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1. Introduction 

The control of discrete systems with time-varying delays has been researched extensively in 
the last few decades. Especially in recent years there are increasing interests in discrete-time 
systems with delays due to the emerging fields of networked control and network 
congestion control (Altman & Basar 1999; Sichitiu et al., 2003; Boukas & Liu 2001). Stability 
problem for linear discrete-time systems with time-delays has been studied in (Kim & Park 
1999; Song & Kim 1998; Mukaidani et al., 2005; Chang et al., 2004; Gao et al., 2004). These 
results are divided into delay-independent and delay-dependent conditions. The delay-
independent conditions are more restrictive than delay-dependent conditions. In general, 
for discrete-time systems with delays, one might tend to consider augmenting the system 
and convert a delay problem into a delay-free problem (Song & Kim 1998; Mukaidani et 
al.,2005). The guaranteed cost control problem for a class of uncertain linear discrete-time 
systems with both state and input delays has been considered in (Chen et al., 2004). 
Recently, in (Boukas, 2006) new LMI-based delay-dependent sufficient conditions for 
stability have been developed for linear discrete-time systems with time varying delay in the 
state. In these papers above the time-varying delay of discrete systems is assumed to be 
unique in state variables. 
On the other hand, in practice there always exist multiple time-varying delays in state 
variables, especially in network congestion control. Control problems of linear continuous-
time systems with multiple time-varying delays have been studied in (Xu 1997). Quadratic 
stabilization for a class of multi-time-delay discrete systems with norm-bounded 
uncertainties has been studied in (Shi et al., 2009). 
To the best of author’s knowledge, stabilization problem of linear discrete systems has not 
been fully investigated for the case of multiple time-varying delays in state, and this will be 
the subject of this paper. This paper address stabilization problem of linear discrete-time 
systems with multiple time-varying delays by a memoryless state feedback. First, stability 
analysis conditions of these systems are given in the form of linear matrix inequalities 
(LMIs) by a Lyapunov function approach. It provides an efficient numerical method to 
analyze stability conditions. Second, based on the LMIs formulation, sufficient conditions of 
stabilization problem are derived by a memoryless state feedback. Meanwhile, robust 
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stabilization problem is considered based on these formulations and they are numerically 
tractable.  

2. Problem statement 

Considering the dynamics of the discrete system with multiple time-varying time delays as 

 1 max
1

, , , , 0
ki

N

k k di k d k k k
i

x Ax A x Bu x k dφ+ −
=

⎡ ⎤= + + = ∈ −⎣ ⎦∑ … , (1) 

where n
kx ∈ℜ  is the state at instant k , the matrices ,n n n n

diA A× ×∈ℜ ∈ℜ  are constant 
matrices, kφ  represents the initial condition, and kid  are positive integers representing 
multiple time-varying delays of the system that satisfy the following: 

 , 1, ,i ki id d d i N≤ ≤ = " , (2) 

where id  and id  are known to be positive and finite integers, and we let  

max max( ), 1, ,id d i N= = … . 

The aim of this paper is to establish sufficient conditions that guarantee the stability of the 
class of system (1). Based on stability conditions, the stabilization problem of this system (1) 
will be handled, too. The control law is given with a memoryless state-feedback as: 

,k ku Kx= , 0, 1, ,k k ix k dφ= = − −… , 

where K is the control gain to be computed. 

3. Stability analysis 

In this section, LMIs-based conditions of delay-dependent stability analysis will be 
considered for discrete-time systems with multiple time-varying delays. The following 
result gives sufficient conditions to guarantee that the system (1) for 0, 0ku k= ≥  is stable. 
Theorem 1: For a given set of upper and lower bounds ,i id d for corresponding time-varying 
delays kid , if there exist symmetric and positive-definite matrices 1 ,n n n n

iP Q× ×∈ℜ ∈ℜ  and 
n n

iR ×∈ℜ , 1, ,i N= …  and general matrices 2P  and 3P  such that the following LMIs hold: 

1 2 2
1 1

2 3 1 3 3

1 2 1 3 1

2 2 2 3 2

2 3

( ) * * * *

* * *

0* *

0 *

0 *

0 0

N N
T T

i i i i
i i

T T

T T
d d

T T
d d

T T
dN dN N

Q d d R P A P P A

P P A P P P

M A P A P Q

A P A P Q

A P A P Q

= =

⎡ ⎤
+ − + − −⎢ ⎥

⎢ ⎥
⎢ ⎥− + +⎢ ⎥
⎢ ⎥= <− − −
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

∑ ∑ "

"

"

#
# # # %

"

 (3) 

i iQ R<  
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Terms denoted by * are deduced by symmetry. Then the system (1) is stable. 
Proof: Consider the following change of variables: 

 
1

1

, 0
ki

N

k k k k di k d
i

x y y Ax A x+ −
=

= = − + +∑  (4) 

Define 1[ ]T T T T T
k k k k d k dNx x y x x− −=� " , and consider the following Lyapunov-Krasovskii 

candidate functional: 

 1 2 3( ) ( ) ( ) ( )k k k kV x V x V x V x= + +� � � �  (5) 

with  

1( ) ,T T
k k kV x x E Px=� � �  

1

2
1

( )
ki

N k
T

k l i l
i l k d

V x x Q x
−

= = −
=∑ ∑�  

and 
1 1

3
1 12

( ) ,
i

i

dN k
T

k m i m
i m k ll d

V x x R x
− + −

= = + −=− +

=∑ ∑ ∑�  

where 0iQ >  and 0iR > , and E  and P are, respectively, singular and nonsingular matrices 
with the following forms: 

0 0 0

0 0 0 0

0 0 0 0 0

0

0 0 0 0

I

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

,  

1

2 3

0 0 0

0 0

0 0 0 0

0

0 0 0

P

P P

IP

I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

 

where 1P  is a symmetric and positive-definite matrix. 
The difference ( )kV xΔ �  is given by 

 1 2 3( ) ( ) ( ) ( )k k k kV x V x V x V xΔ = Δ + Δ + Δ� � � �  (6) 

Let us now compute 1( )kV xΔ � : 

11 1 1 1 1

1 1 1 1

( ) ( ) ( )

1

2
0

2 0 0 0
0

0

k k

T T T T
k k k k k

k

T T T T
k k k k k k k

V x V x V x x E Px x E Px

x

y P y x P x y P y x P

++ +Δ = − = −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= − = − ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

� � � � � � �

"

#

 

which has the following equivalent formulation using the fact that 

1

0
ki

N

k k di k d
i

y Ax A x −
=

= − + +∑  as 
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1

1
1

1

( )

11
0 00 0 00 0 0 0

22
0 0 0 0 0 0
0 0 0 0 0

0 0 00 0 0 0
0 0

0 0 0 0 0
0 0 0 0 0 0 0

k

T

d dNT T
Tk k
d

T
dN

V x

I AI

P IA I A A
x P P x

A

A

Δ =

⎡ ⎤⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

�

"""
" ""

� �""
# # % # # # % ## # # % #

" "

 (7) 

The difference 2( )kV xΔ � is given by 

1

2 2 1 2
1 1 1

( ) ( ) ( )
ki ki

N k N k
T T

k k k l i l l i l
i l k d i l k d

V x V x V x x Q x x Q x
−

+
= = + − = = −

Δ = − = −∑ ∑ ∑ ∑� � �  

Note that  

1

1 1 1 1 1 1 1

i

ki ki i

k dN k N N k N
T T T T
l i l l i l l i l k i k

i l k d i l k d i l k d i

x Q x x Q x x Q x x Q x
− −

= = + − = = + − = = + − =
= + +∑ ∑ ∑ ∑ ∑ ∑ ∑  

1 1

1 1 1 1
ki ki

ki ki

N k N k N
T T T
l i l l i l k d i k d

i l k d i l k d i

x Q x x Q x x Q x
− −

− −
= = − = = + − =

= +∑ ∑ ∑ ∑ ∑  

Using this, 2( )kV xΔ � can be rewritten as  

 

2
1 1 1 1

1 1

1 1 1 1

( )

.

i

ki ki

ki

i ki

k dN N N
T T T

k k i k k d i k d l i l
i i i l k d

N k N k
T T
l i l l i l

i l k d i l k d

V x x Q x x Q x x Q x

x Q x x Q x

−

− −
= = = = + −

− −

= = + − = = + −

Δ = − +

+ −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

�

 (8) 

For 3( ),kV xΔ �  we have 

 

1 1 1

3
1 1 12 2

1 1 1

1 1
1 2

1

1 1
1 2

( )

[ ]

[ ]

i i

i i

i

i

i

i

d dN k N k
T T

k m i m m i m
i m k l i m k ll d l d

dN k k
T T T T
m i m k i k m i m k l i k l

i m k l m k ll d

dN
T T
k i k k l i k l

i l d

V x x R x x R x

x R x x R x x R x x R x

x R x x R x

− + − + −

= = + = = + −=− + =− +

− + − −

+ − + −
= = + = +=− +

− +

+ − + −
= =− +

Δ = −

= + − −

= −

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

�

1 1

[( ) ].
i

i

k dN
T T

i i k i k l i l
i l k d

d d x R x x R x
−

= = + −

= − −∑ ∑

 (9) 

Note that i ki id d d≤ ≤  for all i , we get 
1 1

1 1 1 1i ki

N k N k
T T
l i l l i l

i l k d i l k d

x Q x x Q x
− −

= = + − = = + −
≤∑ ∑ ∑ ∑ , 

1 1 1 1

i i

ki i

k d k dN N
T T
l i l l i l

i l k d i l k d

x Q x x Q x
− −

= = + − = = + −

≤∑ ∑ ∑ ∑  

1 11 1

i i

i i

k d k dN N
T T
l i l l i l

i il k d l k d

x Q x x R x
− −

= == + − = + −

≤∑ ∑ ∑ ∑ , since i iQ R< . 
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Finally, by using (7), (8) and (9) together with these inequalities, we obtain 

( )kV xΔ ≤� 11[ ] 0

k

k
T

k dk k k d k dN

k dN

x

y

xx y x x M

x

−− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ <
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

, 

where  

 

1 2 2
1 1

2 3 1 3 3

1 2 1 3 1

2 2 2 3 2

2 3

( ) * * * *

* * *

* *

0 *

0 *

0 0

N N
T T

i i i i
i i

T T

T T
d d

T T
d d

T T
dN dN N

Q d d R P A P P A

P P A P P P

M A P A P Q

A P A P Q

A P A P Q

= =

⎡ ⎤
+ − + − −⎢ ⎥

⎢ ⎥
⎢ ⎥− + +⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

∑ ∑ "

"

"

#
# # # %

"

 (10) 

This implies that the system is stable, and then the claim (3) can be established. □ 
Remark:  
As to robust stability analysis of discrete time systems with poytopic-type uncertainties, 
robust stability analysis can be considered by the formulation above. When system state 
matrices in (1) are assumed as  

1

[ ( ( )) ( ( ))] ( ) ,
L

di j j dij
j

A k A k k A Aλ λ
=

⎡ ⎤= ∂ ⎣ ⎦∑   
1

( ) 0, ( ) 1
L

j j
j

k k
=

∂ ≥ ∂ =∑ . 

Robust state feedback synthesis can be formulated as: 

For a given set of upper and lower bounds ,i id d for corresponding time-varying delays kid , 
if there exist symmetric and positive-definite matrices 1 ,n n n n

iP Q× ×∈ℜ ∈ℜ  and n n
iR ×∈ℜ , 

1, ,i N= …  and general matrices 2P  and 3P  such that the following LMIs hold: 

 

1 2 2
1 1

2 3 1 3 3

1 2 1 3 1

2 2 2 3 2

2 3

( )

0

0

0

0 0

N N
T T

i i i i j j
i i

T T
j

T T
d j d j

T T
d j d j

T T
dNj dNj N

Q d d R P A P P A

P P A P P P

A P A P Q

A P A P Q

A P A P Q

= =

⎡ ⎤
+ − + − − ∗ ∗ ∗ ∗⎢ ⎥

⎢ ⎥
⎢ ⎥− + + ∗ ∗ ∗⎢ ⎥
⎢ ⎥− − − <⎢ ⎥
⎢ ⎥− − − ∗⎢ ⎥
⎢ ⎥∗
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

∑ ∑ "

"

%

#
# # # %

"

 (11)   

i iQ R<  

1, ,j L= …  
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Terms denoted by * are deduced by symmetry. Then the system with poytopic-type 

uncertainties is stable. 

4. Stabilizability 

The aim of this section is to design a memoryless state-feedback controller which stabilizes 

the system (1). When the memoryless state-feedback is substituted with plant dynamics (3), 

the dynamics of closed-loop system is obtained as  

 1
1

( ) ,
ki

N

k k di k d
i

x A BK x A x+ −
=

= + +∑ , 0, 1, ,k k ix k dφ= = − −… . (12) 

Note that stability analysis condition (3) is not convenient for us to design a memoryless 

state-feedback. By Schur Complememt lemma, equivalent conditions of (3) are given easily 

to solve such a memoryless state-feedback which guarantees the closed-loop system (12) is 

stable. Due to 

1

2

0 0

0 0
0

0 0

0 0 N

Q

Q

Q

−⎡ ⎤
⎢ ⎥−⎢ ⎥ <
⎢ ⎥
⎢ ⎥

−⎣ ⎦

"
#

# %
"

,  

The equivalent formulation of (3) could be obtained as  

1 2 2
1 1

2 3 1 3 3

1
1 2 1 31

2 1 2 2 2 2 2 2 1 3

3 1 3 2 3

2 1 3

( ) *

0 0

0 0

0 0

0 0

N N
T T

i i i i
i i

T T

T T
d d

T T T T T
d d dN d d

T T T
d d dN

T T
N dN d

Q d d R P A P P A

P P A P P P

A P A PQ

P A P A P A Q A P A P

P A P A P A

Q A P A P

= =

−

⎡ ⎤
+ − − − −⎢ ⎥

⎢ ⎥
⎢ ⎥− + +⎣ ⎦

⎡ − −−⎡ ⎤
⎢⎢ ⎥⎡ ⎤− − − − − −⎢⎢ ⎥+ ⎢ ⎥ ⎢⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎢ ⎥

−⎣ ⎦ − −⎣

∑ ∑

"
" #

# % # #"
"

0

⎤
⎥
⎥
<⎥

⎢ ⎥
⎢ ⎥

⎦

 

If we denote by X  the inverse of P , we have 

1

2 3

0X
X

X X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1
1 1X P−= ,  

2 1 3 20 ,P X P X= +  1
3 3X P−= .  

1
1 1X P−=  

Pre- and post multiplying the above LMI, respectively, by TX  and X  and using these 

relations, we will get 
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[ ]1 1 1 1 1 2
1 1 1 2 3

3
2 1 3 3

1
11

2 1

1 2

2 1

( ) *

00 0

0 0 0 0 0 0
0

0 0

0 0 0

N N
T T T

i i i i
i i T

T

T
d

T
d

d d dN

T
N d

X Q X d d X R X X X
P X X

X
X AX X X

AQ

Q A

A A A

Q A

= =

−

⎡ ⎤
⎡ ⎤+ − −⎢ ⎥

+ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦− +⎣ ⎦
⎡ ⎤−−⎡ ⎤
⎢ ⎥⎢ ⎥−⎡ ⎤ −⎢ ⎥⎢ ⎥+ <⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥−⎣ ⎦ −⎣ ⎦

∑ ∑

"
" #
" # % # #

"

 

Let 1
i iS Q−=  and 1

i iT R−= , we have 

1

1 2 3 3

2 3 1

1 1 1

2 2 2

1 1

1

1

1 1

1

0 0

0 0

0 0

0

0 0

0

0

0

0 0 0 0 0 0

T

T
d

T
d

T
N dN N

N

N

N N

X

AX BF X X X

X X X

S A S

S A S

S A S

X S

X S

T

d d

T
X

d d

− ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥
− − + +⎢ ⎥
⎢ ⎥− ∗
⎢ ⎥
⎢ ⎥− − ∗
⎢ ⎥

− − ∗ ∗⎢ ⎥
⎢ ⎥∗⎢ ⎥
⎢ ⎥− −⎢ ⎥

− ∗⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− ∗⎢ ⎥−
⎢ ⎥
⎢ ⎥∗
⎢
⎢ −
⎢ −⎣ ⎦

" " " "

#
# # # #

%

# #
# # " % #

%
# % % #

# # " %
# %

# # " "

# # % %

" "

0<

⎥
⎥
⎥

 

(13) 

 

1

1 2 3 3

2 3 1

1 1 1

2 2 2

1 1

1

1

1 1

1

0 0

0 0

0 0

0

0 0

0

0

0

0 0 0 0 0 0

T

T
d

T
d

T
N dN N

N

N

N N

X

AX BF X X X

X X X

S A S

S A S

S A S

X S

X S

T

d d

T
X

d d

− ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥
− − + +⎢ ⎥
⎢ ⎥− ∗
⎢ ⎥
⎢ ⎥− − ∗
⎢ ⎥

− − ∗ ∗⎢ ⎥
⎢ ⎥∗⎢ ⎥
⎢ ⎥− −⎢ ⎥

− ∗⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− ∗⎢ ⎥−
⎢ ⎥
⎢ ⎥∗
⎢
⎢ −
⎢ −⎣ ⎦

" " " "

#
# # # #

%

# #
# # " % #

%
# % % #

# # " %
# %

# # " "

# # % %

" "

0<

⎥
⎥
⎥

 

(14)
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Theorem 2: For a given set of upper and lower bounds ,i id d for corresponding time-varying 
delays kid , if there exist symmetric and positive-definite matrices 1

n nX ×∈ℜ , n n
iS ×∈ℜ and 

n n
iT ×∈ℜ , 1, ,i N= …  and general matrices 2X  and 3X such that LMIs below hold, the 

memoryless state-feedback gain is given by 1
1K FX−= . 

Proof: Now we consider substituting system matrices of (12) into LMIs conditions (13), the 
LMIs-based conditions of the memoryless state-feedback problem can be obtained directly 
as (14). □ 
Remark: 

When these time delays are constant, that is, i id d d= = , 1, ,i N= … , theorem 2 is reduced to 
the following condition 

 

1

1 2 3 3

2 3 1

1 1 1

2 2 2

1 1

1

0 0

0 0 0
0

0

0 0 0

0 0 0 0

0

0 0 0 0 0 0

T

T

d

T

d

T

N dN N

N

X

AX X X X

X X X

S A S

S A S

S A S

X S

X S

− ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥− + + ∗⎢ ⎥
⎢ ⎥∗ ∗
⎢ ⎥− − ∗⎢ ⎥
⎢ ⎥− − ∗ ∗

<⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− ∗ ∗⎢ ⎥
⎢ ⎥∗⎢ ⎥
⎢ ⎥−⎣ ⎦

" " " "
# # " " #

" # # " #
#

% #
# # # # % # # #

# # # # #
" "

# # # # # # # %
" "

 

(15)

 

The condition above is delay-independent, which is more restrictive than delay-dependent 
conditions (14). 
Remark:  

When the time-varying delay of discrete systems is assumed to be unique in state variables, 
that is, 1N = , these results in theorem 2 could be reduced to those obtained in (Boukas, E. 
K. , 2006). 
Remark:  

As to robust control problem of discrete time systems with poytopic-type uncertainties, 
robust state feedback synthesis can be considered by these new formulations. When system 
state matrices in (11) are assumed as  

1

[ ( ( )) ( ( )) ( ( ))] ( ) ,
L

di j j dij j
j

A k A k B k k A A Bλ λ λ
=

⎡ ⎤= ∂ ⎣ ⎦∑    

1

( ) 0, ( ) 1
L

j j
j

k k
=

∂ ≥ ∂ =∑ , 

Robust state feedback synthesis can be formulated as: 

For a given set of upper and lower bounds ,i id d for corresponding time varying delays kid , 
if there exist symmetric and positive-definite matrices 1

n nX ×∈ℜ , n n
iS ×∈ℜ and n n

iT ×∈ℜ , 
1, ,i N= …  and general matrices 2X  and 3X such that LMIs (16) hold, the memoryless 

state-feedback gain is given by 1
1K FX−= . 
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(16)

 

                                                                                                                                           1, ,j L= … . 

5. Numerical example 

To illustrate the usefulness of the previous theoretical results, let us give the following 
numerical examples. 

Consider a discrete system with multiple time-varying delays 2N =  as  

       
0 1

2 3
A

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 
0

1
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

0.01 0.01

0 0.01dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

and 
2

0.02 0.25

0.10 0.01dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

with 1 21 2, 2 3d d≤ ≤ ≤ ≤ . Now the stabilization of this system will be considered with a 
memoryless state feedback.  
Using Matlab LMI toolbox (P. Gahinet, et al., 1995), solving (21) we can get  

1

1.36 3 4.26 3

4.26 3 1.62 2

e e
X

e e

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 2

7.31 3 2.70 2

1.95 2 7.15 2

e e
X

e e

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

  

and 
3

2.73 4 1.89 4

1.565 3 3.42 3

e e
X

e e

− − −⎡ ⎤
= ⎢ ⎥− − − −⎣ ⎦

, 

1

2.17 2 62.5

62.5 3.45 2

e
S

e

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

1.64 2 47.8

47.8 8.56 2

e
S

e

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

1

4.04 2 1.22 2

1.22 2 6.32 2

e e
T

e e

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

2.84 2 96.6

96.6 1.03 3

e
T

e

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 
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Therefore, a memoryless state-feedback gain is given by 1
1 [2.0 3.0]K FX−= = . 

The closed-loop discrete-time system with multiple time-varying time delay is simulated in 
case of 1 21, 2d d= = , 1 21, 3d d= = , 1 22, 2d d= = , and 1 22, 3d d= = , respectively. And 
these results are illustrated in Figure 1, Figure 2, Figure 3 and Figure 4. These figures show 
that this system is stabilized by the state feedback. 
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Fig. 1. The behavior of the states in case of 1 21, 2d d= =  
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Fig. 2. The behavior of the states in case of 1 21, 3d d= =  
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Fig. 3. The behavior of the states in case of 1 22, 2d d= =          
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Fig. 4. The behavior of the states in case of 1 22, 3d d= =  

6. Conclusion 

Stability Criterion and Stabilization for linear discrete-time systems with multiple time-
varying delays have been considered. Main results have been given in terms of linear matrix 
inequalities formulation. It provided us an efficient numerical method to stabilize these 
systems. Based on these results, it can be also extended to the memory state feedback 
problem of these systems in the future research. 
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