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1. Introduction 

The elastic-plastic contact of a flat and an asperity which shape is a sphere or an ellipsoid is 
a fundamental problem in contact mechanics. It is applicable in tribological problems arising 
from the points of contact between two rough surfaces, such as gear teeth, cam and follower 
and micro-switches etc. Indeed, numerous works on the contact of rough surfaces were 
published so far (see review by Liu et al.). Many of these works are based on modeling the 
contact behavior of a single spherical asperity, which is then incorporated in a statistical 
model of multiple asperity contact. Based on the Hertz theory, the pioneering work on 
contact models of pure elastic sphere was developed by Greenwood and Williamson (GW) . 
The GW model used the solution of the frictionless contact of an elastic hemisphere and a 
rigid flat to model an entire contacting surface of asperities with a postulated Gaussian 
height distribution. The basic GW model had been extended to include such aspects as 
curved surfaces (by Greenwood and Tripp), two rough surfaces with misaligned asperities 
(by Greenwood and Tripp) and non-uniform radii of curvature of asperity peaks (by 
Hisakado). Abbott and Firestone introduced the basic plastic contact model, which was 
known as surface micro-geometry model. In this model the contact area of a rough surface is 
equal to the geometrical intersection of the original undeformed profile with the flat. Based 
on the experimental results, Pullen and Williamson proposed a volume conservation model 
for the fully plastic contact of a rough surface. 
The works on the above two models are suitable for the pure elastic or pure plastic 
deformation of contacting spheres. In order to bridge the two extreme models, elastic and 
fully plastic, Chang et al. (CEB model) extended the GW model by developing an elastic-
plastic contact model that incorporated the effect of volume conservation of a sphere tip 
above the critical interference. Numerical results obtained from the CEB model are 
compared with the other existing models. In the CEB model, there is no transition regime 
from the elastic deformation to the fully plastic deformation regime. These deficiencies 
triggered several modifications by other researchers. Zhao et al. (the ZMC model) used 
mathematical smoothing expressions to incorporate the transition of the contact load and 
contact area expression between the elastic and fully plastic deformation regions. Kogut and 
Etsion (KE model) performed a finite element analysis on the elastic-plastic contact of a 
deformable sphere and a rigid flat by using constitutive laws appropriate to any mode of 
deformations. It offered a general dimensionless relation for the contact load, contact area 
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and mean contact pressure as a function of contact interferences. Jackson and Green had 
done recently a similar work. In this work, it accounted for geometry and material effects, 
which were not accounted for in the KE model. Jackson et al. presented a finite element 
model of the residual stresses and strains that were formed after an elastoplastic 
hemispherical contact was unloaded. This work also defines an interference at which the 
maximum residual stress transitions from a location below the contact region and along the 
axis of symmetry to one near to the surface at the edge of the contact radius (within the 
pileup). 
The aforementioned models deal with rough surfaces with isotropic contacts. However, 
rough surface may have asperities with various curvatures that the different ellipticity ratios 
of the micro-contacts formed. Bush et al. treated the stochastic contact summits of rough 
surfaces to be parabolic ellipsoids and applied the Hertzian solution for their deformations. 
McCool took account of the interaction between two neighboring asperities and modelled 
the elastic-plastic contact of isotropic and anisotropic solid bodies. Horng extended the CEB 
model to consider rough surfaces with elliptic contacts and determined the effects of 
effective radius ratio on the microcontact behavior. Jeng and Wang extend the Horng’s  
work and the ZMC model to the elliptical contact situation by incorporating the elastic-
plastic deformation effect of the anisotropy of the asperities. Chung and Lin used an elastic-
plastic fractal model for analyzing the elliptic contact of anisotropic rough surfaces. 
Buczkowski and Kleiber concentrated their study on building an elasto-plastic statistical 
model of rough surfaces for which the joint stiffness could be determined in a general way. 
Lin and Lin used 3-D FEM to investigate the contact behavior of a deformable ellipsoid 
contacting with a rigid flat in the elastoplastic deformation regime. The above works  
provided results for the loaded condition case. Calculations of the stress distribution at the 
points of the compression region only under normal load within the ellipse of contact were 
dealt with in a number of works. The combined action of normal and tangential loads was 
also discussed in some works whose authors examined the stress conditions at points of an 
elastic semi-space. However, the above-mentioned works just discussed the distribution of 
stresses under the elliptical spot within the elastic deformation regime. The distribution of 
stresses within the elastoplastic deformation regime was still omitted. Chung presented a 
finite element model (FEM) of the equivalent von-Mises stress and displacements that were 
formed for the different ellipticity contact of an ellipsoid with a rigid flat. 

2. Important  

The present chapter is presented to investigate the contact behavior of a deformable ellipsoid 
contacting a rigid flat in the elastoplastic deformation regime. The material is modeled as 
elastic perfectly plastic and follows the von-Mises yield criterion. Because of geometrical 
symmetry, only one-eighth of an ellipsoid is needed in the present work for finite element 
analysis (FEA). Multi-size elements were adopted in the present FEA to significantly save 
computational time without losing precision. The inception of the elastoplastic deformation 
regime of an ellipsoid is determined using the theoretical model developed for the yielding of 
an elliptical contact area. ke is defined as the ellipticity of the ellipsoid before contact, so the 
contact parameters shown in the elastoplastic deformation regime are evaluated by varying 
the ke value. If the ellipticity (k) of an elliptical contact area is defined as the length ratio of the 
minor-axis to the major-axis, it is asymptotic to the ke value when the interference is sufficiently 
increased, irrespective of the ke value. The ellipticity (k) of an elliptical contact area varies with 
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the ke parameter. The k values evaluated at various dimensionless interferences and two 
kevalues (ke=1/2 and ke=1/5) are presented. Both interferences, corresponding to the inceptions 
of the elastoplastic and fully plastic deformation regimes, are determined as a function of the 
ellipticity of the ellipsoid (ke).  
The work also presents the equivalent von-Mises stress and displacements that are formed 

for the different ellipticities. According to the results of Johnson, Sackfield and Hills, the 

severest stress always occurs in the z-axis. In this work, we can get the following result: the 

smaller the ellipticity of the ellipsoid is, the larger the depth of the first yield point from the 

ellipsoid tip happens. The FEM produces contours for the normalized normal and radial 

displacement as functions of the different interference depths. The evolution of plastic 

region in the asperity tip for a sphere (ke=1) and an ellipsoid with different ellipticities 

(ke=1/2 and ke=1/5) is shown with increasing interferences. It is interesting to note the 

behavior of the evolution of the plastic region in the ellipsoid tip for different ellipticities, ke, 

is different. The developments of the plastic region on the contact surface are shown in more 

details. When the dimensionless contact pressure is up to 2.5, the uniform contact pressure 

distribution is almost prevailing in the entire contact area. It can be observed clearly that the 

normalized contact pressure ascends slowly from the center to the edge of the contact area 

for a sphere (ke=1), almost has uniform distribution prevailing the entire contact area for an 

ellipsoid (ke=1/2), and descends slowly from the center to the edge of the contact area for an 

ellipsoid (ke=1/5). The differences in the microcontact parameters such as the contact 

pressure, the contact area, and contact load evaluated at various interferences and two ke 

values are investigated. 

The elastic-plastic fractal model of the elliptic asperity for analyzing the contact of rough 

surfaces is presented. Comparisons between the fractal model and the classical statistical 

model are discussed in this work. Four plasticity indices ( 0.5,  1,  2,  and 2.5ψ = ) for the KE 

(Kogut and Etsion) model are chosen. The topothesy (G) and fractal dimension (D) values, 

which are corresponding to these four plasticity indices in the present model, will thus be 

determined. 

3. Theoretical background  

In the present chapter, Figure 1 shows that a deformable ellipsoid tip contacts with a rigid 

flat. The lengths of the semi-major axis of an ellipsoid and the semi-minor axis are 

assumed to be cR ( 1 c≤ < ∞ ) and R , respectively. From the geometrical analysis, the radii 

of curvature at the tip of an ellipsoid, 2
1 ( )xR c R=  and 1 ( )zR R= , are obtained. the 

ellipticity of an ellipsoid is defined as ek , and 1 2
1 1( / ) 1 / /e z xk R R c R cR= = = . For 1c = , 

1ek = , corresponds to the spherical contact; for c → ∞ , 0ek = , corresponds to the 

cylindrical contact. The simulations by FEM are carried out under the condition of a given 

interference δ  applied to the microcontact formed at the tip of an ellipsoid. Because of 

geometrical symmetry, only one-eighth of an ellipsoid volume is needed in the finite 

element analysis (see Figure 2). At an interference, δ , an elliptical contact area is formed 

with a semi-major axis, a, and a semi-minor axis, b. The length ratio k is here defined as 

k=b/a, which is called the ellipticity of this elliptical contact area. The material of this 

ellipsoid is modeled as elastic perfectly plastic with identical behavior in tension and 

compression.  
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The contact area of an asperity here is elliptical in shape, having two semi-axis lengths, a 
and b (b<a), in the present study. The eccentricity of the contact ellipse (e) is  

 

1 22

2
1

b
e

a

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (1) 

Define the C  ′ parameter as ( )
1 2

C ab′ ≡ , this parameter has been derived by Johnson [25] as 
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Where eR  denotes the effective radius of curvature of an asperity.  
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*E  in Eq.(1) denotes the effective Young’s modulus of two solid contact bodies with the 

Young’s moduli, 1E  and 2E , and the Poisson ratios, 1ν  and 2ν , respectively. It is stated as 

 
2 2
1 2

*
1 2

1 1 1

E EE

ν ν− −
= +  (4) 

Where F denotes the normal load of an asperity at the Hertz contact area. K(e) and E(e) in the 

formula of 1( )F e  denote the complete first and second elliptic integrals of argument (e), 

respectively. They are expressed by Johnson as 

 

π 2

2 2
0

dθ
K(e)

1 e sin θ
=

−
∫  (5) 

 

π 2
2 2

0

E(e) 1 e sin θ  dθ= −∫  (6) 

The onset of the plastic yield of ductile materials usually occurs when the von Mises’ shear 
strain-energy criterion reaches 

 
2

* ' 2
2 ( )

3

Y
J k= =  (7) 

Where *
2J is the maximum value of the second invariant of the deviator stress tensor ( 2J ) at 

yielding and 'k  is the material yield stress in simple shear. The second invariant of the 

deviator stress tensor can be written as: 

 ( ) ( ) ( )2 22
2 1 2 2 3 3 1

1

6
J σ σ σ σ σ σ⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦

 (8) 
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Where 1σ , 2σ , and 3σ are the three principal stresses. In the study of Sackfield and Hills, 

the stress distributions formed by the Hertz contact pressure acting on an elliptical contact 

surface were developed and it was shown that the severest stress always occurs on the z 

axis, and the maximum value of 2J  should occur at a certain point on this axis. The position 

of the point *Z can be determined from the solution of the following equation: 

 *
2 0

Z Z

J

Z =
∂

=
∂

 (9) 

Where /Z z a=  is the dimensionless z-coordinate, and *Z denotes the Z parameter when 

2J  has the maximum value at yielding. 

The interference at the initial point of yielding is known as the critical interference, yδ , 

which is derived analytically by using the von Mises yield criterion and given by Lin and 

Lin as 
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The corresponding critical contact area is expressed as  
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Where Y is the yielding stress of the ellipsoid material. *( , , )K k Zν  denotes the factor of the 

maximum contact pressure arising at yielding. This factor is expressed as a function of the 

ellipticity of the contact area, k , and the Poisson ratio of a material, ν . *Z  is the location of 

first yielding point on z-coordinate. The derivation of *( , , )K k Zν  is shown in Lin and Lin’s 

work. Ellipsoid deforms elastically as / 1yδ δ < . When / 1yδ δ >  the ellipsoid is in the 

elastoplastic deformation.  
 

b a
Before

deformation

After

deformation

Rigid Flat

Deformable

ellipsoid

y

X

Z

δ

 

Fig. 1. The contact schematic diagram of a rigid flat with an ellipsoid. 
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4. Finite element model 

In the present work, a commercial ANSYS-8.0 software package is applied to determine the 

elastoplastic regime arising at a deformable ellipsoid in contact with a rigid flat (see figure 

2). There are two ways to simulate the contact problem. The first applies a force to the rigid 

body and then computes the resulting displacement. The second applies a displacement and 

then computes the resulting contact force. The present finite element solution is generated 

under a given interference δ  applied to the contact area formed at the tip of an ellipsoid. 

This method is used because the resulting solution converges more rapidly than the former.  

In order to satisfy the geometrically symmetric condition and to assure that the nodes on the 

boundary of 0y =  are far away from the contact area, the selection of one-eighth of the 

ellipsoidal volume as the simulation domain is made. Several option settings of ANSYS-8.0 

software package have been made to reduce error in finite element calculations. The option 

of a static large displacement is adopted for the calculations in the elastoplastic and fully 

plastic regimes. The choice of the displacement style is based on the stress-strain (or load-

displacement) behavior exhibited in each of these two deformation regimes. The ellipsoid is 

assumed to be an elastic-perfectly plastic material with identical behavior in tension and 

compression. This assumption was also made in the studies of Kogut and Etsion, and 

Jackson and Green. Frictionless and standard contact was also assumed as in their numerical 

simulations. 

To increase the accuracy and efficiency of computation, one-eighth of an ellipsoid is used. 

Several mesh refinements have been performed to reduce the error in calculating von-Mises 

stress. For this investigation ANSYS element types 10-node, tetrahedron SOLID 92 element 

is selected for this nonlinear contact problem. Three sizes, 0.0005R, 0.0008R, and 0.001R (R: 

the semi-minor radius of ellipsoid), are the smallest element sides in the contact region set 

for ellipsoids with ek =1, 1/2 and 1/5, respectively. In the present numerical model, the 

mesh size was refined according to its distance from the y-axis and the contact area of an 

ellipsoid. The fine mesh size of the volume element near the tip of the ellipsoid is varied in 

order to allow the ellipsoid’s curvature to be captured and accurately simulated during 

deformations (see Figure 2). As to the region far away from the y-axis and the contact area, 

different coarser element size can be given in order to save computational time without 

sacrificing the precision of the solutions. As shown in Figure 2, constraints in the x 

directions and z direction are applied to the nodes on the x=0 plane and z=0 plane, 

respectively, while a constraint in y direction is applied on the base (the y=0 plane). The 

boundary condition may be valid for the modeling of asperity contacts for two reasons: (1) 

the asperities are actually connected to a much larger bulk material at the base and will be 

significantly restrained there, and (2) since the high stress region occurs near the contact, the 

boundary condition at the base of the ellipsoid will not greatly effect the solution because of 

Saint Venant’s Principle. 

In order to validate the model, mesh convergence must be satisfied. The mesh density is 

iteratively increased until the contact force and contact area differed by less than 1% 

between iterations. In the finite element analyses, the resulting meshes consist of at least 

124572,125714, and 222913 elements correspond to ellipsoids with ek =1, 1/2 and 1/5, 

respectively. These three node numbers are sufficient to obtain the numerical solutions with 

a high precision, compared with the theoretical solutions developed for the elastic 

deformation region. It is found that an excessive increase in the number of elements does 
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not bring a significant improvement in the solution precision. The “contact wizard” in the 

software determines the relationship of the contact pair. The rigid flat is set as “Target”, and 

the deformable ellipsoid is set as “Contact”.  

In addition to mesh convergence, the present work also compares well with the Hertz 

solution at interference below the critical interference. The numerical solutions for several 

contact parameters with different ke values (ke=1, ke=1/2 and ke=1/5) are listed in Table 1. 

The error between the theoretical and numerical solutions for all contact parameters is 

found to be always less than 1.5%. In the present study, the FKN (contact stiffness) value is 

varied in a range of 10 to 100 in the finite element analyses. Since precise solutions in all 

contact parameters are ensured, the accuracy of the solutions in the elastoplastic and fully 

plastic deformation regimes obtained by the present mesh scheme is ascertainable. 

Furthermore, because 1ek =  represents a spherical contact, the present work compares with 

the results which are obtained by Jackson and Green and shows good agreement.  

Since this contact problem is nonlinear and highly difficult to converge. An iterative scheme 

is used to solve for the solution, the minimum and maximum substeps are set in the range of 

10 to 2000 such that ( / yδ δ )/(substep number) has a value varying in the range of 0.05~0.2. 

This is done to ensure the load increment is sufficiently small at each load step, thus 

improving the convergence behavior and minimizing the Newton-Raphson equilibrium 

iterations required.  
 

 

Fig. 2. The finite element analysis and the meshed model for simulations. 
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ke=1 ke=1/2 ke=1/5 
 Hertz 

solution 
FEA 

solution 
Hertz 

solution 
FEA 

solution 
Hertz 

solution 
FEA 

solution 

1y yδ δ  1 0.99 1.85 1.83 3.21 3.19 

eqvS Y  1 1 1 0.99 1 0.99 

maxP Y  1.61 1.63 1.65 1.62 1.73 1.74 

Table 1. The comparison of numerical evaluated results at the critical interference with the 
theoretical solutions in the elastic deformation case 

5. Results and discussion 

The results are presented for a range of interferences, δ , which are normalized by each 

corresponding critical interference, yδ , from 1 to 120 for a sphere, 1 to 100 for an ellipsoid 

( ek =1/2) and 1 to 70 for an ellipsoid ( ek =1/5). The factor of the maximum contact pressure 

arising at yielding criterion, K, as shown in Eq. 7, is expressed as a function of ( )*, ,f k Zν . 

The used material properties are for a steel material and present as 0.3ν = , E=2.07x1011Pa, 

Y=7x108Pa, and R=10-4m. These material properties allow for effective modeling of all the 

elastoplastic contact regimes in the FEM simulation. The force convergence tolerance is 0.01 

for the nonlinear solutions. Once the mesh is generated, computation takes from 1 hour for 

small interference to 50 hours for large interference by using an IBM p690 computer.  

Figure 3-a shows the first yield point in the ellipsoid tip for (a) sphere ( ek =1), (b) ellipsoid 

( ek =1/2), (c) ellipsoid ( ek =1/5) while the deformation equals to each critical interference 

yδ . It is found that the first yield point happens in the larger depth from the ellipsoid tip for 

the smaller ellipticity of an ellipsoid, where the depth of the first yielding point is calculated 

as the distance between the top of the tip of an ellipsoid and the locations of the first 

yielding point. The smaller the ellipticity of the ellipsoid is, the larger the depth from the 

ellipsoid tip happens. While the first yielding depth values are normalized by the depth of 

ellipticity ek =1, the values corresponding to ek =1, ek =1/2, ek =1/5 are 1, 1.5 and 1.8, 

respectively. 

Figure 3-b shows the comparisons of the critical interference yδ  and the location of the first 

yielding point with the ellipticity of a contact area k. The critical interference, yδ , is 

significantly increased when the ellipticity of a contact area, k, is reduced. The depth of the 

first yielding point is deeper as the ellipticity of a contact area becomes smaller. The 

ellipticity of a contact area, k, is actually governed by the ellipticity of the ellipsoid. The 

ellipticities of a contact area formed at the yielding point for ek =1, ek =1/2, ek =1/5 are k=1, 

1/2.5 and 1/7.95 respectively. If the ellipticity of a contact area is smaller, it will correspond 

to the smaller ellipticity of an ellipsoid. The described phenomena can be seen on figure 3-a.  

Figure 4 presents the evolution of the plastic region inside the ellipsoid tip for (a) sphere 

( ek =1),(b) ellipsoid ( ek =1/2) and (c) ellipsoid ( ek =1/5) while 1 / 30yδ δ≤ ≤ . Connecting 

the nodes with the equivalent von-Mises stress equals yield stress, Y, which is recorded by 

the commercial finite element program ANSYS 8.0, draws the elastic-plastic boundary line. 
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The behavior of the evolution of the plastic region in the ellipsoid tip for different 

ellipticities of an ellipsoid, ke, is different. The development of plastic region on the contact 

surface is shown in more details in figure 7.  

The evolution of the plastic region inside the ellipsoid tip at larger normalized interference, 

40 / 120yδ δ≤ ≤ , is shown in figure 5. As the interference increases above / 80yδ δ = , the 

normal penetration of the plastic region is coincided at about 0.805x10-4m as shown in figure 

5(a) for a sphere tip ( ek =1). The above phenomena doesn’t happen in the ellipsoid tip for 

ellipticity ek =1/2 and ek =1/5 at larger interference. The shapes of the plastic region in the 

ellipsoid tip for different ellipticities are also different.  

Figure. 6 presents the three dimension contour plots of the equivalent von-Mises stress on 

the contact surface for (a) sphere ( ek =1), (b) ellipsoid ( ek =1/2) and (c) ellipsoid ( ek =1/5) at 

interference / 10yδ δ = . At this interference the plastic region reaches the contact surface for 

both a sphere and an ellipsoid, which is shown in more details in figure 7. At this point an 

elastic core remains locked between the plastic region and the surface for a sphere ( ek =1) 

and an ellipsoid ( ek =1/2). It is interesting to note that the center of contact surface for an 

ellipsoid ( ek =1/5) has reached the plastic deformation. The plastic region reaches on both of 

the center area and an elliptical annular area on the contact surface for an ellipsoid 

( ek =1/5). The evolution of the plastic region on the contact surface will behave in a different 

way for a sphere and both for an ellipsoid tip. At / 10yδ δ = , the boundary of the plastic 

region that reaches the contact surface, which is obtained from curve fitting of the finite 

element analysis numerical results is plotted as figure 7. The lengths of semi-minor contact 

axis that are normalized by the critical contact radius of a sphere are about 2.4, 3.2 and 4.4 

for the sphere ( ek =1), ellipsoid ( ek =1/2) and ellipsoid ( ek =1/5), respectively. The lengths 

of semi-major contact axis that are normalized by the critical contact radius of a sphere are 

about 2.4, 6.8 and 23.5 for the sphere ( ek =1), ellipsoid ( ek =1/2) and ellipsoid ( ek =1/5), 

respectively. The curve fitting length on semi-minor contact axis compared to the curve 

fitting length on semi-major contact axis is 1/2.13 and 1/5.34 for the ellipsoid ( ek =1/2) and 

ellipsoid ( ek =1/5), respectively. The above comparison values for the ellipsoid ( ek =1/2) 

and ellipsoid ( ek =1/5) aren’t equal to the ellipticity of an ellipsoid.  

Figure 8 presents the evolution of the plastic region on the contact surface for a sphere 

( ek =1) while 10 / 120yδ δ≤ ≤ . The boundary of the plastic region on the contact surface 

obtained from curve fitting of the finite element analysis numerical results of nodes is 

plotted as figure 8. At about / 6yδ δ =  an annular plastic region first reaches the contact 

surface of a sphere. It is clear to see that an elastic core is locked by the annular plastic 

region. As the interference increases, the elastic core gradually shrinks and the annular 

plastic region will increase both to the center and outer line of the contact area. Finally, the 

elastic core disappears and the plastic region will dominate the most part of the contact area 

except for the outer annular area surrounded by the elastic region as shown in figure 8. The 

same conclusions have been obtained in the Kogut and Etsion’s studies and are also seen by 

Jackson and Green.  

Figure 9 presents the evolution of the plastic region on the contact surface of an ellipsoid 

( ek =1/2) for increasing interference values up to / 90yδ δ = . Up to / 10yδ δ =  the elastic 

region dominate the contact surface. At / 10yδ δ =  the plastic region first reaches the 

contact surface and forms an annular plastic region as shown in Figure 6 and figure 9. For 

10 / 30yδ δ≤ ≤ , the annular plastic region disappears dramatically and an elliptical plastic 
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region appears on the center of contact surface. As the interference increases thereafter, the 

plastic region expands from center toward the edge of the contact surface. Even at this 

interference / 90yδ δ = , the plastic region still doesn’t coincide with the boundary edge of 

the contact area. But as figure 15(b) shows, the P/Y value is asymptotic to a constant value 

at this interference / 100yδ δ = . Obviously, the interference / 90yδ δ =  is near the inception 

of the fully plastic deformation for ek =1/2. 

Figure 10 presents the evolution of the plastic region on the contact surface of an ellipsoid 

( ek =1/5) for increasing interference values up to / 70yδ δ = . Up to / 10yδ δ =  the elastic 

region dominates the contact surface. At / 10yδ δ =  the plastic region first reaches the 

contact surface and forms an annular plastic region as shown in figure 6 and figure 10. In 

addition to the annular plastic region, the center of the contact surface also forms a plastic 

subregion. For 10 / 30yδ δ≤ ≤  the annular plastic region disappears dramatically and an 

elliptical plastic region on the center of contact surface extends the original dominated area. 

As the interference increases thereafter, the plastic region expands from center toward the 

edge of the contact surface. Even at interference / 70yδ δ = , the plastic region still doesn’t 

coincide with the boundary edge of the contact area. It can be seen the plastic region extends 

toward the direction of the major contact axis as the interference increases. But as figure 

15(c) shows, the P/Y value is asymptotic to a constant value at this interference / 70yδ δ = . 

Obviously, the interference / 70yδ δ =  is near the inception of the fully plastic deformation 

for ek =1/5. 

The normal and radial surface displacements of the nodes on the ellipsoid surface are 

monitored in order to investigate the deformation of an ellipsoid. As shown in figure 11~14 

the normal and radial directions (including semi-major and semi-minor contact axis) 

correspond to the y- and x-, z-axis, respectively. figure 11 and 12 show the surface 

displacement, Uy/ 1yδ , in the normal direction for the sphere ( ek =1), ellipsoid ( ek =1/2) and 

ellipsoid ( ek =1/5) vs. the normalized semi-major axis and semi-minor axis. These plots 

show the evolution of the surface normal deformation with increasing normalized 

interferences, / yδ δ . As expected, the normal deformation on contact surface increases with 

increasing the normalized interference depth. The boundary between the contact region and 

the free surface boundary of the ellipsoid can be seen on the line edge in the plots. The slope 

of the normal displacement on the semi-minor axis is larger than the slope on the semi-

major axis. As figure 11 and 12 show, both of the slopes of the normal displacement on the 

major and minor axis directions for different ellipticities satisfy: (ke=1) > (ke=1/2) > (ke=1/5). 

The slope near the center and edge of contact surface becomes flat. Figure 13 and 14 show 

the surface displacement, Ux/ 1yδ , in the x radial direction vs. the normalized semi-major 

axis and the surface displacement, Uz/ 1yδ  vs. the semi-minor axis for the sphere (ke=1), 

ellipsoid (ke=1/2) and ellipsoid (ke=1/5). In the smaller interference depths, the surface 

displaces radially in mostly the negative direction for a sphere and an ellipsoid. The 

ellipsoid has the same compression behavior like a sphere. In other word, their contact areas 

are smaller than the geometrical intersection of the original undeformed profile with the flat 

in the smaller interference depths. This is because at the smaller normalized interferences, 

most of the materials in the sphere and ellipsoid are deforming elastically and are allowed 

to compress. As the interference is larger and significantly increases past the critical 

deformation, the material of the contact region displaces outward into the positive x 
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direction and negative z direction. It can be seen in figure 14 that the radial displacement 

isn’t positive until the normalized interference, / 90yδ δ = , for a sphere, / 50yδ δ =  for an 

ellipsoid (ke=1/2) and past / 50yδ δ =  for an ellipsoid (ke=1/5). This bulginess occurs 

because the yielding material flows plastically and abides by the outlying material of the 

contact area. As shown in figure 14, the normalized radial displacement, Ux/ 1yδ , become 

flat near the edge of the semi-major axis of contact area for an ellipsoid (ke=1/5). When 

compared the boundary of plastic contact area in figure 10, their locations of semi-major 

contact axis are the same.  

Figure 15 presents the normalized contact pressure, P/Y, profile vs the normalized semi-

major contact axis, a/ac1, and semi-minor contact axis, b/ac1, for (a) sphere ( ek =1) at 

/ 120yδ δ =  (b) ellipsoid ( ek =1/2) at / 100yδ δ = , (c) ellipsoid ( ek =1/5) at / 70yδ δ = . 

When the normalized interferences, / yδ δ , equal to 120, 100 and 70, for (a) sphere (ke=1), (b) 

ellipsoid (ke=1/2) and ellipsoid (ke=1/5), respectively, the uniform contact pressure 

distribution is almost prevailing in the entire contact area, in which the dimensionless 

contact pressure is up to 2.5. The determination of the inception of the fully plastic 

deformation regime is based on the observed phenomenon that the normalized contact 

pressure and the normalized equivalent von-Mises stresses formed at the contact area have 

a uniform distribution. If interference is increased further, these uniform normalized contact 

pressures are found to be unchanged. It can be observed clearly that the normalized contact 

pressure ascends slowly from the center to the edge of the contact area for a sphere ( ek =1), 

the normalized contact pressure almost has a uniform distribution prevailing the entire 

contact area for an ellipsoid ( ek =1/2), and the normalized contact pressure descends slowly 

from the center to the edge of the contact area for an ellipsoid ( ek =1/5).  

Figure 16 shows the variations of the contact-area ellipticity ( k ) in the elastoplastic 

deformation regime with the ellipticity of ellipsoid ( ek ) and the dimensionless interference, 

/ yδ δ . The radii of curvature at the tip of the ellipsoid, 1xR and 1yR , are varied with the 

contact deformation. The effect of changing the radii of curvature due to contact 

deformations has been included in the evaluation of the k  value. Data marked by the “∆” 

and “□” symbols is obtained by assuming 1 / 2ek =  and 1 / 5ek = , respectively. 

Both data sets show that the ellipticity of contact area, k , is increased by increasing the 

dimensionless interference ( / yδ δ ). The data is asymptotic to a constant value equal to the 

ek  value associated with it if / yδ δ  is sufficiently large. It should be mentioned that the 

ellipticity of the contact area in the elastic deformation regime is always a constant value, 

which is equal to the datum shown in Fig. 16 at / yδ δ =1. Therefore, the k  value of an 

elliptical contact area is a variable when operating in the elastoplastic deformation regime. 

The dimensionless contact areas ( *A ) in the elastoplastic deformation regime varying with 

the dimensionless interference ( / syδ δ ) and the ellipticity of the ellipsoid ( ek ) are shown in 

figure 17. The data for each ek  value can be expressed in a linear form in the log *A -log 

( / syδ δ ) plot. With the same dimensionless interference / syδ δ , the dimensionless contact 

area ( *A ) is lowered by decreasing the ellipticity of the ellipsoid ( ek ). 

Figure 18 shows for the dimensionless contact load ( *F ) results needed in the applications 

of different interferences ( / syδ δ ) and ellipticity values of an ellipsoid ( ek ). Each of these 

curves shows a nonlinear relationship between *F and / syδ δ . However, the effect of ek  on 
*F is exactly opposite to that shown in the dimensionless contact area. 
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Kogut and Etsion used the plasticity index ( ) 1 2

y sψ δ σ
−

=  in the evaluations of the 

deformations arising at the contacts of rough surfaces, where sσ denotes standard deviation 

of asperity heights. However, this plasticity index doesn’t appear in the fractal analyses. In 

the Chung and Lin’s study, four plasticity indices ( 0.5,  1,  2,  and 2.5ψ = ) for the KE model 

are chosen. The dimensionless topothesy, G , and fractal dimension, D, values applied are 

thus needed to determine on the base of these four plasticity indices. The plasticity index 

introduced by Greenwood and Williamson can be further expressed as ( ) 1 2

y sψ δ σ
−

= = 

( ) ( )
1 2 1 2

y sδ σ σ σ
− −

. In the study of Chung and Lin, ( ) 1 2

yδ σ
−

is given as 

1 2 1 2*

( )
( ) 2

y

e c

E
Q

KH R a

δ σ π γ
σ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ⎝ ⎠⎝ ⎠ ⎝ ⎠
=

1 2* 1
( )

2( )e c

E
Q

KH R a

π γ
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟′ ⎝ ⎠⎝ ⎠
. In the study of McCool, 

the relationship between σ and sσ is given as: 
2 4

2

3.717 10
1

( )
s

R

σ
σ η σ

−×⎛ ⎞ = −⎜ ⎟
⎝ ⎠

, where the Rη σ  

values corresponding to 0.5,  1,  2,  and 2.5ψ =  are 0.0302, 0.0414, 0.0541, and 0.0601, 

respectively. Therefore, 
0.5

s

ψ

σ
σ =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

0.7697, 
1

s

ψ

σ
σ =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

0.8849, 
2.0

s

ψ

σ
σ =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

0.9343, 

2.5

s

ψ

σ
σ =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

0.9472. By the expression ( ) ( )
1 2 1 2

y sψ δ σ σ σ
− −= , the ( ) 1 2

yδ σ
−

 values 

corresponding to 0.5,  1, 2, and 2.5ψ =  are, 0.5699, 1.063, 2.069 and 2.5687, respectively. The 

G and D values corresponding to these four ψ  values are thus shown in figure 19. In figure 

19, the ellipticity 1k = . The results of the dimensionless contact load predicted by the 

Chung and Lin’s model are quite close to those predicted by the KE model, irrespective of 
the plasticity index values. 

6. Conclusions 

The work presents a finite element model (FEM) of the equivalent von-Mises stress and 

displacements that are formed for an elastoplastic ellipsoid is loaded. The material is 

modeled as elastic perfectly plastic and follows the von-Mises yield criterion. One-eighth of 

an ellipsoid in contact with a rigid flat is used to calculate the von-Mises stresses and 

deformations. A three-dimensional, 10-node, tetrahedron SOLID 92 element was selected for 

the nonlinear contact problem. Three sizes, 0.0005R, 0.0008R, and 0.001R (R: the semi-minor 

radius of ellipsoid), are the smallest element sides in the contact region set for a sphere with 

ek =1 and ellipsoids with ek =1/2 and 1/5, respectively  

The FEM produce the evolution contour plots of the von-Mises stress with the different 

interferences. It is found that the first yield point happens in the larger depth from the 

ellipsoid tip for the smaller ellipticity of an ellipsoid. The smaller the ellipticity of the 

ellipsoid is, the larger the depth from the ellipsoid tip happens. While the first yielding 

depth values are normalized by the depth of an ellipticity ek =1, the values corresponding to 

ek =1, ek =1/2, ek =1/5 are 1, 1.5 and 1.8, respectively. 
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At a normalized interference, / 10yδ δ = , the plastic region reaches the contact surface for a 

sphere and an ellipsoid, which is shown in more details in figure 7. At this point an elastic 

core remains locked between the plastic region and the surface for a sphere ( ek =1) and an 

ellipsoid ( ek =1/2).  It is interesting to note that the center of contact surface for an ellipsoid 

( ek =1/5) has reached the plastic deformation. The plastic region reaches on both of the 

center area and an elliptical annular area on the contact surface for an ellipsoid ( ek =1/5). 
The normal deformation on the contact surface increases with increasing the normalized 
interference depth. The boundary between the contact region and the free surface boundary 
of an ellipsoid can be seen on the line edge in the plots. The slope of normal displacement on 
the semi-minor axis is larger than the slope on the semi-major axis. 
The surface displaces radially in mostly the negative direction for a sphere and an ellipsoid. 
The ellipsoid has the same compression behavior like a sphere. In other word, their contact 
areas will shrink compared to the original cutting areas without deformation in the smaller 
interference depths. As the interference is larger and significantly increases past the critical 
deformation, the material in contact region displaces outward into the positive x direction 
and negative z direction. 

When the normalized interferences, / yδ δ , equal to 120, 100 and 70, for (a) sphere ( ek =1), 

(b) ellipsoid ( ek =1/2) and ellipsoid ( ek =1/5), respectively, the uniform contact pressure 

distribution is almost prevailing in the entire contact area, in which the dimensionless 

contact pressure is up to 2.5. It can be observed clearly that the normalized contact pressure 

ascends slowly from the center to the edge of the contact area for a sphere ( ek =1), the 

normalized contact pressure almost has a uniform distribution prevailing the entire contact 

area for an ellipsoid ( ek =1/2), and the normalized contact pressure descends slowly from 

the center to the edge of the contact area for an ellipsoid ( ek =1/5).  
 

 
Fig. 3-a. The first yielding point happens in the ellipsoid for (a) sphere ( ek =1) (b) ellipsoid 

( ek =1/2) (c) ellipsoid ( ek =1/5) 
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Fig. 3-b. Comparisons of the critical interference and the location of the first yielding point 
with the ellipticity of a contact area, k  
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(c) 
 

Fig. 4. Evolution of the plastic region in the ellipsoid tip for (a) sphere (ke =1), (b)ellipsoid(ke 

=1/2) and (c) ellipsoid(ke =1/5) while 1 / 30yδ δ≤ ≤  
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(b) 
 

 
 

(c) 
 

Fig. 5. Evolution of the plastic region in the ellipsoid tip for (a) sphere (ke =1), (b)ellipsoid(ke 

=1/2) and (c) ellipsoid(ke =1/5) while 40 / 120yδ δ≤ ≤  
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(c) 

Fig. 6. The equivalent von-Mises stress of contact surface, the plastic region first reaches the 

contact surface, for (a)sphere( ek =1) (b)ellipsoid( ek =1/2) (c)ellipsoid( ek =1/5) at 

interference / 10yδ δ =  
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Fig. 7. The Semi-major and minor contact axis of contact surface, the plastic region reaches 

the contact surface at / 10yδ δ = for sphere ( ek =1), ellipsoid ( ek =1/2), ellipsoid ( ek =1/5).  
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Fig. 8. Evolution of the plastic region on the contact surface for sphere (ke=1) while 

10 / 120yδ δ≤ ≤  
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Fig. 9. Evolution of the plastic region on the contact surface of ellipsoid (ke=1/2) for 

10 / 90yδ δ≤ ≤  
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Fig. 10. Evolution of the plastic region on the contact surface of ellipsoid (ke=1/5) for 

10 / 70yδ δ≤ ≤ . 
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Fig. 11. The normalized normal displacement, Uy/ 1yδ , vs the Semi-major contact axis, a, and 

Semi-minor contact axis, b, for sphere ( ek =1), ellipsoid ( ek =1/2) , ellipsoid ( ek =1/5) in 

smaller interference depths. 

 
 

 

-20 -10 0 10 20 30 40 50 60 70 80

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

line 1,4,7 δ/δ
y
=20

line 2,5,8 δ/δ
y
=40

line 3,6,9 δ/δ
y
=60

987654321

Semi-minor 

contact axis, b/a
c1

N
o
rm

a
liz

e
d
 n

o
rm

a
l 
d
is

p
la

c
e
m

e
n
t,
 U

y
/δ

y1

Semi-major contact axis, a/a
c1

 k
e
=1

 k
e
=1/2

 k
e
=1/5

 
Fig. 12. The normalized normal displacement Uy/ 1yδ  vs the Semi-major contact axis, a, and 

Semi-minor contact axis, b, for sphere ( ek =1), ellipsoid ( ek =1/2), ellipsoid ( ek =1/5) in 

larger interference depths. 

www.intechopen.com



The Elliptical Elastic-Plastic Microcontact Analysis   

 

191 

 

-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 

N
o

rm
a

liz
e

d
 r

a
d

ia
l 
d

is
p

la
c
e

m
e

n
t,
 U

x/
δ y1

line 1,4,7 δ/δ
y
=1

line 2,5,8 δ/δ
y
=5

line 3,6,9 δ/δ
y
=10

6

5

1 4

3

2

7

8

9

Semi-minor 

contact axis, b/a
c1

N
o

rm
a

liz
e

d
 r

a
d

ia
l 
d

is
p

la
c
e

m
e

n
t,
 U

z/
δ y1

Semi-major contact axis, a/a
c1

 k
e
=1

 k
e
=1/2

 k
e
=1/5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 
 

Fig. 13. The normalized radial displacement Ux/ 1yδ  vs the Semi-major contact axis, a, and 

Uz/ 1yδ  vs Semi-minor contact axis, b, for sphere ( ek =1), ellipsoid ( ek =1/2), ellipsoid 

( ek =1/5) in smaller interference depths. 
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Fig. 14. The normalized radial displacement Ux/ 1yδ  vs the Semi-major contact axis, a, and 

Uz/ 1yδ  vs Semi-minor contact axis, b, for sphere ( ek =1), ellipsoid ( ek =1/2), ellipsoid 

( ek =1/5) in larger interference depths. 
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Fig. 15. The normalized contact pressure, P/Y vs Normalized contact axis, a/ac1, and Semi-

minor contact axis, b/ac1, for (a) sphere ( ek =1) at / 120yδ δ =  (b)ellipsoid ( ek =1/2) at 

/ 100yδ δ = , (c)ellipsoid ( ek =1/5) at / 70yδ δ = . 
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Fig. 16. Variations of the ellipticity of contact area with the dimensionless interference in the 
elastoplastic deformation regime. 
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Fig. 17. Variations of the dimensionless contact area with the dimensionless interference. 
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Fig. 18. Variations of the dimensionless contact load with the dimensionless interference. 
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Fig. 19. Variations of the dimensionless real contact area with the dimensionless total load.  
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