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1. Introduction 

Embryonic stem cells (ESCs) are pluripotent cells capable of both limitless selfrenewal and 
differentiation into all embryonic lineages, and thus ESCs can give rise to any adult cell 
type. When ESCs are stably maintained in culture and their pluripotency is strictly enforced, 
they can serve as an unlimited source for tissue replacement in regenerative medicine for 
degenerative diseases such as neural disorders, heart disease, and type I diabetes. They also 
offer enormous potential for drug discovery and toxicology, human developmental biology, 
and cancer research. Studies of human ESCs (hESCs) biology have developed rapidly since 
the first reports of their derivation in 1998 (Thomson et al., 1998). Many studies have tried to 
manipulate the growth and differentiation conditions of hESCs with variable success 
(Biswas and Hutchins, 2007; Hoffman and Carpenter, 2005). hESCs have been differentiated 
into the derivatives of all three germ layers: ectoderm, mesoderm, and endoderm. 
Specifically, these derivatives include cardiomyocytes, neural cells, hepatocyte-like cells, 
endothelial cells, pancreatic hormone expressing endocrine cells, and hematopoietic 
progenitor cells (Barberi et al., 2007; Carpenter et al., 2003; D'Amour et al., 2006; Levenberg et 
al., 2007; Lu et al., 2007; Roy et al., 2006; Wang et al., 2007), and thus hESCs have great 
potential for use in regenerative medicine to restore heart disease, neuronal functions, 
hepatic disease, blood vessels, and type I diabetes. In addition, mouse ESCs (mESCs) can 
generate hepatocytes (Gouon-Evans et al., 2006; Soto-Gutierrez et al., 2007), insulin-
producing cells (Schroeder et al., 2006), cerebellar neurons (Salero and Hatten, 2007), and 
even germ cells (West et al., 2006) in vitro, suggesting that hESC can be applied much more 
widely to regenerative medicine in the future. On October 2010, Geron corporation in 
United States announced plans to initiate the phase I clinical trial of hESC-derived 
oligodendrocyte progenitor cells. However, the clinical application of hESCs is restricted 
thus far for alleged ethical and scientific reasons. First, hESC research often faces opposition 
from those who object to the destruction of human embryos. Second, ESC therapy 
potentially poses the risk of tumorigenesis. ESCs frequently form teratocarcinomas when 
transplanted into mice. Moreover, the ability of ESCs to provide differentiated cells for 
regenerative medicine will require continual maintenance of the undifferentiated stem cells 
for long periods in culture. However, chromosomal stability during extended cell passage 
cannot be guaranteed, and recent cytogenetic studies of ESCs have revealed karyotypic 
aberrations (Baker et al., 2007). Third, cell replacement therapies have been limited by the 
availability of sufficient quantities of cells for transplantation. Although there are many 
reports describing a method to maintain ESC properties in culture, the large-scale culture of 
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ESC lines is still problematic and susceptible to substantial challenges at present (Thomson, 
2007). Fourth, the potential for immunorejection should be a concern in its therapeutic use, 
and thus histocompatible ESCs will be required. Genetically, matched pluripotent ESCs 
generated via somatic cell nuclear transfer or parthenogenesis are a potential source of 
patient-derived histocompatible cells and tissues for transplantation (Kim et al., 2007; 
Menendez et al., 2005; Yang et al., 2007). Selected hESCs can serve as a source of 
histocompatible tissues for transplantation (Kim et al., 2007). The largest impact on recent 
ESC biology is the generation of ESC-like cells termed “induced pluripotent stem cells 
(iPSCs)” from fibroblasts that are created by introducing four genes, Oct4, Sox2, c-Myc, and 
Klf4 (Takahashi and Yamanaka, 2006). Although the first report described the generation of 
mouse iPSCs, human iPSCs have also been generated by introducing the same four genes as 
the mouse iPSCs derived from adult human dermal fibroblasts (Takahashi et al., 2007) or the 
other distinct genes, Oct4, Sox2, Nanog, and LIN28, from human fetal fibroblasts (Yu et al., 
2007). These cells could differentiate into cell types of the three germ layers in vitro and 
produce teratomas, suggesting that iPSCs have the potential to generate patient- and 
disease-specific stem cells. Despite the importance of our knowledge of ESCs both in cell 
biology and clinical medicine, the molecular mechanism underlying the cell biological 
characteristics of ESCs such as the mechanism that maintains pluripotency and that 
regulates ESC differentiation, remains largely unknown.  
Recent we showed the function of CD9, which is highly expressed in undifferentiated state 
in ESCs, as well as in embryos using the conventional gene targeting strategy to reveal 
whether CD9 can serve as a molecular marker to detect, classify, and isolate a particular 
subpopulation of ESCs and to monitor their state of differentiation (Akutsu et al., 2009). This 
chapter also reviews other ESC molecular markers (Oct4, Sox2, Nanog, Klf4 and Rex1) in 
addition to CD9. The accumulation of these ES molecular marker studies will be provided a 
more detailed view of ESCs and facilitated our understanding of early embryonic 
development and cell-based therapies. 

2. The membrane protein CD9 

CD9 is a member of the transmembrane 4 superfamily, also known as the tetraspanin 

family. Most of these members are cell-surface proteins. CD9 is expressed on the cell surface 

of mouse and rat male germline stem cells and of neural stem cells. Therefore, CD9 may be 

involved in the common machinery in stem cells of many self-renewing tissues. In addition, 

CD9 is also involved in cell development, growth, motility, cell differentiation, and egg-

sperm fusion (Hadjiargyrou and Patterson, 1995; Kanatsu-Shinohara et al., 2004b; Kaprielian 

et al., 1995; Miyado et al., 2000; Miyado et al., 2008). The expression of CD9 in embryonic as 

well as adult stem cells populations may indicate a role of CD9 in stem cell self-renewal. 

Oka et al. have been reported that CD9 is highly expressed in undifferentiated ESCs but 

rapidly down-regulated after cells differentiation (Oka et al., 2002). Upon application of an 

antibody against CD9, mouse ESCs can not form compact ES-like colonies. Moreover, ESCs 

are dead in the presence of the anti-CD9 antibody. Therefore, CD9 may play a role in 

maintenance of undifferentiated mouse ESCs (Oka et al., 2002). Despite high potential role  

of CD9 in mouse ESCs, however, CD9 null mice are born healthy and grew  

normally. Therefore, the question whether CD9 has a role in pluripotent cells of the inner 

cell mass has not been addressed. Based on these findings, we recently reported that CD9 is 

dispensable for maintenance of an undifferentiated state and pluripotency (Figure 1)  
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Fig. 1. Generation of CD9 knockout ESCs. 
A. Strategy for generation of CD9-KO ES cells. The schematic maps of the CD9 allele (top), 
the KO vector carrying the neomycin cassette (middle), and the KO allele generated by 
homologous recombination (bottom) were shown in scale. CD9-/- fertilized eggs can not be 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

162 

obtained by a cross of CD9-/- female and male mice. To address this issue, we used ICSI to 
insert CD9-/- sperm directly into the cytoplasm of CD9-/- egg and bypass the fusion step. 
As a result, CD9-/- ES cells were successfully isolated from blastocyst of the CD9-/- 
fertilized egg. B. RT-PCR analysis of ES cell-marker genes. Transcripts of Oct4, Sox2, Nanog, 
and Rex1 were detected in both CD9-/- and CD9+/+ ESCs without feeder cells. A neomycin-
resistance gene was targeted to delete a part of the third exon and all of the fourth exon of 
CD9. Therefore, neomycin gene was detected in CD9-/- ES cell lines. C. Alkaline 
phosphatase staining shows undifferentiated CD9-/- ESCs as well as CD9+/+ ESCs. Bar = 

500 μm. D. CD9-/- and CD9+/+ ESCs were fixed and stained with antibodies against Oct4, 

Nanog and Sox2. Nuclei were counterstained with DAPI. Bar = 50 μm. E. Teratomas of CD9 
knockout ESCs containing all three germ layers. F. Chimeric embryos derived from CD9 
knockout ESCs. When EGFP-positive CD9-/- ESCs, which were homozygotes for the 
partially deleted CD9 allele and marked by the constitutively-active EGFP transgene, were 
injected into blastocysts, the embryos developed to chimeras at E13.5 in which widespread 
contributions of GFP-positive cells were observed in fluorescent stereomicroscopic 
observation (left panel). Right panel is the control embryo, showing an absence of 
fluorescence. 

(Akutsu et al., 2009). In this report, we established mouse ESCs lacking CD9 by gene 

targeting. These CD9-/- ESCs exhibited the morphology and growth properties of ESCs, 

which express the ES marker factors Oct4, Sox2 and Nanog and have the ability to give rise 

to teratomas composed of tissues from all three germ layers. CD9-/- ESCs also generated 

mouse chimeras, contributing to various tissues. However, it has been reported that CD9 

strongly expresses in mouse and human ES cells, suggesting that CD9 may be one marker of 

pluripotent stem cells (Nash et al., 2007; Oka et al., 2002). Therefore, our CD9 knockout ESCs 

may explain the role of CD9 as a hallmark trait of stem cells-self-renewal and differentiation 

capacity. Thus, we should consider that CD9 might be one of markers for identification of 

pluripotent stem cells without functional significance like Oct4. 

3. The transcription factor OCT4 

Oct4 (octamer-binding transcription factor 4) also known as POU5F1 (POU domain, class 5, 
transcription factor 1) is a protein that is expressed by all pluripotent cells during mouse 
embryogenesis, and is also abundantly expressed by undifferentiated mouse ESCs and ECC 
cell lines (Okamoto et al., 1990; Rosner et al., 1990; Scholer et al., 1989a; Scholer et al., 1989b), 
as well as in EGC cell lines (Donovan and de Miguel, 2003). So far, however, experiments 
show that Oct4 expression is generally weaker in germline stem cells (GSCs) (Kanatsu-
Shinohara et al., 2004a). Oct4 has also been established as a marker for human pluripotent 
ESCs. Therefore, downregulation of Oct4 is required for the differentiation of somatic 
lineages. Oct4-deficient mouse embryos only develop to a stage that looks like a blastocyst, 
and although cells are allocated to the interior, these blastocysts are actually only composed 
of trophectoderm cells. As these structures lack a genuine ICM, they cannot be used to 
produce ESC cell lines (Nichols et al., 1998). Oct4 has therefore been viewed as being 
involved in preventing trophectoderm and perhaps somatic-cell differentiation from the 
ICM, as well as being crucial for maintaining the pluripotent state during embryonic 
development. Recently, it has been reported that Oct4 only is sufficient to reprogram human 
neural stem cells to pluripotency (Kim et al., 2009). Therefore, Oct4 is a master gene for 
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pluripotency. In mouse ESCs, the manipulation of Oct4 expression through inducible or 
repressible Oct4 transgenes indicates that the relative amount of Oct4 protein ultimately 
determines cell fate (Niwa et al., 2000). However, the target genes that are actually 
responsible for implementing Oct4 decisions are only partly known (Du et al., 2001; Saijoh et 
al., 1996). Similarly, the potential interactions of Oct4 with other (co)factors, except for Sox2 
(SRYrelated high-mobility group (HMG)-box protein-2; (Pevny and Lovell-Badge, 1997)), 
remain unclear. 

4. The transcription factor SOX2 

SRY (sex determining region Y)-box 2, also known as Sox2, is a transcription factor. Sox2 is a 
member of the HMG-domain DNA-binding-protein family that is implicated in the 
regulation of transcription and chromatin architecture (Pevny and Lovell-Badge, 1997). Sox2 
forms a ternary complex with either Oct4 or the ubiquitous Oct1 protein on the enhancer 
DNA sequences of Fgf4 (Yuan et al., 1995). This allows Sox2 to participate in the regulation 
of the ICM and its progeny or derivative cells. Consistent with this role, Sox2 is expressed in 
ESCs, but it is also expressed in neural stem cells. Therefore, Sox2 is essential to maintain 
self-renewal of undifferentiated embryonic stem cells. When gene targeting was used to 
inactivate Sox2, the primitive ectoderm was defective, but it could be rescued (albeit only to 
survive longer) by the injection of wild-type ESCs into the Sox2-/- blastocysts (Avilion et al., 
2003). Reduction of Sox2 expression induces mouse ESCs to differentiate cells into the 
trophoectoderm lineage, indicating that Sox2 function is essential for maintaining 
pluripotency. These results also are suggested by Sox2 ablation in vivo. Interestingly, the 
forced expression of Oct4 rescues the pluripotency of Sox2-null ESCs (Masui et al., 2007). 
These findings indicate that Sox2 has a unique function in maintaining the pluripotency of 
ESCs that is related to the transcriptional activation of Oct4.  

5. The transcription factor NANOG  

Nanog is a highly divergent homeodomain-containing protein commonly accorded a central 
position in the transcriptional network of pluripotency (Boyer et al., 2005; Cole et al., 2008; 
Loh et al., 2006; Wang et al., 2006). It is essential for early embryonic development (Mitsui et 
al., 2003). Undifferentiated, wild-type ESCs normally express Nanog. However, the 
physiological levels of Nanog in ESCs do not prevent their differentiation after LIF 
withdrawal. So, under physiological conditions, Nanog seems to be one of several factors 
that are expressed in pluripotent cells and are downregulated at the onset of differentiation. 
Nanog-/- mouse ESCs differentiate slowly into extra-embryonic endoderm lineages, which 
is consistent with the absence of a primitive ectoderm in Nanog-/- embryos that were 
analysed at E5.5 in vivo (Mitsui et al., 2003). So Nanog expression is responsible for the 
maintenance of a primitive ectoderm in the embryo. Unlike wild-type ESCs and those forced 
to express Oct4, mouse ESCs that are overexpressing Nanog are resistant, but not completely 
refractory, to the spontaneous differentiation that occurs after LIF withdrawal or by 
chemical induction (for example, after treatment with 3-methoxybenzamide or all-trans 
retinoic acid). The persistence of Nanog therefore seems to delay, rather than block, the 
differentiation of ESCs; that is, the threshold of differentiation is increased rather than 
abolished. In contrast to Nanog overexpression, the reduced expression seen in Nanog+/- 
ESCs results in labile pluripotency whereby spontaneous differentiation is more likely to 
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occur after longer times spent in culture (‘passages’) (Hatano et al., 2005). So, the amount of 
Nanog per cell is crucial for stably maintaining an undifferentiated state even in the 
presence of LIF. In addition, Nanog is not one of the Yamanaka 4 factors employed to 
reprogram mouse fibroblasts (Maherali et al., 2007; Okita et al., 2007; Takahashi et al., 2007; 
Takahashi and Yamanaka, 2006; Wernig et al., 2007). Moreover, addition of Nanog to these 4 
factors has not been reported to increase efficiencies. However, Nanog is expressed weakly 
or not at all in incompletely reprogrammed cells that fail to activate properly the 
endogenous pluripotent transcriptional circuitry (Silva and Smith, 2008; Sridharan et al., 
2009; Takahashi and Yamanaka, 2006). Selection or screening for activation of endogenous 
Nanog expression facilitates isolation of fully reprogrammed iPSCs that can contribute to 
adult chimeras and give germline transmission (Okita et al., 2007). Furthermore, in human 
cells Nanog does facilitate molecular reprogramming (Yu et al., 2007). It has also been shown 
that Nanog promotes the transfer of pluripotency after ES cell fusion (Silva et al., 2006). 
However, conditional gene deletion in ESCs revealed that Nanog is not essential for 
propagation of pluripotency ex vivo (Chambers et al., 2007). Nanog null ESCs are more prone 
to differentiate but can be maintained indefinitely. Moreover, they contribute extensively to 
somatic chimeras, similar to CD9 null ESCs. 

6. Other transcriptional factors KLF4 and REX1 

The mechanism by which Klf4 regulates ES cell self-renewal was first revealed by its 
identification as a highly up-regulated target gene of LIF signaling in ES cells (Li et al., 2005). 
ES cells overexpressing Klf4 had a great propensity for self-renewal based on secondary 
embryoid body (EB) formation. Klf4-transduced EBs expressed higher levels of Oct4, 
consistent with the notion that Klf4 regulates ES cell self-renewal (Li et al., 2005). The role of 
Klf4 in regulating pluripotency of ES cells is further revealed by global analysis of promoter 
occupancy by Yamanaka 4 factors (Kim et al., 2008a). The results identified a transcriptional 
hierarchy within the four reprogramming factors with both auto-regulatory and feed-
forward regulation. In addition, the study indicated that Klf4 is an upstream regulator of a 
large feed-forward loop that contains Oct4, Sox2, and c-Myc, as well as other common 
downstream factors including Nanog (Kim et al., 2008a). Combining the results of these 
studies, it appears that Klf4 exerts a crucial role in somatic cell reprogramming and 
maintenance of ES cell self-renewal. On the other hand, Klf4 also exhibits both cytostatic and 
anti-apoptotic effect that is context-dependent. The ability of Klf4 in maintaining 
immortality of iPSCs maybe explained in part by the requirement of c-Myc as a member of 
reprogramming factor. Thus, in a manner similar to the cooperation between Klf4 and Ras 
to affect transformation (Rowland and Peeper, 2006), Klf4 and c-Myc cooperate to affect iPS 
cell self-renewal. Thus, Klf4 may suppress apoptosis induced by c-Myc and c-Myc 
neutralizes Klf4's cytostatic effect by suppressing p21WAF1/CIP1 (Yamanaka, 2007). In this 
manner, the balance between Klf4 and c-Myc might play a critical role in the establishment 
of an immortalized state of iPSCs. In addition, re-expression of Klf4 in an appropriate 
environment can regenerate the naïve ground state from mouse epiblast stem cells (EpiSCs), 
which are derived from columnar epithelial epiblast of the early post-implantation embryo 
(Brook and Gardner, 1997; Hanna et al., 2010; Hanna et al., 2009; Tesar et al., 2007). Therefore, 
the essential requirement of Klf4 for reprogramming of somatic cells has subsequently been 
substantiated (Di Stefano et al., 2009; Shi et al., 2008). On the other hand, Klf4+/- mice were 
phenotypically and histologically normal (Katz et al., 2005; Segre et al., 1999). Klf4-/- mice 
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were born at the expected Mendelian ration. Therefore, Klf4 is also dispensable for 
maintenance of self-renewal and pluripotency of ESCs. 
In addition to Oct4, Sox2, Nanog and Klf4, other putative transcription factors expressing 
pluripotent stem cells in stem-cell-specific manner have been also identified by several 
investigators. For example, Rex1 (for reduced expression-1, also known as Zfp42) was first 
identified a gene that expresses in F9 embryonal carcinoma (EC) cells and is down-regulated 
after retinoic acid (RA) treatment to induce differentiation (Hosler et al., 1989). This gene 
encodes a C2H2 zinc-finger protein that is closely similar to Yy1, an evolutionally-conserved 
component of polycomb- related complex 2 (Gordon et al., 2006). Its highly-specific expression 
in pluripotent stem cells has been confirmed in mouse and human ESCs (Eiges et al., 2001; 
Rogers et al., 1991), making it one of the most famous markers of pluripotency tested in various 
stem cells such as multipotent adult progenitor cells (Jiang et al., 2002) and amniotic fluid cells 
(Karlmark et al., 2005). Moreover, Rex1 is also known as a marker of the naïve ground state 
(Nichols and Smith, 2009). This has been argued that the blastocyst origin of human ESCs is 
evidenced by their expression of Rex1. However, its function in ESCs has not yet been 
characterized well although it has been reported that a targeted deletion of Rex1 results in loss 
of the ability to differentiate into visceral endoderm induced by RA in F9 EC cells (Thompson 
and Gudas, 2002), and that a gene silencing by RNA interference for Rex1 results in loss of 
capacity to self-renew in ESCs (Zhang et al., 2006). In addition, it has been recently reported 
that over-expression of Rex1 in ESCs neither induces differentiation in the presence of LIF nor 
maintains self-renewal in the absence of LIF. Rex1-/- ESCs can be established and contribute 
whole embryos after blastocyst injection, indicating that they possess proper pluripotency. 
Moreover, Rex1-/- mice were produced by the intercross of heterozygotes, and both male and 
female homozygotes were normal and fertile (Masui et al., 2008). These findings support that 
Rex1 is also dispensable for maintenance of pluripotency in ESCs, 

7. Concluding remarks 

ESCs can bring unique application to medical and pharmaceutical research. Of note, recent 
advances in ESC biology have led to the successful generation of iPSCs, which could solve 
many scientific and ethical problems associated with regenerative medicine and cell-based 
therapies for degenerative human diseases. Thus, the understanding molecular biomarkers 
for ESCs is becoming increasingly important for the detection, classification, and isolation of 
a particular population of ES/iPS cells, and for monitoring the state of differentiation. This 
chapter discusses that Oct4 only is functionally essential for maintenance of pluripotency in 
ESCs (Table 1). This is consistent with evidence that Oct4 alone is able to reprogram mouse 
and human neural stem cells (Kim et al., 2009; Kim et al., 2008b). Therefore, other molecular 
biomarker highly expressed in ESCs might be markers for identification of pluripotent stem 
cells without functional significance like Oct4. 
Although we have mainly focused here on studies using mouse ESCs, it will be important to 
understand how these findings relate to human ES cell studies. Studies on human ESCs may 
be best compared with studies on pluripotent mouse EpiSC lines, which have been 
established from post-implantation embryos (Brons et al., 2007; Tesar et al., 2007). ESCs and 
EpiSCs differ from one another in their factor requirements in vitro and in their capacity to 
incorporate into developing chimaeras. The recent demonstration of revertibility of primed 
EpiSC state to naïve ESC state is reported in mouse and human (Hanna et al., 2010; Hanna et 
al., 2009). In the near future, naïve human ESCs will need to be generated from blastocyst 
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Table 1. Function of the best-characterized ES cell markers 

embryos. Because the naïve human pluripotent stem cells will provide a critical tool to 
model the earliest steps in human embryonic development. Understanding how pluripotent 
molecular biomarker assemblies change as cells move from one pluripotent compartment to 
another will allow us to view how the dynamic alterations in cell phenotype that underlie 
developmental transitions are dictated, which will be surely enhanced our knowledge of 
ESCs and of early embryonic development and cell-based therapies. 
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