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1. Introduction 

Early in 1981, the pluripotential cells were first established from mouse embryos by Evans et 
al (Evans and Kaufman, 1981). In the same year, Martin et al (Martin, 1981) named these 
pluripotential cells embryonic stem (ES) cells. In 1990s, human ES cells were first established 
by Thomson et al (Thomson et al., 1998). Such ES cells isolated from inner cell masses of 
blastocysts present the unique property of self-renewal and the ability to generate 
differentiated progeny in all embryonic lineages both in vitro and in vivo. The pluripotency 
of these ES cells was demonstrated conclusively by the observation that subclonal cultures, 
derived from isolated single cells, can differentiate into a wide variety of cell types including 
gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle 
(mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium 
(ectoderm). Due to these unique properties, ES cells may become an exceptional source of 
tissues for transplantation and have great potential for the therapy of incurable diseases. 

2. The derivation of embryonic stem (ES) cells and induced pluripotent stem 
(iPS) cells 

Recently, Laurent et al. (Laurent et al., 2010) determined the ethnic origins of the 47 commonly 
used human ES cell lines by genome-wide SNP genotyping and Bayesian analysis of 
population structure and found that the large majority of human ES cell lines (43 of 47) were of 
European and East Asian ethnicity. There was a notable lack of cell lines representing African 
ethnicity. Mosher and colleagues (Mosher et al., 2010) also described the lack of population 
diversity in widely distributed human ES cell lines and suggested deriving and disseminating 
new ES cell lines based on underrepresented populations or diverse donors to increase the 
ethnic diversity in human ES cell lines. Stem cell lines with a greater ethnic genetic diversity 
must be developed to optimize the use of such cells as research tools and in future therapies. 
To increase the diversity of human ES cell lines, however, more emphasis should be put on 
the protocols involved in technique system, such as those for derivation, propagation, and 
long-term potency maintenance of human ES cells, which have still to be improved. 
Blastocyst-stage embryos donated for research after assisted reproductive techniques were 
used for new ES cell isolation. However, ethical or technical limitations restrict the research 
projects in derivation of new human ES cell lines. Establishment of human ES cells from 
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discarded poor-quality embryos (Lerou et al., 2008) (Chen et al., 2009) minimizes the ethical 
problem but requires further technical improvement and financial support. Defining 
protocols to derive and propagate high quality human ES cells from embryos should be well 
developed and promoted, especially in underdeveloped African countries. 
Because of technical complications and ethical controversies of establishing human ES cell 
lines from embryos, the somatic cell in vitro reprogramming approach has become the most 
efficient and practical way to produce large banks of pluripotent cells. Recent breakthrough 
studies using a combination of four factors to reprogram somatic cells into induced 
pluripotent stem (iPS) cells without using embryos or eggs have led to an important 
revolution in stem cell research (Fig.1). Comparative analysis of human iPS cells and human 
ES cells using assays for morphology, cell surface marker expression, gene expression 
profiling, epigenetic status, and differentiation potential has revealed a remarkable degree 
of similarity between these two pluripotent stem cell types. These advances in 
reprogramming will enable the creation of patient-specific stem cell lines to study various 
disease mechanisms, offer valuable tools for drug discovery, and provide great potential to 
design customized patient-specific stem cell therapies with economic feasibility. 
 

 

Fig. 1. Reprogramming somatic cells into induced pluripotent stem (iPS) cells. 

Patient-specific pluripotent cell lines may provide a limitless source for human cell 
therapeutic application. However, although human ES cells and human iPS cells have been 
shown to share a number of similarities, there are still differences electrophysiology 
properties between human ES cells and human iPS cells (Jiang et al., 2010). It has been 
showed that foreign genes were silenced or removed after reprogramming, but those 
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approaches have low reprogramming efficiency, and either leave residual vector sequences, 
or require tedious steps. Whether reprogramming methods can be improved will depend on 
a better understanding on the molecular cell biology of pluripotent stem cells.  

3. The cultivation of ES cells and iPS cells 

ES cells were initially established and maintained by coculture with murine embryonic 
fibroblast (MEF) feeder cells (Evans and Kaufman, 1981). Subsequent studies identified that 
fibroblasts secrete multiple factors, including Leukemia inhibitory factor (LIF), fibroblast 
growth factors (FGFs), transforming growth factor b (TGFb), Activin, Wnts, insulin-like 
growth factor (IGF), and antagonists of BMP signaling. ES cells are normally derived and 
maintained in media containing these factors in combination. In stem cell cultures LIF is the 
essential media supplement for the maintenance of pluripotency of ES and iPS cells.  
Practically, ES cells were cultured in Dulbecco’s modified Eagle’s minimal essential medium 
(DMEM) supplemented with 10~15% refined fetal calf serum, 0.1 mM nonessential amino 
acids, 0.1 mM β-mercaptoethanol, and 100U/mL leukemia inhibitory factor (LIF). Generally, 
pluripotent embryonic cells require a co-culture environment for their self-renewal in 
monolayer expansion, achieved by culturing on a layer of feeder cells. Mouse embryonic 
fibroblast cells obtained from 13.5-day embryos of mice were treated for 3 hours with 
mitomycin C (10μg/mL) as feeders for mouse or human ES cells and iPs cells (Fig.2). In our 
study, we have developed and validated a feeder-free culture model for ES cells 
propagation maintaining their pluripotency (Fig.3). 
 

 

Fig. 2. The culture of ES cells and iPS cell with feeder cells. 
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Fig. 3. The culture of mouse ES cells without feeder cells.  

The ES cells grew in culture flask precoated with 0.1% gelatin and were maintained at less 
than 60% confluency to keep an undifferentiated phenotype. Once the cells were to reach 
60% confluency, passage of cell was conducted at a 1:8 subculture ratio.  

4. The molecular mechanisms and signaling pathways leading to maintain ES 
cells, the differences between mouse ES cells and human ES cells 

 The undifferentiated state of ES cells is maintained by the action of transcription factors, 

some of which are mouse specific and some are common to human and mouse. Oct4, Sox2, 

and Nanog are master transcription factors for maintenance of the undifferentiated state and 

self-renewal of ES cells. Regulatory mechanisms pertaining to the self-renewal of stem cells 

remain incompletely understood.  

Signaling in stem cells maintenance includes LIF/Stat3 signaling, Wnt/b-catenin signaling, 
BMP signaling, and FGF signaling. The maintenance of mouse ES cells is synergistic 
signaling process. We have investigated the synergistic effect of retinol and leukemia 
inhibitory factor (LIF) on maintaining pluripotency of mouse ES cells and found that retinol 
showed a synergistic effect in maintaining pluripotency of mouse  ES cells when combined 
with LIF in moderate concentration and the effect may be attributable to the over-expression 
of Nanog under retinol stimulation (Fig.4).  
The key components that regulate the self-renewal of mouse ES cells have been deciphered 

and they are largely dependent on two key signaling pathways involving LIF and BMP 

signaling (Niwa et al., 1998) (Ying et al., 2003). However, human ES cells have significant 
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differences from mouse ES cells such as variations in the stage-specific antigens and in the 

ability of leukemia inhibitory factor (LIF) to maintain the undifferentiated state. In human 

ES cells, LIF receptors are expressed, and LIF can stimulate activation of Stat3 under 

experiment condition, but this pathway is not activated in the undifferentiated state, 

suggesting that the maintenance of human ES cells is Stat3 independent (Humphrey et al., 

2004). The factors involved in human ES cells self-renewal still have not been elucidated, 

although significant progress has been made in recent years.  

In contrast to mouse ES cells, human ES cells can induce trophoblast differentiation by 

BMP4 (Xu et al., 2005). The effect may at least partly owing to Smad 1/5/8 activation 

moderately represses Sox2 (Greber et al., 2008). Activin A, another TGFβ family member, is 

necessary and sufficient for the maintenance of self-renewal and pluripotency of human ES 

cells. It can induce the expression of Oct4, Nanog, Nodal, Wnt3, bFGF, and FGF8, and 

suppresses the BMP signal, support long-term growth of human ES cells on Matrigel coated 

flasks without either feeder cells or conditioned medium (Xiao et al., 2006). 

 
 
 

 
 
 

Fig. 4. Morphological analysis and alkaline phosphatase (AKP) assay of ES cell-S19 cultured 
for 14 days. 
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5. Support self-renewal and maintain potency of ES cells and iPS cells 

Conventionally, pluripotent embryonic cells require a co-culture environment for their self-
renewal in monolayer expansion, which is achieved by culturing on a layer of feeder cells. 
Mouse embryonic fibroblast (MEF) is used as typical feeders for ES and iPS cells. Many 
studies have explored several alternative cell sources as feeders to support human ES cells 
culture in monolayer and thereby limiting cross-species contaminations, which includes 
human embryo derived fibroblasts, foreskin fibroblasts, adult bone marrow cells, and 
visceral-endoderm (VE)–like cells (Amit et al., 2003) (Hovatta et al., 2003) (Cheng et al., 2003) 
(Richards et al., 2002) (Mummery et al., 2003).  
A microporous poly (ethylene terephthalate) membrane-based indirect co-culture system for 
human pluripotent stem cells propagation in prolonged culture, which allows real-time 
conditioning of the culture medium with human fibroblasts while maintaining the complete 
separation of the two cell types, have developed and validated. This co-culture system is a 
significant advance in human pluripotent stem cells culture methods, providing a facile 
stem cell expansion system with continuous medium conditioning while preventing mixing 
of human pluripotent stem cells and feeder cells (Abraham et al., 2010).  
Optimization and development of better defined culture methods for human ES and iPS 
cells will provide an invaluable contribution to the field of regenerative medicine. Recently, 
extracellular matrix supporting more undifferentiated growth of feeder-free human ES and 
iPS cells upon passaging was investigated (Pakzad et al., 2010). Extracellular proteome is 
found to maintain ES cells. It is reported that the pigment epithelium-derived factor 
receptor-Erk1/2 signaling pathway activated by the pigment epithelium-derived factor is 
sufficient to maintain the self-renewal of pluripotent human ES cells (Gonzalez et al., 2010). 
Synthetic substrate for culturing human ES cells and maintaining pluripotency was also 
developed (Mahlstedt et al., 2010). 

6. Long-term culture and GMP standards 

 Prolonged culture of human ES cells may lead to adaptation and the acquisition of 
chromosomal abnormalities (Narva et al., 2010). In our study, the vulnerability of human ES 
cells and human iPS cells to apoptosis causes a low plating efficiency upon passaging was 
found. So far, no such small molecular events that promote self-regulation of human ES and 
iPS cells over a prolonged period of time have been reported in the literature. Maintaining 
the long-term potency of human ES and iPS cells in well state and produce more 
homogenous cell clones is still a grand challenge.  
Therapeutic application of stem cell derivatives requires large quantities of cells produced in 

defined media that cannot be produced via conventional adherent culture. The use of feeder 

cells as well as animal-based products in ES or iPS cells culture may introduce batch-to-

batch variations. The ideal culture method is developing feeder-free culture condition (Xu et 

al., 2001), even chemically defined culture conditions (Ludwig et al., 2006) for human ES 

cells or iPS cells expansion. But so far few human ES or iPS cell lines were produced without 

any exposure to animal-derived compounds or in accordance with good manufacturing 

practices (GMP) standards (Loser et al., 2010).  

Therefore, culturing human ES or iPS cells in complete xeno-free conditions to reduce the 

risk of cross-transfer of pathogens without loss pluripotency would be a crucial prerequisite 

for clinical-grade applications. Nagaoka et al. (Nagaoka et al., 2010) cultured human 
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pluripotent stem cells using completely defined conditions on a recombinant E-cadherin 

substratum, which should facilitate growth of stem cells using GMP standards. Olmer et al. 

(Olmer et al., 2010) have applied a scalable suspension culture to expand single cell of 

undifferentiated human ES cells, which represents a critical step towards standardized 

production in stirred bioreactors.  Rajala et al. (Rajala et al., 2010) demonstrated that human 

ES cells, iPS cells can be maintained in the same defined xeno-free medium formulation for a 

prolonged period of time while maintaining their characteristics, demonstrating the 

applicability of the simplified xeno-free medium formulation for the production of clinical-

grade stem cells.  

For cryopreservation, an effective serum- and xeno-free chemically defined freezing 

procedure for human embryonic and induced pluripotent stem cells is also needed (Holm et 

al., 2010). 

7. Challenges and prospects 

 Research on the ES and iPS cells to develop stem cell-based regenerative medicine is still in 

its early stages and there are still many challenges, including standardization of protocols 

for cell derivation and cultivation, identification of specific molecular markers, development 

of new approaches for directed differentiation etc. Among them, culture scale-up ensuring 

maintenance of cell pluripotency is a central issue, because cell therapy is far more complex 

and resource-consuming process as compared to drug-based medicine; pluripotent stem cell 

biology and technology is in need of further investigation and development before these 

cells can be used in clinics safely and successfully. 

In addition, to minimize the ethical controversies, unify guidelines for reviewing ES cell 

research is also important. Mandatory registration is required for stem cell lines. 
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