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1. Introduction 

In the exploration of a planetary surface such as that of Mars using mobile robots, rock 
and soil-sample collection and analysis are essential in determining the terrain 
composition and in searching for traces of ancient life (Malin & Edgett, 2000). Several 
missions to Mars have already been sent. In the 1997 Mars Pathfinder mission (Mars 
Pathfinder Homepage), the Sojourner rover used an alpha-proton-X-ray spectrometer 
(APXS) to analyze rock and soil sample compositions. It also had a simple onboard 
control system for hazard avoidance, although the rover was operated remotely from 
Earth most of the time. The method for rock and soil-sample collection is as follows. After 
landing, the rover used its black-and-white and color imaging systems to survey the 
surrounding terrain. The images were sent back to Earth, and analyzed by a team of 
geologists to determine where interesting samples might be found. Based on that 
information, the next destination for the rover was selected and the commands to get 
there were sent to the rover via radio with transmission delays ranging from 10 to 15 
minutes (depending on the relative orbital positions of Earth and Mars). The set of 
commands were sent out over a day with the rover moving only a small distance each 
time. This was done to allow the mission control to constantly verify the position, with 
time to react to unforeseen problems. When the rover finally reached its destination and 
analyzed the sample, it spent another day transmitting the information back to Earth. The 
cycle was repeated as soon as the geologists had decided on the next destination for the 
rover. Clearly, an automated system for rock and soil sample collection would expedite 
the process. In the 2004 Mars Exploration Rover (MER) mission, the Spirit and 
Opportunity rovers (Mars Spirit & Opportunity Rovers Homepage) featured an upgraded 
navigation system. Imagery from a stereo camera pair was used to create a 3-D model of 
the surrounding terrain, from which a traversability map could be generated. This feature 
gave the mission controllers the option of either directly commanding the rovers or 

*
This chapter is an enhanced version of the paper by J.C. Cardema, P.K.C. Wang and G. Rodriguez, 
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allowing them to autonomously navigate over short distances. Consequently, the rovers 
were often able to traverse over 100 meters a day (Biesiadecki & Maimone, 2006). The 
rovers were also programmed to autonomously select interesting soil samples, but this 
feature was seldom used. Nevertheless, this was a significant first step toward fully 
automating the soil-sample collection process.  
In this study, an attempt is made to formulate the path planning problem for single and 
multiple mobile robots (referred to hereafter as “rovers” for brevity) for sample collection as 
a mathematical optimization problem. The objective is to maximize the value of the mission, 
which is expressed in the form of a mission return function. This function contains the 
performance metric for evaluating the effectiveness of different mission setups. To the best 
of our knowledge, the problem of sample collection has not yet been studied in conjunction 
with optimal path planning. There are many considerations in the mathematical 
formulation of this problem. These include planetary terrain surface modeling, rover 
properties, number of rovers, initial starting positions, and the selection of a meaningful 
performance metric for rovers so that the performance of single versus multiple rovers in 
representative scenarios can be compared. The basic problem is to find a sample-collection 
path based on this performance metric. The main objective is to develop useful algorithms 
for path planning of single or multiple planetary rovers for sample collection. Another 
objective is to determine quantitatively whether multiple rovers cooperating in sample 
collection can produce better performance than rovers operating independently. In 
particular, the dependence of the overall performance on the number of rovers is studied. 
To clarify the basic ideas, we make use of the Mars rover rock and soil-sample collection 
scenario in the problem formulation and in the numerical study. 

2. Problem Description 

We begin with a discussion of the problem of planetary surface modeling, followed by 
various operational considerations of the rovers. To facilitate the mathematical formulation 
of the optimal path-planning problems, a few basic definitions will be introduced. Then, 
precise mathematical statements of the optimal path-planning problems will be presented 
for both single and multiple rover cases. 

2.1 Planetary Surface Modeling 

Assuming that a region on the planetary surface has been selected for detailed scientific 
study, the main task is to develop a suitable terrain surface model for rover path-
planning. Initially, a crude surface model for the selected spatial region may be 
constructed from the aerial planetary survey data obtained by fly-by spacecraft or 
observation satellites such as the Mars Orbiter. Once the rovers are on the planetary 
surface, more refined models (usually localized model) may be constructed from the 
image-data generated by on-board cameras. Although the refined models may be useful 
for scientific studies, they may not be useful for practical optimal path planning. 
Therefore we resort to approximate models that simplify the mathematical formulation 
and numerical solution of the optimal path-planning problems. In our model, we assume 
that the area of the spatial domain for exploration is sufficiently small so that the 
curvature of the planetary surface can be neglected. Moreover, the surface is sufficiently 
smooth for rover maneuvers. 
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2.1.1 Approximate Surface Model 

Let Ω  be a bounded spatial domain of the two-dimensional real Euclidean space 2R  and 

the representation of a point in 2R with respect a given orthonormal basis be denoted by x .

Let ( )f f x=  be a real-valued continuous function defined on .Ω Let

denote the graph of f , which represents the planetary surface 

under consideration. In this work, we use a polygonal approximation for the planetary 
surface 

fG via triangulation that partitions 
fG  into adjacent, non-overlapping triangular 

patches, where each edge of a triangular patch is shared by exactly two triangular patches 

except on the boundaries of 
fG . It has been proved that every C 1 -surface defined on Ω

with a sufficiently smooth boundary has a triangulation, although an infinite number of 
triangular patches may be required (Weisstein). Here we make use of the Delaunay 
triangulation, which produces a set of lines connecting each point in a given finite point set 
to its neighbors. Furthermore, it has the property that the triangles created by these lines 
have empty circumcircles (i.e. the circumcircles corresponding to each triangle contains no 
other data points). The Delaunay triangulation of 

fG  is a polygonal approximation of the 

original planetary surface. It can also be thought of as the projection of the planetary surface 

onto a mesh space. The domain of the triangulation is a mesh space denoted by Ω̂ ⊂ Ω ,

where Ω̂  is the discrete version of Ω . The resulting polygonal approximation of the 

planetary surface 
fG  will be denoted by ˆ

fG . This approximate surface model will be used 

in formulating the optimal path-planning problem. Although one might use other forms of 
approximation for 

fG  that lead to smoother approximate surfaces, our choice provides 

significant simplification of the optimal path-planning problem, since the paths are 
restricted to lie on the edges of the triangular patches. 

2.1.2. Rock and Soil-sample Properties 

Rock and soil samples have different values to geologists based on the questions they are 
trying to answer. For example, in Mars exploration, sedimentary rocks are important since 
two of the primary questions about early Martian geological history are whether liquid 
water could exist on its surface and, if so, whether liquid water ever took the form of lakes 
or seas (Malin & Edgett, 2000). According to Malin and Edgett, outcrop materials are 
interpreted as Martian sedimentary rock, and they are of particular interest to geologists for 
answering these questions. The outcrop materials occur in three types: layered, massive, 
and thin mesas, which differ in visual tone, thickness, texture, and configuration. The 
locations of these outcrops are limited to specific regions mostly between ± 30 degrees 
latitude. One of the regions with large outcrop occurrence is in Valles Marineris. The terrain 
in a portion of this region is used for our case study. The three types of outcrops are 
speculated to come from different Martian ages. The rover should have the capability of 
identifying and distinguishing these different types. To model a portion of Valles Marineris, 
we assume that the rock and soil samples are randomly distributed over various sub-
regions. An appropriate model should allow for the specification of any rock and soil-
sample distribution on the given Mars terrain. A simple way to do this is to divide the 
terrain into sub-regions and assign weights to determine how many samples to uniformly 
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distribute within each sub-region. Moreover, we assume there are a finite number of 
samples, each with an assigned value in a prescribed range. A high sample value implies 
high scientific value. In practical situations, this task may be accomplished by a careful 
study of the aerial survey data. 

2.2. Single Rover Case

2.2.1 Operational Considerations 

In what follows, we consider the main factors that are relevant to the formulation of the 
path-planning problem. 

2.2.1.1 Dynamic properties 

The rover is modeled simply. We only consider mass m, maximum traversable slope or tilt 

angle θ , maximum speed maxν , and maximum power maxP . They are used to calculate the 

rover’s traveling time on terrains with varying slopes. Higher-order dynamics involving the 
acceleration of the rover and the damping effects of the suspension system are not included, 
since the actual motion of the rover is relatively slow compared to that of mobile robots in a 
laboratory environment. In what follows, the term “sample collection” is used 
interchangeably with “sample analysis”, although they do not necessarily have the same 
connotation. (i.e. sample collection can be thought of as the collection of sample data.) In the 
case where the rover physically picks up the sample, the mass of each collected sample is 
added to the overall mass of the rover. There is also a loading constraint that limits the 
number of samples that the rover can physically hold in its storage compartment. In this 
study, we do not consider the situation where the rover can only use its imaging system to 
identify and detect samples. This leads to the problem of determining a path that maximizes 
the visual coverage of the terrain (Wang, 2003, 2004). 

2.2.1.2 Mission time limit 

The mission length is an important consideration in path planning. For the 1997 Pathfinder 
mission, the planned mission duration was 30 days. The algorithm for path planning should 
verify that the time duration for sample collection is within the prescribed mission time 

limit (denoted by maxτ ), which in turn determines the maximum terrain coverage. 

There should be a clarification about the distinction between the overall mission time and 
the time it takes to execute a planned path. In practical situations, it would be difficult to 
plan a path for the entire mission duration. It would be more reasonable to plan paths of 
shorter duration that can be executed at specific intervals during the mission. However, to 
simplify our formulation, we do not make this distinction and assume that we can plan a 
path for the entire mission duration. 

2.2.1.3 Sample analysis time 

As mentioned earlier, the Sojourner rover in the Pathfinder mission was equipped with a 
spectrometer (APXS) for rock and soil-sample analysis. The sensor head of the APXS was 
placed on the sample for 10 hours during the analysis. To account for this, the sample 

analysis time waitτ is introduced into our model. It represents the amount of time required to 

analyze the sample. To simplify the model, we assume that maxτ  is the same for every 

sample, regardless of its type. With the inclusion of the sample analysis time, the rover is 
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forced to consider more carefully which rock and soil samples to collect while still operating 
within the time limit. 

2.2.1.3 Mission return function 

To characterize the performance of a rover in rock and soil sample collection, we need to 
choose an appropriate mission return function to quantify the rover’s performance 
throughout the mission. The mission return function used in this study is simply the sum of 
the collected sample values. 

2.2.1.4 Terrain risk 

Let maxθ denote the angle of the maximum traversable slope corresponding to the maximum 

allowable tilt angle of the rover before it topples over. To determine if a point on the surface 
is too risky to traverse, the terrain slopes at that point in all directions are computed. If the 

magnitude of the slope angle in any direction exceeds maxθ , that point is deemed un-

traversable. Usually, the rover is more susceptible to tipping over sideways than forwards 
or backwards, although the dimensions of the rover are not considered in this study. 

2.2.1.5 Terrain properties 

Ideally, the terrain surface in the spatial region chosen for exploration should be sufficiently 
smooth to facilitate rover maneuverability but also has features to indicate the possible 
presence of interesting samples. For rover traversability, the terrain texture and hardness 
are also important (Seraji, 2000). Terrains that are rough and rocky are avoided in favor of 
smoother ones. Terrain risk depends on both the terrain texture and hardness. 

2.2.2. Definitions 

Having specified an approximate surface in the form described in Sec. 2.1.1, a path can be 
specified on this surface. First, we introduce the notion of an admissible segment. 

2.2.2.1 Definition 1 

(Admissible segment): A segment γ  connecting a point ( , ( ))a ax f x ∈ ˆ
fG with an adjacent point 

ˆ( , ( ))b b fx f x ∈G along an edge of a triangular patch formed by the Delaunay triangulation of 

fG is said to be admissible if it satisfies the following constraints induced by the terrain risk: 

max

( ) ( )
arcsin a ai

a

f x f x

d
θ θ

−
= ≤  for all ,aix

and

max

( ) ( )
arcsin b bi

b

f x f x

d
θ θ

−
= ≤  for all 

bix ,

where
aix  and 

bix  are the adjacent points of 
ax  and 

bx , respectively, and 

1 1( , ( )) ( , ( ))i i i id x f x x f x+ += −  is the Euclidean distance between points ( , ( ))i ix f x and

1 1( , ( ))i ix f x+ +
. (i.e. The slopes of ˆ

fG from
ax and

bx  to all their neighboring points satisfy the 

maximum traversable slope angle constraint maxθ ).
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2.2.2.2 Definition 2 

(Admissible path): A path  composed of connected segments in 
ˆ
fG is said to be admissible if 

each segment is admissible. 
Each admissible path can be represented by an ordered string of points that will be denoted 

by S ⊂ Ω̂ . The string of points S  may include repeated points since partial backtracking 

along the path is allowed. To account for different sample values in the model, the samples 
are individually indexed. Each sample 

kσ  has a corresponding value 
kλ , where k is the 

index number. We assume that the sample values as well as the sample distribution ( )ssD x

on the terrain defined below are known a priori.

2.2.2.3 Definition 3 

(Sample distribution): The sample distribution ( )ss ssD D x=  is a set-valued function defined as 

follows: If at a point ˆ ,x∈ Ω  there are m samples with indices 
,1 ,2 ,{ , ,..., }x x x x mk k k=J , then 

( )ssD x  = .xJ  If there are no samples at ˆx∈ Ω , then ( )ssD x is an empty set. 

The entire set of all samples indices is denoted by 
ssE . Along each admissible path  with 

the corresponding string S , there is a set of collectable samples
ssC  that includes all the 

samples contained in S as defined below: 

2.2.2.4 Definition 4 

(Collectible sample set): If 
ΓS  is the string of points associated with an admissible path Γ , and 

1 2{ , ,..., }Nk k kΓ =J  is the set of sample indices such that 

( ),ss

x

D x
Γ

Γ
∈

=
S

J

where N is the number of soil samples along the path, then the collectable sample set is 

.ss Γ=C J

Next, we define the attainable set associated with an initial point 
0x  at time 

0t .

2.2.2.5 Definition 5 

(Attainable set): The attainable set at time t starting from 
0x

ˆ∈Ω  at time 
0t (denoted by 

0 0( ; , )t x tA ˆ⊂ Ω ) is the set of all points in Ω̂  that can be reached at time t via admissible paths 

initiating from 
0x  at time 

0t .

Since ˆ
fG  is time-invariant, we can set 

0t  = 0. Successive points along the admissible path Γ

will be restricted to this attainable set. An attainable set associated with a maximum mission 

time duration maxτ  will be denoted by max 0( )xA  = max 0( ; ,0),xτA  which will be referred to as 

the maximal attainable set from 0x .

Evidently, we can find the admissible paths and their collectible sample sets associated with 
a given 

0( ; ,0).t xA  Once we determine the samples to collect along the path, we can 

introduce the notion of an admissible tour.
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2.2.2.6 Definition 6 

(Admissible tour): An admissible tour 
aT  is a pair (

aΓ ,
ssaL ), where 

aΓ  is an admissible path 

with point set 
aS  and collectible sample set 

ssaC , and 
ssaL is the list of soil samples collected 

along the path 
aΓ .

In an admissible tour, the time for traversing the path (including the sample analysis time) 
is within the mission time limit. If n is the number of samples collected, then the mission 

time mτ is given by 

max ,m i wait

i

nτ τ τ τ= + ⋅ ≤  (1) 

where waitτ  is the time required to analyze each sample; maxτ is the mission time limit; iτ is 

the traveling time between the successive points ix  and 1ix +  in aS  and is given by 

m ax m ax

m ax , ,m
i

mg h d

P v
τ =  (2) 

where
mg  is the acceleration due to gravity of the planet, 

1( ) ( )i ih f x f x += −  is the difference 

in terrain elevation at the points ix  and 1ix + , and 1 1( , ( )) ( , ( ))i i i id x f x x f x+ += − . Thus, iτ

corresponds to the maximum of the traveling times under the power and speed constraints. 

Physically, when climbing up a slope, the power constraint is used to compute iτ . When the 

terrain is flat or sloping downward, the speed constraint is used instead.  
For an admissible tour 

aT , the sample list 
ssL contains the index of each sample in the order 

of collection. Each sample kσ in the sample list has value kλ . Let I  = 1 2{ , ,..., ,..., }j nk k k k be

the set of sample indices in the order of collection, where 
ssa⊂I C  and 

jk  is the index of the 

j th sample collected along the path. Then, 
ssL  = I .

2.2.3. Problem Formulation 

Assume that an approximate planetary surface ˆ
fG , initial starting point 

0x , mission time 

limit maxτ , sample analysis time waitτ , sample index set ssE , samples kσ ‘s with values kλ , k ∈

ssE , and sample distribution ( )ss ssD D x=  are given.  

2.2.3.1 Problem P1 

Find an optimal tour oT  (with admissible path o

aΓ  and the corresponding sample list
ssa

oL ) that 

maximizes the mission return function  

( ) ,
ssa

ssa k

k

V λ
∈

=
L

L (3)

where
kλ  is the value of sample kσ , i.e. 

( ) ( )o

ssa ssaV V≥L L (4)

for all 
ssaL  associated with admissible paths 

aΓ .

To find an optimal tour, we must first consider all possible admissible paths from the given 

initial starting point 0x . The total traveling time atτ  along each admissible path aΓ  (with 

path point set aS  and collectible sample set ssaC ) satisfies the constraint: 
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max ,at i

i

τ τ τ= ≤  (5) 

where iτ  is the traveling time between successive points ix  and 1ix +  in aS .

Along each admissible path, we have a set 
ssaC  of collectable samples. Let I ⊂

ssaC  be a set 

of sample indices in the order of collection such that 

max ,am i wait

i

nτ τ τ τ= + ⋅ ≤  (6) 

where amτ  is the total mission time, n is the number of samples in I, and each iτ  is the 

traveling time between successive points ix  and 1ix +  in aS  along the path. All possible sets 

of sample indices I are considered. 
For each admissible path 

aΓ  (with path point set 
aS  and collectible sample set 

ssaC ), we 

search through all possible sets of sample indices I ⊂
ssaC , and find a I * ⊂

ssaC  that 

maximizes the mission return function 

( ) ,k
k

V λ
∈

=
I

I  (7) 

i.e. 

( *) max{ ( ) : }ssaV V C= ⊂I I I  and *ssa=L I . (8) 

Let
AΓ  denote the set of all admissible paths, and Λ A  the corresponding set of sample lists. 

Once we have performed the maximization for each admissible path, the optimal sample list 
o

ssL  is found by taking the path and sample list that maximizes the mission return function, 

i.e.  

( ) max{ ( ) : }.o

ss ss ss AV V= ∈L L L L  (9) 

The optimal path oΓ  is the path associated with ,o

ssL  and the optimal tour is oT  = ( oΓ , o

ssL ).

The optimal sample collection path generally depends on the initial starting position of the 
rover. Intuitively, we would like to place the rover as close as possible to the highest-valued 
samples. Since the distributions of the samples are known, we could also maximize the 
mission return function with respect to the starting position. But in practical situations, the 
starting position cannot be specified precisely. Moreover, the sample distributions are not 
known beforehand. 

2.3. Multiple Rover Case 

In the multiple rover case, it is necessary to introduce a few additional notions. 

2.3.1. Operational Considerations 

2.3.1.1 Starting positions 

First, let us consider the attainable set of each rover corresponding to a given initial starting 
position at time 0t = . If the maximal attainable sets of two or more rovers overlap, then a 

decision has to be made on the assignment of rovers to cover the overlapping region. This 
decision can be made either by the mission planner (centralized operation) or by the rovers 
themselves (autonomous operation). 
As in the single rover case, the choice of starting positions is an important issue. If the rovers 
are placed too close together, they could interfere with each other’s collection tasks. If the 
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rovers are placed too far apart, then there is little cooperation among them since the 
overlapping region is small. Therefore, it is desirable to place the rovers such that a balance 
between cooperation and interference can be reached. The problem of finding the optimum 
starting positions for m rovers, with or without a priori knowledge of the sample 
distributions, is an interesting one. This problem will not be considered here. In what 
follows, we assume that the starting positions of the rovers are pre-assigned. 

2.3.1.2 Interaction 

The interaction between the rovers can lead to either cooperation or interference. In order to 
promote cooperation, the rovers can actively communicate with each other and decide 
among themselves on how to split up the terrain to make the collection process most 
efficient. Alternatively, a central supervisor or mission planner can make all these decisions 
beforehand and predetermine the rover’s sample collection path. We expect that the 
performance of multiple rovers with interaction and cooperation is better than that of 
multiple rovers operating independently. 

2.3.1.3 Centralized vs. Autonomous Operation 

The distinction between the centralized and autonomous operations depends on information 
utilization. In the centralized operation, all the information about the terrain including sample 
locations is known beforehand. This information is analyzed and the optimum paths for the 
rovers are predetermined. This is a simplified version of the real-world scenario. In practical 
situations, the terrain details as well as the rock and soil-sample locations are not completely 
known, hence autonomous operation would be more desirable. Here, each rover must rely on 
its vision system to examine the surrounding terrain and to detect samples. Since the range of 
view of the rover is limited, cooperation between the rovers is more desirable. Using the data 
from its vision system, each rover would then plan its own optimum path while keeping in 
communication with the other rovers for promoting cooperation and avoiding interference. 
The autonomous operation could account for inaccuracies or uncertainties in the rover’s 
terrain information. In what follows, we consider only the centralized operation. 

2.3.2. Centralized Operation 

The multiple rover case is similar to the single rover case when the rovers are placed far 
apart. Since there is little or no interaction, the problem can be reduced to one involving 
separate single rover cases. When the rovers are placed close enough such that interaction 
occurs, a new approach to the problem must be developed. We shall consider several 
different sample collection strategies for m rovers with given initial starting positions and 
sample distributions. 

2.3.2.1 Best Route First 

Here, we solve the single rover case for each rover and compute the optimal tours. We 
search for the rover whose tour has the highest mission return function value and keep only 
that tour. The tour is assigned to that rover and its collected samples are removed from the 
terrain. The process is repeated for the remaining rovers until a tour has been assigned to 
each rover. The drawbacks with this strategy include long computation time, especially for a 
large number of rovers and samples. Moreover, the tour value of each successive rover is 
less than that of the preceding rover in the iteration process.  
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2.3.2.2 Partition of Overlapping Attainable Set: Closest Rover 

The maximal attainable sets of the m rovers are examined and the terrain is divided into 
overlapping and non-overlapping regions. The overlapping region includes all points on the 
terrain that can be reached by more than one rover within the given mission time limit. 
Since each sample in the overlapping region can be assigned to only one rover, the set of 
samples in the overlapping region must be partitioned according to some given criteria. 
Here, the samples in the overlapping region are each assigned to one of the rovers based on 
the distance from the sample’s position to each rover’s starting position. The rover whose 
starting position is closest to the sample’s position is assigned to collect that sample. Once 
the partitioning of the samples in the overlapping region is completed, the problem reduces 
to m single rover problems with each rover limited to a subset of the collectable samples. 
However, a rover may be assigned more samples than it can collect within the prescribed 
mission time limit. In that case, after determining the rover’s tour, the uncollected samples 
are passed on to the other rovers for consideration. 

2.3.2.3 Partition of Overlapping Attainable Set: Closest Path 

This strategy is similar to the previous one except that the criterion for partitioning samples in 

the overlapping region of the maximal attainable sets is different. The samples in the 

overlapping region are assigned to one of the rovers based on the distance from the sample’s 

position to each rover’s preliminary path (a path planned before the overlapping region is taken 

into account). The rover whose preliminary path comes the closest to the sample’s position is 

assigned to collect that sample. This criterion makes the sample collection task easier, since it 

involves only a slight deviation from the preliminary path. Again, if a rover cannot collect all of 

its assigned samples, the uncollected samples are passed on to the other rovers.  

One possible modification is to insert the sample into the preliminary path when 
considering the subsequent samples in the overlapping region. This may result in a better 
partitioning of the overlapping region. For simplicity, this is not done in this work. Rather, 
when considering other samples, we use the original preliminary path. In what follows, 
only the “Partition of Overlapping Attainable Set: Closest Path” strategy will be considered. 

2.3.3. Definitions 

The sample collection path for rover j  is 
jΓ  and is associated with a collectible sample set 

,ss jC . Each path 
jΓ  is represented by an ordered set of points that will be denoted by 

jS ˆ⊂ Ω . This set may include repeated points. Let the sample distribution be denoted by 

( )ss ssD D x= , and the entire set of sample indices by 
ssE .

The attainable set of rover j at a particular time t, starting from an initial point 
0, jx ∈ Ω̂  at 

0t ,

is denoted by 
0 0( ; , )j t x tA ⊂ Γ̂ . Successive points along the admissible path 

jΓ  will be 

restricted to this attainable set. The attainable set of rover j  associated with the maximum 

mission time maxτ  is denoted by 
max, jA  = 

max 0 0( ; , )j x tτA . This attainable set 
max, jA  is the 

maximum attainable set of rover j .

The spatial domain Ω̂  is partitioned into sub-regions based on the maximal attainable sets 

max,1 max,,..., mA A . Let Ŷ ∈ Ŝ  denote the set of points in the overlapping region of the maximal 
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attainable sets. (i.e. All points in Ŷ  can be reached by more than one rover.) Let 
jM  = 

max, jA  - (
max, jA Ŷ∩ ) be the sub-region of the spatial domain that can only be reached by 

rover j. The set of sample indices in the overlapping region will be denoted by 
ssI ∈

ssE .

The sample indices in each sub-region 
jM  are denoted by 

,ss j⊂F ssE .

2.3.4 Problem Formulation 

There are many possible formulations of the optimal path-planning problem for sample 
collection involving multiple rovers. We give one such formulation. 

2.3.4.1 Problem P2 

Given the approximate planetary surface ˆ
fG ; m rovers with initial starting points 

0,1 0,,..., mx x ;

mission time limit maxτ ; sample analysis time waitτ ; sample index set 
ssE ; samples kσ  with 

values kλ , ssk∈E ; and sample distribution ( )ss ssD D x= , find optimal tours 
1 ,...,o o

mT T  (each 

with path 
o

jΓ  and sample list ,ssopt jL ) that maximize the mission return function 

,

,1 ,

1

( ,..., ) .
ss j

m

ss ss m k

j k

V λ
= ∈

=
L

L L  (10) 

Consider the “Partition of Overlapping Attainable Set: Closest Path” strategy for finding the 
optimal tours. We need to first partition the terrain into sub-regions based on the maximal 

attainable sets. By considering the terrain without including the overlapping region Ŷ , we 

can solve m single rover problems: “Rover 1 starting at 0,1x  with sub-domain
1M  “ to “Rover 

m starting at 0,mx  with sub-domain mM .” For each rover j , we maximize the mission return 

function

,

,( )
ss j

ss j k

k

V λ
∈

=
L

L
 (11) 

over the sub-domain 
jM  and the corresponding set of sample indices 

,ss jF . From these m

single rover problems, we obtain m tours 
,( , ),i i ss i= ΓT L 1,..., .i m=  These tours are not 

optimal since we have not yet considered the samples in the overlapping region. 

Next, we consider each sample in the overlapping region Ŷ . For each sample with index 

,ssk∈I we find the rover jwhose path 
jΓ  (with path point set 

jS ) is closest to the sample. 

We minimize

( ) min min ( , ( )) ( , ( ))
j

p i i i
j x

d x x f x x f x
∈

= −
S

 (12) 

i th respect to ix , the spatial coordinate of the ith sample in the overlapping region. The 

rover j that minimizes this function is assigned to collect the sample at ix . This is repeated 

for all the samples in the overlapping region. After the assigning of the samples in the 
overlapping region, each rover j has a new set of samples to collect from. This new set of 
sample indices is denoted by '

,ss jF .

Now, we repeat solving m single rover problems with each rover j limited to the sample set 
'

,ss jF . The resulting tours are near-optimal. 
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2.4 Sample Collection Problem 

The Sample Collection Problem (SCP) is an instance of the well-known Traveling Salesman 
Problem (TSP). A brief discussion of the TSP can be found in Appendix A. In the TSP, the 
problem is to find a path that visits all the nodes with minimum total traveling distance. In 
the SCP, the problem is to find a path that maximizes the value of the nodes visited within a 
specified maximum mission time limit. The differences between the TSP and the SCP are: (i) 
the TSP begins and ends at the same node while the SCP can end anywhere, (ii) the SCP has 
a waiting time associated with picking up a sample to account for the sample analysis time, 
(iii) the samples have different values, so different payoffs are associated with different 
nodes, (iv) instead of finding the minimum total distance, the SCP tries to maximize the 
value of all the collected samples, and (v) not all the nodes need to be visited. These 
modifications make the SCP a much more complex problem to solve than the original TSP, 
which is known to be NP-hard. 
The heuristic used in solving the SCP is the maximum-value heuristic, which is similar to 
the minimum-distance heuristic used in solving the TSP. Instead of minimizing the total 
distance traveled, the maximum-value heuristic calls for maximizing the value of a 
weighting function that takes into account the value of each sample as well as the distance. 
At a given position 

ix , the weighting function is used to decide on the next sample to collect. 

3. Algorithms 

As mentioned in Sec. 2.1.1, we only consider the rover’s mass m, maximum traversable 

slope (or tilt) maxθ , maximum velocity maxν , and maximum power maxP . The samples consist 

of three different types, each type with a corresponding value (1, 3, or 9) representing its 
relative worth to geologists studying the planetary surface. The samples are randomly 
distributed on the terrain in the following way. The terrain is first divided into sub-regions 

and each sub-region j is assigned a weight ,i jW  for each sample type i such that  

, 1i j

j

W =   for all i. (13)

The total number of samples for each type 
,i totn  is given beforehand, and the numbers for 

each sub-region j,
,i jn , depend on the weights according to the following: 

,

, ,

,

,
i j

i j i tot

i j

j

W
n C n

W
=

 (14) 

where the ceiling function C(v) rounds v to the integer v. Once the number of each sample 
type for each sub-region is given, the samples are uniformly distributed within that sub-
region. Multiple samples are allowed to occupy the same spatial point. If a certain type of 
sample is collected, the values of the other samples of that type are not affected. This may be 
different from the real scenario where once one sample type has been collected; there is no 
need to find other samples of that type. 
Starting from the rovers’ initial positions, the maximal attainable sets corresponding to 

the mission time limit maxτ are computed. These maximal attainable sets represent the 

maximum range of each rover when no samples are collected. As the maximal attainable 
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sets are computed, the best path to each point on the terrain is stored. All possible paths 
from the starting point are explored. We examine one path at a time and follow it until 
time expires. As the path reaches each point, we do the following: If this is the first time a 
path has reached this point, the traveling time to the point is stored. If this is not the first 
time, the traveling time to the point by the current path is compared to the previously 
stored time. If the current time is less than the stored time, the current time replaces the 
stored time. The point may be reached many more times as other paths are tried and the 
best time is always kept. In this way, the best times to each point are stored as the 
computation progresses. 
In order to retrace a path given the starting and terminal points, we introduce the 
“previous path point” variable. Whenever the best time for a path point is stored, the 
path point the rover came from (or previous path point) is also stored. Therefore, by 
going from a previous path point to the previous path point, the path can be retraced. 
This method saves memory space, since only one previous path point variable has to 
be stored for each attainable point on the terrain instead of an entire list of path 
points.

Fig. 1. Plot of the weighting function. 

The set of best times (TimeMatrix), previous path points (PMatrix), and maximal 
attainable set (AMatrix) for each starting point are saved as Path Planning Data Sets 
(PPDS), which depends on the starting point and the maximum mission time. This 
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pre-computation saves time later when solving the SCP. The PPDS starting at each 
sample are also computed, which is the most time-consuming operation in the 
program.
Since considering all possible admissible paths is time consuming and memory 
intensive, an approximate solution is obtained by applying the “maximum-value 
heuristic” and “3-opt switching” to solve the SCP. The “maximum-value heuristic” is 
almost a “greedy” heuristic, which ignores all the samples except for the highest-valued 
ones.
The “maximum-value heuristic” is based on a weighting function that weights each sample 

based on its value and its distance from the starting point. Sample kσ  with value kλ  from a 

point 0x  is given and 0( , )kxτ σ  (the time it takes to get from point 0x  to sample kσ ). We 

define the weighting function as  

0

0

0

,    if ( , ) 0;
( , ( , ))

/ ( , ),    otherwise.

                            

k k

k k

k k

x
W x

x

λ τ σ
λ τ σ

αλ τ σ

=
=  (15) 

We collect the sample that maximizes this weighting function. The value for  in (15) is 

determined by setting the value of a sample 1 meter away from x0 to be 3/4 of the kλ  value. 

In Figure 1, the weighting function for  = 13.5 and different values of kλ are plotted with 

0( , )kxτ σ  as a variable. 

The algorithm also looks ahead two steps and maximizes the weighting function for the 
next two samples to collect, as well as taking into account the remaining mission time. 
Looking ahead two steps helps steer the rover toward the higher concentrations of samples. 

Let , , 1( , )i k i i iW λ τ −  be the weighting function value for the ith step, with sample ik  and where 

, 1i iτ −  is the time required to traverse from step i – 1 to step i. The algorithm weights the 

second step a fraction 1/  of the value of the first step. The algorithm maximizes the 
function

1 ,1 1,0 2 ,2 2,1

1
( , ) ( , )tot k kW W Wλ τ λ τ

β
= +  (16) 

with respect to 1,0τ  and 2,1τ  satisfying 

1,0 2,1 max( ) ( ) ,wait waitτ τ τ τ τ+ + + ≤  (17) 

where 1,0τ  is the time to reach sample 1k  from the starting position 0x , and 2,1τ  is the time to 

reach sample k2 from sample k1. In our case studies, the value for  is found by setting 

1 1 2(9,250) (1,500) (1/ ) (9,0)W W Wβ> + . The value of 500 for the time length was chosen since it 

is equal to the maximum mission time used for the flat terrain experimental case. The 
calculated value is 20β ≈ .

After the list of collected samples has been determined, we apply “3-opt switching” (see 
Appendix A3) to obtain a more time-efficient solution. Then, we determine whether 
more samples can be collected. If so, the “3-opt switching” is performed again, 
repeatedly as necessary. The resulting tour is locally optimized, but is not necessarily 
optimal. 
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Fig. 2. Flow chart for the single rover case. 

3.1 Single Rover Case 

Starting from an initial point 0x  and a list of sample indices 
ssE , an admissible tour 

aT

(with path 
aΓ  and sample list 

ssaL ) is composed by using the “maximum value heuristic” 

that looks ahead two steps. This tour is subject to the time constraint (6), i.e.  

max ,am i wait

i

nτ τ τ τ= + ⋅ ≤  (18) 

where amτ  is the elapsed mission time for the admissible tour and n is the number of 

samples in 
ssaL .

Next, “3-opt switching” is applied to the sample list ssaL  to determine if the same 

samples can be collected in less time. Each remaining uncollected sample is then 
considered to determine if it can be collected and analyzed within the remaining mission 
time. We collect the remaining sample with the highest weighting function value that still 
satisfies the mission time constraint. Every time an additional sample is added to the 

sample list ssaL , “3-opt switching” is applied. This process is repeated until the list is 

unchanged through one iteration. The resulting tour is locally optimized, but not 
necessarily optimal. 
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 Fig. 3. Flow chart for the multiple rover case. 

3.2 Multiple Rover Case 

In the multiple rover cases, we assign the samples in the overlapping region to the rover 
whose preliminary path is closest to the sample as discussed in Sec. 2.2.1. Let 2m ≥  be the 

number of rovers. Each rover’s preliminary path is found by removing the samples in the 
overlapping region and solving the SCP for each rover. To reduce the computation time, 
only the collected samples along the path are used instead of every point along the path 

when computing the distance to the samples in the overlapping region. If jσ  is the sample 

in the overlapping region in question, the distance from 
jσ  to rover i ‘s path, denoted by 

,i jδ , is found according to: 

, min ( , ( )) ( , ( )) ,
k

i j j j k k
x

x f x x f xδ = −

where kx  is the position of sample kσ ∈ ssaL , and jx  is the position of soil sample jσ  in the 

overlapping region Ŷ . After partitioning the overlapping region, each rover has its own 
assigned set of samples to collect, and each sample can only be assigned to one rover at a 
time.
After partitioning the samples in the overlapping region among the rovers, the multiple 
rover case reduces to solving m single rover cases. After the first rover’s tour is 
determined, we assign its uncollected samples to the next rover, since considering this 
extra set of samples may result in a better tour for the second rover. Similarly, after each 
rover’s tour is computed, the uncollected samples are always passed on for the next 
rover to consider. After the m th rover’s tour is determined, its uncollected samples are 

passed back to the first rover and all the tours are computed again. For the one-, two-, 
and four-rover cases, this loop-back only occurs once. In the eight-rover case, the loop-
back occurs twice. This ensures that each rover has a chance to consider all the 
uncollected samples. 
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One additional note is that collision avoidance was not implemented. Adding this consideration 
would further complicate the path-planning algorithm and may not be useful at this point, since 
each rover is assumed to be a point mass in this study. In the real-life scenario, collision 
avoidance must be included and the dimensions of the rover must be taken into account. 

4. Case Study 

In this study, real Mars terrain data obtained from the Mars Orbiter Laser Altimeter (MOLA) 
Science Investigation are used. The terrain area chosen is relatively flat with a high plateau. 
The terrain is assumed to be smooth. Delaunay triangulation is used to create a 24 × 24 m2

mesh for approximating the terrain. From this point on, terrain is used to refer to the 
approximated version of the Mars data.  

4.1 Flat Terrain 

First, we consider the case of a flat 24 × 24 m2 terrain after Delaunay triangulation, shown in 
Fig. 4. This case provides a test of the path-planning algorithm under idealized conditions. 
Here, each node on the terrain is labeled from 1 to 576, starting from the bottom left corner 
and moving up the vertical axis. This label will be referred to as the x-reference.

Fig. 4. Flat terrain after Delaunay triangulation. 

The parameter values for the 24 × 24 m2 flat terrain case are given in Table 1. They include 
the rover vehicle and mission specifications based on the NASA/JPL FIDO rover. Based on 
these data, the rover is capable of traveling a distance of 1 m in 17.99 seconds. These values 
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have been chosen to expedite the computer simulations and although they may exceed the 
actual attainable values, they can be scaled accordingly.  

Table 1. Rover variables, flat terrain case. 

The starting position is set at one of the four corners of the terrain. The maximal attainable 

sets corresponding to the maximum mission time maxτ  = 500 seconds starting from each of 

the four corner points are shown in Fig. 5. The maximal attainable set for each corner can 
cover most of the terrain, and the union of the maximal attainable sets starting from all four 
corner points is the entire surface. Thus, it is possible to produce a sufficiently large number 
of paths for single and multiple rovers. 

Fig. 5. Maximal attainable sets for the four different starting positions for the flat terrain, 
single rover case.  



Optimal Path Planning of Multiple Mobile Robots for Sample Collection on a Planetary Surface 623

On this surface, we distribute 45 samples, as shown in Fig. 6. The samples are distributed by first 
dividing the terrain into five distinct regions. Each region is assigned a weight for each of three 
sample types. These weights are used to determine how many samples of each type to assign to 
each region. Once the number of samples for each region and type are determined, the samples are 
distributed uniformly. Samples are allowed to occupy the same spatial point on the terrain. There 
are three sample types with values 1, 4, and 9. The sample index numbers, x-references, and values 
are listed in Table 2. The soil samples with higher values have relatively smaller population. 

Fig.6. Sample distribution on 24 × 24 m2flat terrain. 

Table 2. Sample data for flat terrain case. 
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4.1.1 Single Rover Case 

For the single rover case, we consider four different starting positions at each of the four 
corners of the terrain. We then solve the SCP for each starting position by using the 
“maximum value heuristic” and “3-opt switching”. The resulting paths are given in Fig. 7. 
The sample collection lists are given in Table 3. The elapsed times for each vehicle are very 
close to the maximum mission time. We observe that there is a higher concentration of high-
valued samples in the upper region of the terrain, so it makes sense that the rovers starting 
in this area result in a higher value of the mission return function. Out of the four starting 

positions, the one starting at the top left ( 0 23x = ) gives the highest mission value with 

57.V =  A close examination of the decision process made by the rover for each step of the 

sample collection path is given in (Cardema et al, 2003). 

Fig.7. Four different starting positions for the flat terrain, single rover case. 

Table 3. Sample collection lists, flat terrain, single rover case. 



Optimal Path Planning of Multiple Mobile Robots for Sample Collection on a Planetary Surface 625

Fig. 8. Paths for the flat terrain, eight-rover case. 

Table 4. Sample collection lists, flat terrain, eight-rover case. 

4.1.2 Eight-Rover Case 

The foregoing computations are also performed for two, four and eight-rover cases. For 
brevity, only the results for the eight-rover case are presented here. The results for other 
cases are described in (Cardema et al, 2003). In the eight-rover case, we try to employ a 
symmetric configuration for the rover starting positions to give each rover equal 
opportunity at sample collection. From Fig. 8, we observe that all the samples have been 
collected. 
If we take the best values from the single rover (V = 57), two-rover (V = 92), four-rover cases 
(V = 138), and eight-rover cases (V = 170), the plot of mission value versus the number of 
rovers is sub-linear. If we take the worst values from the single rover (V = 35), two-rover (V
= 71), four-rover (V = 138), and eight-rover (V = 170) cases, then the plot is close to linear, 
but diverges after four rovers. The plot of performance versus number of rovers is shown in 
Fig. 9. The linear projection shown in the figure is based on the lowest-valued single rover 
case.  



626 Mobile Robots, Perception & Navigation

Fig.9. Performance vs. number of rovers, flat terrain case. 

4.2. Mars Terrain 

We now consider a 24 × 24 m2 section of Mars terrain data obtained from the Mars Orbiter 
Laser Altimeter (MOLA) Science Investigation. This region is located near the Valles 
Marineris. It is chosen since the surface is smooth enough to facilitate rover movement, but 
has surface variations to provide an interesting example. The terrain is shown in Fig. 10. We 
define this as a 24 × 24 m2 section, although the actual dimensions are much larger. The 
height has also been scaled down to facilitate rover movement. This is meant to be an 
illustrative example rather than a realistic one. The variables for the Mars terrain case are 

identical to those in Table 1, except here the maximum mission time maxτ  is 720 seconds. 

Fig.10. Mars terrain after Delaunay triangulation. 
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The four possible starting positions along with the maximal attainable sets based on the 

maximum mission time maxτ  = 720 seconds are shown in Fig. 11. The mission time has been 

extended from the flat case so that the maximal attainable sets overlap, but the starting 
positions remain the same. The overlapping region of the maximal attainable sets of the four 
rovers is shown in Fig. 12. The overlapping region is the set of all points that can be reached 
by two or more rovers. In this case, the overlapping region covers the entire area. 

Fig.11. Maximal attainable sets for the four different starting positions for the Mars terrain, 
single rover case. 

Fig. 12. Overlapping regions of the Mars terrain case. 
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On this surface, we distribute 45 samples, as shown in Fig. 13. The samples are distributed 
in the same way as in the flat terrain case. The index numbers, x-references, and values of 
the samples are listed in Table 5. 

Fig.13. Sample distribution on Mars terrain. 

Table 5. Sample data for Mars terrain case. 

4.2.1 Single Rover Case 

For the single rover case, we consider four different starting positions and solve the SCP for 
each location by using the “maximum value heuristic” and “3-opt switching”. The resulting 
graphs are given in Fig. 14. The sample collection lists are given in Table 6. Note that the 
rovers’ paths tend to lie in the valleys and on the flatter regions. Out of these starting 
positions, the one starting at 

0x  = 432 gives the highest mission value 32V = .
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Fig. 14. Paths for four different starting positions for the Mars terrain, single rover case. 

Table 6. Sample collection lists, Mars terrain, single rover case. 

Fig. 15. Paths for Mars terrain, eight rover case. 
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Table 7. Sample collection lists, Mars terrain, eight-rover case. 

Fig. 16. Performance vs. number of rovers, Mars Terrain case. 

4.2.2 Eight-Rover Case 

Again, as in the flat terrain case, we only present results for the eight-rover case. 

The sample collection lists are given in Table 7. The results for two and four-rover 

cases are given in (Cardema et al, 2003). The starting positions in the Mars terrain 

for the eight-rover case are the same as those in the flat terrain case. All the samples 
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except for 8σ  ( 8λ  = 1) have been collected. One high-valued sample in particular, 

27σ  (
27λ  = 9), is only collected in this eight-rover case. This makes sense since the 

sample is located close to the highest peak. The rover starting at 0 1x =  spends a long 

time climbing up to collect 27σ  and only collects four samples as a result. Note that 

the rover starting at 0 553x =  only collects three samples and has a very short 

mission time of 335.96 sec, although several high-valued samples are easily within 

reach. The algorithm does not try to distribute the task evenly, which may be a 

hindrance to higher performance. However, the results provide some insight on the 

nature of solutions to the SCP for multiple rovers. If we take the best values from 

the single rover (V = 43), two-rover (V = 84), four-rover (V = 136), and eight-rover 

cases (V = 169), the plot of mission value versus the number of rovers is sub-linear. 

If we take the worst values from the single rover (V = 37), two-rover (V = 72), four-

rover (V = 136), and eight-rover cases (V = 169), the plot is again close to linear 

when the number of rovers is less than 4. Note that the spacing between the upper 

and lower bounds in the Mars terrain case is smaller than that of the flat terrain 

case. 

When examining the performance versus the number of rovers, it makes sense that the 

graph is near-linear or sub-linear, since once the best path for the first rover has been 

found; there is not much room for improvement. In Fig 17, we observe that the flat 

terrain and Mars terrain results are near-linear or sub-linear and they are also very 

similar. The spacing between the upper and lower bounds for the Mars terrain is smaller 

than that of the flat terrain. This is due to the longer traveling times between samples in 

the Mars terrain case. The relatively close spacing of the rovers in our examples helps to 

ensure that nearly all the samples of interest are collected within the elapsed mission 

time, but may not be the best placement for obtaining high values for the mission return 

function. If higher values are desired, it may be better to have no interaction at all. In 

that case, the rovers are deployed in different areas resulting in independent single-rover 

cases. Since the rovers are not competing for the same high-valued soil samples, the 

resulting values for the mission return function may be higher than in the case where the 

rovers cooperate. 

5. Remarks on Further Studies 

The approach to optimal path planning studied here is an initial but nonetheless essential 

step toward the long-term goal of developing autonomous rovers that are capable of 

analyzing sensory data and selecting the optimal path to take based on autonomous 

assessment of the relative scientific value of the possible sampling sites in rovers’ field of 

view. Such a scientific-value-driven autonomous navigation capability presents formidable 

challenges in autonomous rover development. One of the key challenges is how to assign 

relative scientific value to possible samples using data from the onboard sensors, and 

update the values on the basis of information that has been gathered at previous scientific 

sites. Sample selection is done very well by scientists on the ground, based on their 

extensive experience in field geology, but capturing their expertise in a set of algorithms is 

difficult.
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Fig. 17. Performance vs. number of rovers. 

There have been some interesting studies aimed at selecting geological sampling sites 
and performing data acquisition autonomously, such as those performed by (Pedersen 
et al, 2001) and by (Huntsberger et al, 2002). But this area of study is in its infancy, and 
it will take some time to mature to the point that it can be considered for operational 
rovers. When it does become possible for rovers to automatically select the soil 
samples of interest, the path-planning problem will become a closed-loop process. 
When the rover initializes, it will perform a sensor scan of the surrounding area to 
create a three-dimensional terrain map, locate potential soil samples, evaluate their 
relative values, and formulate an initial path. As the rover navigates through the 
terrain, it can update its plan as it discovers new soil samples or alters the value of 
already detected ones. Mission performance will depend on the quality of the sensors, 
which affects the maximum detection range, sample localization, and accuracy of 
sample valuation. 
The metric used in this study for mission performance was the total value of the collected 
soil samples. Instead of using the total sample value, other objectives could include 
minimizing the total collection time of a given number of samples, maximizing the 
probabilities of detecting interesting samples, or maximizing the total coverage of a given 
area.
During the past and on-going Mars missions, rovers typically received a new set of 
instructions sent daily from scientists and engineers on Earth. The rover was expected to 
move over a given distance, position itself with respect to a target, and deploy its 
instruments to take close-up pictures and analyze the minerals or composition of rocks and 
soil. For operational scenarios involving multiple rovers as considered in this study, the 
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above-mentioned challenges become even more formidable because of the need for 
coordinated path planning and execution.  
The use of multiple rovers to aid sample collection leads to new interesting problems. 
In the MER mission, two rovers were used, but they were deployed in two separate 
locations. Consequently, the path-planning problem reduces essentially to two single-
rover path-planning problems. In this work, we have begun to develop cooperative 
path-planning algorithms for interacting multiple rovers using our “best path first” and 
“partition of overlapping sets” heuristics. But this approach can also be viewed as the 
decomposition of the multiple-rover path-planning problem into multiple single-rover 
ones. Cooperative algorithms could be used instead. If the process is to be automated, 
communication between the rovers is critical in updating each one’s knowledge of the 
terrain and soil samples. Each rover receives updates from the others, recomputes its 
optimum path, and makes adjustments as necessary. There are many issues to be 
resolved. A basic issue is to determine how close should the rovers be for maximum 
operational efficiency. Evidently, they should be sufficiently close so that the 
information they collect are relevant to the others, but not close enough to interfere 
with each other’s actions. Another issue is to determine how should the tasks be 
divided. One can imagine a strategy where the rovers with different capabilities can be 
used for specialized functions, such as using a small fast rover only for gathering 
information about the terrain. This information is then relayed to the larger, more 
equipped rovers to perform the sample collection. The strategy used will depend on the 
mission objective (e.g. maximum value of soil samples collected versus maximum area 
covered by the rovers). Once the objective and strategy for multiple rovers have been 
determined, another interesting sub-problem is to find the optimal number of rovers to 
use. 
The study of the multiple-rover problem would be similar to the work outlined here. 
Models would be developed to describe the planetary surface, each rover’s dynamics, and 
the sensor capabilities and operation. A general framework should be implemented to serve 
as a test-bed for various multiple rover objectives and strategies, allowing for case studies 
involving different algorithms, sensor properties, surface conditions, and the number and 
types of rovers used. 
The solution of the Sample Collection Problem (modified Traveling Salesman Problem) 
for both single and multiple rovers also presents some room for improvement. Besides 
the heuristic methods presented here, additional methods that could be explored 
include simulated annealing, genetic algorithms or other global optimization 
techniques. 

6. Conclusion

In this work, we gave mathematical formulations of the sample collection problem for 
single and multiple robots as optimization problems. These problems are more complex 
than the well-known NP-hard Traveling Salesman Problem. In order to gain some insight 
on the nature of the solutions, algorithms are developed for solving simplified versions of 
these problems. This study has been devoted to centralized operation. If communication 
between the rovers is considered, as in autonomous operation, the nature of the result 
will be different. The problem posed here is simplified to facilitate mathematical 
formulation. To determine whether the strategies and algorithms discussed in this paper 
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can be applied to practical situations, extensive testing must be done with actual rovers 
on various terrains. The formulation presented in this paper could be used as a 
framework for future studies. In particular, the autonomous case discussed briefly in this 
paper deserves further study. 

7. Appendix

Traveling Salesman Problem:

The problem of soil sample collection is an instance of the well-known Traveling Salesman 
Problem (TSP). In this problem, a traveling salesman is required to visit n cities before 
returning home (Evans & Minieka, 1992). He would like to plan his trip so that the total 
distance traveled is as small as possible. Let G be a graph that contains the vertices that 
correspond to the cities on the traveling salesman’s route, and the arcs correspond to the 
connections between two cities. A cycle that includes each city in G at least once is called a 
salesman cycle. A cycle that includes each city in G exactly once is called a Hamiltonian cycle
or traveling salesman tours. The TSP is NP-hard since the solution time increases 
exponentially with the number of cities n. Although there does not exist efficient algorithms 
to solve the TSP, it is nevertheless studied in depth because of its simplicity. For small 
values of n, each possible route can be enumerated and the one with the least total distance 
is the exact optimum solution. For large n, it becomes time-consuming and memory-
intensive to enumerate each possibility. Thus, it becomes necessary to make use of heuristics 
to obtain near-optimal solutions. A few tour construction heuristics are described briefly in 
the sequel. 

A1. Nearest-neighbor heuristic

Let ( , )d x y  denote the distance between cities x and y and. In this heuristic, we begin at 

the starting point 0x  and find the next city 1x  such that 0 1( , )d x x is minimized. Then, 

from 1x , find the next nearest neighbor 2x  that minimizes 1 2( , )d x x . We continue this 

process until all the cities have been visited. The last arc is from city nx  back to 0x ,

where n is the total number of cities visited. This heuristic rarely leads to the optimal 
solution. 

A2. Nearest-insertion heuristic 

Starting from 
0x , we choose the nearest city 

1x  and form the sub-tour 
0x 1 0x x→ → . At each 

iteration, find the city 
mx  not in the sub-tour but closest to the cities in the sub-tour that 

minimizes 
0 1 0 1( , ) ( , ) ( , )m md x x d x x d x x+ − . Then 

mx  is inserted between 
0x  and 

1x . This 

insertion process is repeated with the next closest city and continued until all the cities have 
been visited. This method slowly builds on the original sub-tour by minimizing the distance 
added at each iteration. 

A3. k-opt tour improvement heuristics 

Given a traveling salesman tour, a k-opt tour improvement heuristic will change the 
ordering of up to k cities to find a more optimal solution. For example, if the original tour 
of 4 cities is 1-2-3-4-1, 2-opt switching will try all possible combinations of 2 switches (1-3-
2-4-1, 1-4-3-2-1, 1-2-4-3-1) and keep the tour with the smallest total distance. For k < n, the 
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k -opt heuristic will take less time to implement than enumerating all possible orderings 
of n cities. 
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