNAG was 10.77

percent less than the cardinality of critical sets of exploits found by ApproxNAG. Also,

ParticleNAG performed better than AntNAG and GenNAG in terms of convergence speed

and accuracy.

We performed experiments to analyze the effect of swarm size and local search heuristic on

the performance of ParticleNAG. The results of experiments showed that ParticleNAG

significantly performs better than ParticleNAG without the local search heuristic.

www.intechopen.com

A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability Analysis

107

8. References

Abadi, M. & Jalili, S. (2005). Automatic discovery of network attack scenarios using SPIN
model checker, Proceedings of the International Symposium on Telecommunications (IST
2005), pp. 81–86, Shiraz, Iran, September 2005

Abadi, M. & Jalili, S. (2006). An ant colony optimization algorithm for network vulnerability
analysis. Iranian Journal of Electrical & Electronic Engineering (IJEEE), Vol. 2, Nos. 3 &
4, pp. 106–120, July 2006

Abadi, M. & Jalili, S. (2008). Minimization analysis of network attack graphs using genetic
algorithms. International Journal of Computers and Their Applications (IJCA), Vol. 14,
No. 4, pp. 263–273, December 2008

Ammann, P.; Wijesekera, D. & Kaushik, S. (2002). Scalable, graph-based network
vulnerability analysis, Proceedings of the 9th ACM Conference on Computer and
Communications Security, pp. 217–224, Washington, DC, USA, November 2002

Ammann, P.; Pamula, J.; Ritchey, R. & Street, J. (2005). A host-based approach to
network attack chaining analysis, Proceedings of the 2005 Annual Computer
Security Applications Conference (ACSAC 2005), pp. 72–84, Tucson, AZ, USA,
December 2005

Braendler D. & Hendtlass T. (2002). The suitability of particle swarm optimisation for
training neural hardware, Proceedings of the 15th International Conference on Industrial
and Engineering, Applications of Artificial Intelligence and Expert Systems, pp. 190–199,
Cairns, Australia, June 2002

Deraison, R. (2010). Nessus Vulnerability Scanner. http://www.nessus.org
Eberhart, R. C.; Simpson P. & Dobbins R. (1996). Computational Intelligence PC Tools,

Academic Press Professional, San Diego, CA, USA
Eiben, A. E. & Smith, J. E. (2003). Introduction to Evolutionary Computing, Springer-Verlag,

Berlin, Germany
Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelligence, John Wiley &

Sons, Hoboken, NJ, USA
Hendtlass, T. & Randall, M. (2001). A survey of ant colony and particle swarm meta-

heuristics and their application to discrete optimization problems, Proceedings of the
Inaugural Workshop on Artificial Life, pp. 15–25, Adelaide, Australia, December 2001

Jha, S.; Sheyner, O. & Wing, J. M. (2002). Two formal analyses of attack graphs, Proceedings of
the 15th IEEE Computer Security Foundations Workshop, pp. 49–63, Cape Breton, Nova
Scotia, Canada, June 2002

Kennedy, J. & Eberhart, R. C. (1995). Particle swarm optimization, Proceedings of the IEEE
International Joint Conference on Neural Networks, pp. 1942–1948, Perth, Australia,
1995

Kennedy, J. & Eberhart, R. C. (1997). A discrete binary version of the particle swarm
algorithm, Proceedings of the 1997 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 4104–4109, Orlando, FL, USA, October 1997

Kennedy, J.; Eberhart, R. C. & Shi Y. (2001). Swarm Intelligence, Morgan Kaufmann, San
Mateo, CA, USA

Krasnogor, N.; Aragon, A. & Pacheco J. (2006). Memetic Algorithms, In: Metaheuristic
Procedures for Training Neural Networks, Enrique Alba & Rafael Martí (Eds.),
Springer-Verlag, Berlin, Germany

www.intechopen.com

Evolutionary Algorithms

108

Mehta, V.; Bartzis, C.; Zhu, H.; Clarke, E. M. & Wing, J. M. (2006). Ranking attack graphs,
Proceedings of the 9th International Symposium on Recent Advances in Intrusion Detection
(RAID 2006), pp. 127–144, Hamburg, Germany, September 2006

Noel, S.; Jacobs, M.; Kalapa, P. & Jajodia, S. (2005). Multiple coordinated views for network
attack graphs, Proceedings of the IEEE Workshop on Visualization for Computer Security
(VizSEC 2005), pp. 99–106, Minneapolis, Minnesota, USA, October 2005

NuSMV. (2010). A New Symbolic Model Checker. http://afrodite.itc.it:1024/˜nusmv/
NVD. (2010). National Vulnerability Database. http://nvd.nist.gov/
Ou, X.; Govindavajhala, S. & Appel, A. W. (2005). MulVAL: A logic-based network security

analyzer, Proceedings of the 14th USENIX Security Symposium, pp. 8–8, Baltimore,
MD, USA, August 2005

Ou, X.; Boyer, W. F. & McQueen, M. A. (2006). A scalable approach to attack graph
generation, Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS 2006), pp. 336–345, Alexandria, VA, USA, October 2006

Phillips, C. & Swiler, L. P. (1998). A graph-based system for network-vulnerability,
Proceedings of the New Security Paradigms Workshop, pp. 71–79, Charlottesville, VA,
USA, September 1998

Sheyner, O.; Haines, J. W.; Jha, S.; Lippmann, R. & Wing, J. M. (2002). Automated generation
and analysis of attack graphs, Proceedings of the IEEE Symposium on Security and
Privacy, pp. 273–284, Berkeley, CA, USA, May 2002

Shi, Y. & Eberhart, R. C. (1999). Empirical study of particle swarm optimization, Proceedings
of the IEEE Congress on Evolutionary Computation, pp. 1945–1950, Washington, DC,
USA, July 1999

Shi, Y. (2004). Particle swarm optimization. IEEE Connections, Vol. 2, No. 1, pp. 8–13,
February 2004

www.intechopen.com

Evolutionary Algorithms

Edited by Prof. Eisuke Kita

ISBN 978-953-307-171-8

Hard cover, 584 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary algorithms are successively applied to wide optimization problems in the engineering, marketing,

operations research, and social science, such as include scheduling, genetics, material selection, structural

design and so on. Apart from mathematical optimization problems, evolutionary algorithms have also been

used as an experimental framework within biological evolution and natural selection in the field of artificial life.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mahdi Abadi and Saeed Jalili (2011). A Memetic Particle Swarm Optimization Algorithm for Network

Vulnerability Analysis, Evolutionary Algorithms, Prof. Eisuke Kita (Ed.), ISBN: 978-953-307-171-8, InTech,

Available from: http://www.intechopen.com/books/evolutionary-algorithms/a-memetic-particle-swarm-

optimization-algorithm-for-network-vulnerability-analysis

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

