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1. Introduction

We consider discrete-time linear stochastic systems with unknown inputs (or disturbances)
and propose recursive algorithms for estimating states of these systems. If mathematical
models derived by engineers are very accurate representations of real systems, we do not
have to consider systems with unknown inputs. However, in practice, the models derived by
engineers often contain modelling errors which greatly increase state estimation errors as if
the models have unknown disturbances.
The most frequently discussed problem on state estimation is the optimal filtering problem
which investigates the optimal estimate of state xt at time t or xt+1 at time t+ 1 with minimum
variance based on the observation Yt of the outputs {y0, y1, · · · , yt}, i.e., Yt = σ{ys, s =
0, 1, · · · , t} ( the smallest σ-field generated by {y0, y1, · · · , yt} (see e.g., Katayama (2000),
Chapter 4)). It is well known that the standard Kalman filter is the optimal linear filter in
the sense that it minimizes the mean-square error in an appropriate class of linear filters (see
e.g., Kailath (1974), Kailath (1976), Kalman (1960), Kalman (1963) and Katayama (2000)). But
we note that the Kalman filter can work well only if we have accurate mathematical modelling
of the monitored systems.
In order to develop reliable filtering algorithms which are robust with respect to unknown
disturbances and modelling errors, many research papers have been published based on the
disturbance decoupling principle. Pioneering works were done by Darouach et al. (Darouach;
Zasadzinski; Bassang & Nowakowski (1995) and Darouach; Zasadzinski & Keller (1992)),
Chang and Hsu (Chang & Hsu (1993)) and Hou and Müller (Hou & Müller (1993)). They
utilized some transformations to make the original systems with unknown inputs into some
singular systems without unknown inputs. The most important preceding study related to
this paper was done by Chen and Patton (Chen & Patton (1996)). They proposed the simple
and useful optimal filtering algorithm, ODDO (Optimal Disturbance Decoupling Observer),
and showed its excellent simulation results. See also the papers such as Caliskan; Mukai; Katz
& Tanikawa (2003), Hou & Müller (1994), Hou & R. J. Patton (1998) and Sawada & Tanikawa
(2002) and the book Chen & Patton (1999). Their algorithm recently has been modified by the
author in Tanikawa (2006) (see Tanikawa & Sawada (2003) also).
We here consider smoothing problems which allow us time-lags for computing estimates of
the states. Namely, we try to find the optimal estimate x̂t−L/t of the state xt−L based on the
observation Yt with L > 0. We often classify smoothing problems into the following three
types. For the first problem, the fixed-point smoothing, we investigate the optimal estimate
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x̂k/t of the state xk for a fixed k based on the observations {Yt, t = k+ 1, k+ 2, · · · }. Algorithms
for computing x̂k/t, t = k + 1, k + 2, · · · , recursively are called fixed-point smoothers. For
the second problem, the fixed-interval smoothing, we investigate the optimal estimate x̂t/N

of the state xt at all times t = 0, 1, · · · , N based on the observation YN of all the outputs
{y0, y1, · · · , yN}. Fixed-interval smoothers are algorithms for computing x̂t/N , t = 0, 1, · · · , N
recursively. The third problem, the fixed-lag smoothing, is to investigate the optimal estimate
x̂t−L/t of the state xt−L based on the observation Yt for a given L ≥ 1. Fixed-lag smoothers
are algorithms for computing x̂t−L/t, t = L + 1, L + 2, · · · , recursively. See the references such
as Anderson & Moore (1979), Bryson & Ho (1969), Kailath (1975) and Meditch (1973) for early
research works on smoothers. More recent papers have been published based on different
approaches such as stochastic realization theory (e.g., Badawi; Lindquist & Pavon (1979) and
Faurre; Clerget & Germain (1979)), the complementary models (e.g., Ackner & Kailath (1989a),
Ackner & Kailath (1989b), Bello; Willsky & Levy (1989), Bello; Willsky; Levy & Castanon (1986)
Desai; Weinert & Yasypchuk (1983) and Weinert & Desai (1981)) and others. Nice surveys can
be found in Kailath; Sayed & Hassibi (2000) and Katayama (2000).
When stochastic systems contain unknown inputs explicitly, Tanikawa (Tanikawa (2006))
obtained a fixed-point smoother for the first problem. The second and the third problems
were discussed in Tanikawa (2008). In this chapter, all three problems are discussed
in a comrehensive and self-contained manner as much as possible. Namely, after some
preliminary results in Section 2, we derive the fixed-point smoothing algorithm given in
Tanikawa (2006) in Section 3 for the system with unknown inputs explicitly by applying the
optimal filter with disturbance decoupling property obtained in Tanikawa & Sawada (2003).
In Section 4, we construct the fixed-interval smoother given in Tanikawa (2008) from the
fixed-point smoother obtained in Section 3. In Section 5, we construct the fixed-lag smoother
given in Tanikawa (2008) from the optimal filter in Tanikawa & Sawada (2003).
Finally, the new feature and advantages of the obtained results are summarized here. To the
best of our knowledge, no attempt has been made to investigate optimal fixed-interval and
fixed-lag smoothers for systems with unknown inputs explicitly (see the stochastic system
given by (1)-(2)) before Tanikawa (2006) and Tanikawa (2008). Our smoothing algorithms have
similar recursive forms to the standard optimal filter (i.e., the Kalman filter) and smoothers.
Moreover, our algorithms reduce to those known smoothers derived from the Kalman filter
(see e.g., Katayama (2000)) when the unknown inputs disappear. Thus, our algorithms are
consistent with the known smoothing algorithms for systems without unknown inputs.

2. Preliminaries

Consider the following discrete-time linear stochastic system for t = 0, 1, 2, · · · :

xt+1 = At xt + Bt ut + Et dt + ζt, (1)

yt = Ct xt + ηt, (2)

where

xt ∈ Rn the state vector,

yt ∈ Rm the output vector,
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ut ∈ Rr the known input vector,

dt ∈ Rq the unknown input vector.

Suppose that ζt and ηt are independent zero mean white noise sequences with covariance
matrices Qt and Rt. Let At, Bt , Ct and Et be known matrices with appropriate dimensions.
In Tanikawa & Sawada (2003), we considered the optimal estimate x̂t+1/t+1 of the state xt+1

which was proposed by Chen and Patton (Chen & Patton (1996) and Chen & Patton (1999))
with the following structure:

zt+1 = Ft+1 zt + Tt+1 Bt ut + Kt+1 yt, (3)

x̂t+1/t+1 = zt+1 + Ht+1 yt+1, (4)

for t = 0, 1, 2, · · · . Here, x̂0/0 is chosen to be z0 for a fixed z0. Denote the state estimation error
and its covariance matrix respectively by et and Pt. Namely, we use the notations et = xt − x̂t/t

and Pt = E{et et
T} for t = 0, 1, 2, · · · . Here, E denotes expectation and T denotes transposition

of a matrix. We assume in this paper that random variables e0, {ηt}, {ζt} are independent. As
in Chen & Patton (1996), Chen & Patton (1999) and Tanikawa & Sawada (2003), we consider
state estimate (3)-(4) with the matrices Ft+1, Tt+1, Ht+1 and Kt+1 of the forms:

Kt+1 = K1
t+1 + K2

t+1, (5)

Et = Ht+1 Ct+1 Et, (6)

Tt+1 = I − Ht+1 Ct+1, (7)

Ft+1 = At − Ht+1 Ct+1 At − K1
t+1 Ct, (8)

K2
t+1 = Ft+1 Ht. (9)

The next lemma on equality (6) was obtained and used by Chen and Patton (Chen & Patton
(1996) and Chen & Patton (1999)). Before stating it, we assume that Ek is a full column rank
matrix. Notice that this assumption is not an essential restriction.

Lemma 2.1. Equality (6) holds if and only if

rank (Ct+1 Et) = rank (Et) . (10)

When this condition holds true, matrix Ht+1 which satisfies (6) must have the form

Ht+1 = Et

{
(Ct+1 Et)

T (Ct+1 Et)
}−1

(Ct+1 Et)
T . (11)

Hence, we have

Ct+1 Ht+1 = Ct+1 Et

{
(Ct+1 Et)

T (Ct+1 Et)
}−1

(Ct+1 Et)
T (12)

which is a non-negative definite symmetric matrix.
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When the matrix K1
t+1 has the form

K1
t+1 = A1

t+1

(
Pt Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
, (13)

A1
t+1 = At − Ht+1 Ct+1 At, (14)

we obtained the following result (Theorem 2.7 in Tanikawa & Sawada (2003)) on the optimal
filtering algorithm.

Proposition 2.2. If Ct Ht and Rt are commutative, i.e.,

Ct Ht Rt = Rt Ct Ht, (15)

then the optimal gain matrix K1
t+1 which makes the variance of the state estimation error et+1 minimum

is determined by (13). Hence, we obtain the optimal filtering algorithm:

x̂t+1/t+1 = A1
t+1 {x̂t/t + Gt (yt − Ct x̂t/t)}+ Ht+1 yt+1 + Tt+1 Bt ut, (16)

Pt+1 = A1
t+1 Mt A1

t+1
T
+ Tt+1 Qt Tt+1

T + Ht+1 Rt+1 Ht+1
T, (17)

where

Gt =
(

Pt Ct
T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
, (18)

and

Mt = Pt − Gt

(
Ct Pt − Rt Ht

T
)

. (19)

Remark 2.3. If the matrix Rt has the form

Rt = rt I

with some positive number rt for each t = 1, 2, · · · , then it is obvious to see that condition (15)
holds.

Finally, we have the following proposition which indicates that the standard Kalman filter is
a special case of the optimal filter proposed in this section (see e.g., Theorem 5.2 (page 90) in
Katayama (2000)).

Proposition 2.4. Suppose that Et ≡ O holds for all t (i.e., the unknown input term is zero). Then,
Lemma 2.1 cannot be applied directly. But, we can choose Ht ≡ O for all t in this case, and the optimal
filter given in Proposition 2.2 reduces to the standard Kalman filter.

3. The fixed-point smoothing

Let k be a fixed time. We study an iterative algorithm to compute the optimal estimate x̂k/t of
the state xk based on the observation Yt, t = k + 1, k + 2, · · · , with Yt = σ{ys, s = 0, 1, · · · , t}.
We define state vectors θt, t = k, k + 1, · · · , by

θt+1 = θt, t = k, k + 1, · · · ; θk = xk. (20)
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It is easy to observe that the optimal estimate θ̂t/t of the state θt based on the observation Yt

is identical to the optimal smoother x̂k/t in view of the equalities θt = xk , t = k, k + 1, · · · .
In order to derive the optimal fixed-point smoother, we consider the following augmented
system for t = k, k + 1, · · · :

[
xt+1

θt+1

]
=

[
At O
O I

] [
xt

θt

]
+

[
Bt

O

]
ut +

[
Et

O

]
dt +

[
I
O

]
ζt, (21)

yt+1 = [Ct+1 O]

[
xt+1

θt+1

]
+ ηt+1. (22)

Denote these equations respectively by

x̃t+1 = Ãt x̃t + B̃t ut + Ẽt dt + J̃t ζt, (23)

yt+1 = C̃t+1 x̃t+1 + ηt+1, (24)

where

x̃t =

[
xt

θt

]
, Ãt =

[
At O
O I

]
, B̃t =

[
Bt

O

]
, Ẽt =

[
Et

O

]
, J̃t =

[
I
O

]

and C̃t+1 = [Ct+1 O] .

Here, I and O are the identity matrix and the zero matrix respectively with appropriate
dimensions. By making use of the notations

H̃t+1 =

[
Ht+1

O

]
, T̃t+1 =

[
I O
O I

]
− H̃t+1 C̃t+1,

we have the equalities:

C̃t+1 Ẽt = Ct+1 Et, T̃t+1 =

[
Tt+1 O

O I

]
, Ã1

t+1 = T̃t+1 Ãt =

[
A1

t+1 O

O I

]
.

We introduce the covariance matrix P̃t of the state estimation error of the augmented system
(23)-(24):

P̃t =

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
= E

{[
xt − x̂t/t

θt − θ̂t/t

] [
xt − x̂t/t

θt − θ̂t/t

]T
}

. (25)

Notice that P
(1,1)
t is equal to Pt. Applying the optimal filter given in Proposition 2.2 to the

augmented system (21)-(22), we obtain the following optimal fixed-point smoother.

Theorem 3.1. If Ct Ht and Rt are commutative, i.e.,

Ct Ht Rt = Rt Ct Ht, (26)

then we have the optimal fixed-point smoother for (21)-(22) as follows:
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(i) the fixed-point smoother

x̂k/t+1 = x̂k/t + Dt(k) [yt − Ct x̂t/t] , (27)

(ii) the gain matrix

Dt(k) = P
(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
, (28)

(iii) the covariance matrix of the mean-square error

P
(2,1)
t+1 =

{
P
(2,1)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1 (
Ct Pt − Rt Ht

T
)}

A1
t+1

T
, (29)

P
(2,2)
t+1 = P

(2,2)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct P

(2,1)
t

T
. (30)

Here, we note that P
(2,1)
k = P

(2,2)
k = Pk. We notice that x̂t/t is the optimal filter of the original system

(1)-(2) given in Tanikawa & Sawada (2003).

Proof Applying the optimal filter given by (16)-(17) in Proposition (2.2) to the augmented
system (23)-(24), we have

̂̃xt+1/t+1 = Ãt+1
1 {̂̃xt/t + G̃t

(
yt − Ct

̂̃xt/t

)}
+ H̃t+1 yt+1 + T̃t+1 B̃t ut. (31)

This can be rewritten as

[
x̂t+1/t+1

θ̂t+1/t+1

]
=

[
A1

t+1 O

O I

]⎧⎨
⎩

[
x̂t/t

θ̂t/t

]
+

[
P
(1,1)
t Ct

T − HtRt

P
(2,1)
t Ct

T

]

×
(

Ct Pt Ct
T + Rt

)−1
(yt − Ct x̂t/t)

⎫
⎬
⎭+

[
Ht+1 yt+1

O

]
+

[
Tt+1 Bt ut

O

]
.

Thus, we have

x̂t+1/t+1 = A1
t+1

{
x̂t/t +

(
P
(1,1)
t Ct

T − HtRt

) (
Ct Pt Ct

T + Rt

)−1
(yt − Ct x̂t/t)

}

+Ht+1 yt+1 + Tt+1 Bt ut (32)

and

θ̂t+1/t+1 = θ̂t/t + P
(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
(yt − Ct x̂t/t) . (33)

Here, we used the equalities

C̃t P̃t C̃t
T
+ Rt = [Ct O]

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

] [
Ct

T

O

]
+ Rt

= Ct Pt Ct
T + Rt (34)
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and

G̃t =

(
P̃t

[
Ct

T

O

]
− H̃t Rt

)(
C̃t P̃t C̃t

T
+ Rt

)−1

=

([
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

] [
Ct

T

O

]
−

[
Ht

O

]
Rt

)(
C̃t P̃t C̃t

T
+ Rt

)−1

=

[
P
(1,1)
t Ct

T − Ht Rt

P
(2,1)
t Ct

T

] (
Ct Pt Ct

T + Rt

)−1
. (35)

Thus, equalities (27)-(28) can be obtained from (33) due to θ̂t/t = x̂k/t.

By using the notation M̃t for the augmented system (23)-(24)which corresponds to the matrix
Mt in Proposition (2.2), we have

M̃t =

[
M

(1,1)
t M

(1,2)
t

M
(2,1)
t M

(2,2)
t

]

= P̃t − G̃t

(
C̃t P̃t − Rt

[
Ht

T O
])

=

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
−

[
P
(1,1)
t Ct

T − Ht Rt

P
(2,1)
t Ct

T

] (
Ct Pt Ct

T + Rt

)−1

×

(
[Ct O]

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
−
[

Rt Ht
T O

])
.

Thus, we have

M
(1,1)
t = P

(1,1)
t −

(
P
(1,1)
t Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1(
Ct P

(1,1)
t − Rt Ht

T
)

, (36)

M
(1,2)
t = P

(1,2)
t −

(
P
(1,1)
t Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
Ct P

(1,2)
t , (37)

M
(2,1)
t = P

(2,1)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1 (
Ct P

(1,1)
t − Rt Ht

T
)

, (38)

and

M
(2,2)
t = P

(2,2)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct P

(1,2)
t . (39)

It follows from (17) in Proposition 2.2 that

P̃t+1 = Ã1
t+1 M̃t Ã1

t+1

T
+ T̃t+1 J̃t+1 Qt+1 J̃t+1

T
T̃t+1 + H̃t+1 Rt+1 H̃t+1

T

=

[
A1

t+1 O

O I

] [
M

(1,1)
t M

(1,2)
t

M
(2,1)
t M

(2,2)
t

] [
A1

t+1
T

O

O I

]

+

[
Tt+1 O

O I

] [
I
O

]
Qt+1 [I O]

[
Tt+1

T O

O I

]

+

[
Ht+1

O

]
Rt+1

[
Ht+1

T O
]

. (40)
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Equalities (29)-(30) follow from (38)-(40). Finally, we have equalities P
(2,1)
k = P

(2,2)
k = P

(1,1)
k =

Pk by the definition of P̃k.
We thus have derived the fixed-point smoothing algorithm for the state-space model which
explicitly contains the unknown inputs. We can indicate that the algorithm has a rather simple
form and also has consistency with both the Kalman filter and the standard optimal smoother
derived from the Kalman filter as shown in the following remark.

Remark 3.2. Suppose that Et ≡ O holds for all t (i.e., the unknown input term is zero) and
that Ht ≡ O for all t(as in Proposition 2.4). In this case, it follows from Theorem 3.1 that

x̂t+1/t+1 = At

{
x̂t/t + Pt Ct

T
(

Ct Pt Ct
T + Rt

)−1
(yt − Ct x̂t/t)

}
+ Bt ut, (41)

θ̂t+1/t+1 = θ̂t/t + P
(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
(yt − Ct x̂t/t) , (42)

P
(2,1)
t+1 =

{
P
(2,1)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct Pt

}
At

T , (43)

and

P
(2,2)
t+1 = P

(2,2)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct P

(2,1)
t

T
. (44)

Here, we note that the state estimate x̂t+1/t+1 reduces to the state estimate x̂t+1/t in Katayama
(2000) when Ht ≡ O holds. Moreover, Equalities (37)-(40) with the state estimates x̂t+1/t+1

and x̂t/t replaced respectively by x̂t+1/t and x̂t/t−1 are identical to those for the pair of the
standard Kalman filter and the optimal fixed-point smoother in Katayama (2000). Thus, it has
been shown that this algorithm reduces to the well known optimal smoother derived from
the Kalman filter when the unknown inputs disappear. This indicates that our smoothing
algorithm is a natural extension of the standard optimal smoother to linear systems possibly
with unknown inputs.

Let us introduce some notations:

νt = yt − Ct x̂t/t, (45)

Lt = A1
t+1 (I − Gt Ct) , (46)

Ψ(t, τ) =

{
Lt−1 Lt−2 · · · Lτ , t > τ

I , t = τ ,
(47)

where the matrix Gt was defined by (18), i.e.,

Gt =
(

Pt Ct
T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
. (48)

We then have the following results due to (27).

Corollary 3.3. We have the equalities:

x̂k/t+1 = x̂k/k +
t

∑
i=k

Di(k)νi = x̂k/k + Pk

t

∑
i=k

Ψ(i, k)TCi
T
(

CiPiCi
T + Ri

)−1
νi . (49)
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Proof It is straightforward to show the first equality from (27). For the second equality, it is
sufficient to prove the equality

Dt(k) = Pk Ψ(t, k)T Ct
T
(

Ct Pt Ct
T + Rt

)−1
(50)

for t ≥ k. By virtue of (46), equality (29) can be rewritten as

P
(2,1)
t = P

(2,1)
t−1

(
I − Ct−1

T Gt−1
T
)

A1
t

T
= P

(2,1)
t−1 Lt−1

T . (51)

By using this equality recursively, we have

P
(2,1)
t = P

(2,1)
t−2 Lt−2

T Lt−1
T = · · · · · · = P

(2,1)
k Lk

T Lk+1
T · · · Lt−1

T

= Pk Ψ(t, k)T . (52)

Substituting this equality into (28), we obtain

Dt(k) = Pk Ψ(t, k)T Ct
T
(

Ct Pt Ct
T + Rt

)−1
, (53)

i.e., (50).

Finally, we study the reduction of the estimation error by the fixed-point smoothing over the
optimal filtering. Due to (27), we have

P
(2,2)
t = E

[
(xk − x̂k/t) (xk − x̂k/t)

T
]

. (54)

Denote this matrix simply by Pk/t. It then follows from (30) that

Pk/t+1 = Pk/t − P
(2,1)
t Ct

T
(

CtPtCt
T+ Rt

)−1
CtP

(2,1)
t

T
. (55)

Summing up these equalities for t = k, k + 1, · · · , s, we have

Pk/k − Pk/s+1 =
s

∑
i=k

P
(2,1)
i Ci

T
(

CiPiCi
T + Ri

)−1
CiP

(2,1)
i

T
. (56)

Thus, the right hand side indicates the amount of the reduction of the estimation error by the
fixed-point smoothing over the optimal filtering.

4. The fixed-interval smoothing

We consider the fixed-interval smoothing problem in this section. Namely, we investigate the
optimal estimate x̂t/N of the state xt at all times t = 0, 1, · · · , N based on the observation YN of
all the states {y0, y1, · · · , yN}. Applying equality (49), we easily obtain the following equality.

Lemma 4.1. The equality

x̂t/N = x̂t/t+1 + Pt Lt
T Pt+1

−1 (x̂t+1/N − x̂t+1/t+1) (57)
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holds for t = 0, 1, · · · , N − 1.

Proof Using the notation

ν̃i = Ci
T
(

CiPiCi
T+Ri

)−1
νi, (58)

we have

x̂k/t+1 = x̂k/k + Pk

t

∑
i=k

Ψ(i, k)T ν̃i (59)

for k ≤ t due to (49). In view of (59) , we also have

x̂k/t+1 = x̂k/k + Pk ν̃k + Pk

t

∑
i=k+1

Ψ(i, k)T ν̃i = x̂k/k+1 + Pk

t

∑
i=k+1

Ψ(i, k)T ν̃i (60)

for k + 1 ≤ t. Putting t + 1 = N and k = t + 1 in equality (59), we have

x̂t+1/N = x̂t+1/t+1 + Pt+1

N−1

∑
i=t+1

Ψ(i, t + 1)T ν̃i. (61)

Putting t + 1 = N and k = t in equality (60), we have

x̂t/N = x̂t/t+1 + Pt

N−1

∑
i=t+1

Ψ(i, t)T ν̃i = x̂t/t+1 + PtLt
T

N−1

∑
i=t+1

Ψ(i, t + 1)T ν̃i. (62)

Substituting (61) into (62), we have

x̂t/N = x̂t/t+1 + Pt Lt
T Pt+1

−1 (x̂t+1/N − x̂t+1/t+1) .

The above derivation is valid for t = 0, 1, · · · , N − 2. It is easy to observe that equality (57)
also holds for t = N − 1.
It is a simple task to obtain the following Fraser-type algorithm from (57).

Theorem 4.2. We obtain the fixed-interval smoother

x̂t/N = x̂t/t+1 + Pt Lt
T λt+1 , (63)

λt = Lt
Tλt+1 + Ct

T
(

CtPtCt
T+Rt

)−1
νt . (64)

for t = N − 1, N − 2, · · · , 1, 0. Here, we have λN = 0.

Proof For t = 0, 1, · · · , N, we put

λt = Pt
−1 (x̂t/N − x̂t/t) . (65)

We then have λN = 0. Substituting (65) into (57), we obtain equality (63). Then, by utilizing
(63) and (65), we have

λt = Pt
−1
(

x̂t/t+1 + Pt Lt
T λt+1 − x̂t/t

)
. (66)

In view of the equality
x̂t/t+1 − x̂t/t = Pt ν̃t (67)
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which follows from (27) in Tanikawa & Sawada (2003), we obtain

λt = Lt
T λt+1 + ν̃t

= Lt
T λt+1 + Ct

T
(

CtPtCt
T+Rt

)−1
νt. (68)

Thus, we proved (64).

Remark 4.3. When Et ≡ O holds for all t (i.e., the unknown input term is zero), we shall see
that fixed-interval smoother (63)-(64) is identical to the fixed-interval smoother obtained from
the standard Kalman filter (see e.g., Katayama (2000)). Thus, our algorithm is consistent with
the known fixed-interval smoothing algorithm for systems without unknown inputs. This
can be shown as follows. Assuming that Et = O, we have Ht = O for t = 0, 1, · · · , N (see
Propositin 2.4). Note that in (59), i.e.,

x̂k/t+1 = x̂k/k + Pk

t

∑
i=k

Ψ(i, k)T ν̃i

x̂k/t+1 and x̂k/k respectively reduce to x̂k/t and x̂k/k−1 which are respectively the optimal
smoother and the optimal filter obtained from the standard Kalman filter. Then, the above
equality is identical to (7.18) in Katayama (2000). Since the rest of the proof can be done in the
same way as in Katayama (2000), we obtain the same smoother.

5. The fixed-lag smoothing

We study the fixed-lag smoothing problem in this section. For a fixed L > 0, we investigate
an iterative algorithm to compute the optimal state estimate x̂t−L/t of the state xt−L based on
the observation Yt.
We consider the following augmented system:

⎡
⎢⎢⎢⎣

xt+1

xt

...
xt−L+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

At O . . . O
I O . . . O

. . .

O I O

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

xt

xt−1
...

xt−L

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

Bt

O
...

O

⎤
⎥⎥⎥⎦ ut +

⎡
⎢⎢⎢⎣

Et

O
...

O

⎤
⎥⎥⎥⎦ dt +

⎡
⎢⎢⎢⎣

I
O
...

O

⎤
⎥⎥⎥⎦ ζt, (69)

yt+1 = [Ct+1 O . . . O]

⎡
⎢⎢⎢⎣

xt+1

xt

...
xt−L+1

⎤
⎥⎥⎥⎦+ ηt+1. (70)

Denote these equations respectively by

x̃t+1 = Ãt x̃t + B̃t ut + Ẽt dt + J̃t ζt, (71)

yt+1 = C̃t+1 x̃t+1 + ηt+1, (72)
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where

x̃t =

⎡
⎢⎢⎢⎣

xt

xt−1
...

xt−L

⎤
⎥⎥⎥⎦ , Ãt =

⎡
⎢⎢⎢⎣

At O . . . O
I O . . . O

. . .

O I O

⎤
⎥⎥⎥⎦ , B̃t =

⎡
⎢⎢⎢⎣

Bt

O
...

O

⎤
⎥⎥⎥⎦ , Ẽt =

⎡
⎢⎢⎢⎣

Et

O
...

O

⎤
⎥⎥⎥⎦ ,

J̃t =

⎡
⎢⎢⎢⎣

I
O
...

O

⎤
⎥⎥⎥⎦ and C̃t+1 = [Ct+1 O . . . O] .

Here, I and O are the identity matrix and the zero matrix respectively with appropriate
dimensions. By making use of the notations

H̃t+1 =

⎡
⎢⎢⎢⎣

Ht+1

O
...

O

⎤
⎥⎥⎥⎦ and T̃t+1 = I − H̃t+1 C̃t+1,

we have the equalities:

C̃t+1 Ẽt = [Ct+1 O . . . O]

⎡
⎢⎢⎢⎣

Et

O
...

O

⎤
⎥⎥⎥⎦ = Ct+1 Et,

T̃t+1 = I −

⎡
⎢⎢⎢⎣

Ht+1

O
...

O

⎤
⎥⎥⎥⎦ [Ct+1 O . . . O] =

⎡
⎢⎢⎢⎣

Tt+1 O . . . O
O I . . . O

. . .

O O . . . I

⎤
⎥⎥⎥⎦ ,

Ã1
t+1 = T̃t+1 Ãt =

⎡
⎢⎢⎢⎣

Tt+1 O . . . O
O I . . . O

. . .

O O . . . I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

At O . . . O
I O . . . O

. . .

O I O

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1
t+1 O . . . O

I O . . . O
. . .

O I O

⎤
⎥⎥⎥⎦ .

We introduce the covariance matrix P̃t of the state estimation error of augmented system
(71)-(72):

P̃t = E

⎧
⎨
⎩

⎡
⎢⎢⎢⎣

xt − x̂t/t

xt−1 − x̂t−1/t
...

xt−L − x̂t−L/t

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

xt − x̂t/t

xt−1 − x̂t−1/t
...

xt−L − x̂t−L/t

⎤
⎥⎥⎥⎦

T
⎫
⎬
⎭

. (73)
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By using the notations

Pt−i,t−j/t = E

{
(xt−i − x̂t−i/t)

(
xt−j − x̂t−j/t

)T
}

,

Pt−i/t = Pt−i,t−i/t ,

we can write

P̃t =

⎡
⎢⎢⎢⎣

Pt/t Pt,t−1/t . . . Pt,t−L/t

Pt−1,t/t Pt−1/t . . . Pt−1,t−L/t
...

. . .
...

Pt−L,t/t Pt−L,t−1/t . . . Pt−L/t

⎤
⎥⎥⎥⎦ . (74)

Here, it is easy to observe that Pt/t = Pt holds. We also note that

C̃t P̃t C̃t
T
+ Rt = Ct Pt/t Ct

T + Rt. (75)

From now on, we use the following notation for brevity:

Ct := Ct Pt Ct
T + Rt. (76)

Applying the optimal filter given in Proposition 2.2 to augmented system (71)-(72), we have

̂̃xt+1/t+1 = Ã1
t+1

{
̂̃xt/t + G̃t

(
yt − C̃t

̂̃xt/t

)}
+ H̃t+1 yt+1 + T̃t+1 B̃t ut, (77)

where

G̃t =
(

P̃t C̃t
T
− H̃t Rt

) (
C̃t P̃t C̃t

T
+ Rt

)−1
=

⎡
⎢⎢⎢⎢⎣

Pt/t Ct
T − Ht Rt

Pt−1,t/t Ct
T

...

Pt−L,t/t Ct
T

⎤
⎥⎥⎥⎥⎦

Ct
−1

. (78)

Identifying the component matrices of (77)-(78), we have the following optimal fixed-lag
smoother.

Theorem 5.1. If Ct Ht and Rt are commutative, i.e.,

Ct Ht Rt = Rt Ct Ht, (79)

then we have the optimal fixed-lag smoother for (1)-(2) as follows:
(i) the fixed-lag smoother

x̂t−j/t+1 = x̂t−j/t + St(j) (yt − Ct x̂t/t) (j = 0, 1, · · · , L − 1) , (80)

(ii) the optimal filter

x̂t+1/t+1 = A1
t+1 {x̂t/t + Gt (yt − Ct x̂t/t)}+ Ht+1yt+1 + Tt+1Btut, (81)

with Gt defined by (18) in Proposition 2.2,
(iii) the gain matrices

St(j) =
(

Pt−j,t/t Ct
T − δ0,j Ht Rt

)
Ct

−1
(j = 0, 1, · · · , L − 1) , (82)
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where δi,j stands for the Kronecker’s delta, i.e.,

δi,j =

{
1 for i = j
0 for i �= j

, (83)

(iv) the covariance matrix of the mean-square error

Pt+1/t+1 = A1
t+1 M

(0,0)
t A1

t+1
T
+ Tt+1 Qt Tt+1

T + Ht+1 Rt+1 Ht+1
T, (84)

Pt+1,t−j/t+1 = A1
t+1 M

(0,j)
t (j = 0, 1, · · · , L − 1) , (85)

Pt−j,t+1/t+1 =
(

Pt+1,t−j/t+1

)T
(j = 0, 1, · · · , L − 1) , (86)

Pt−i,t−j/t+1 = M
(i,j)
t (i, j = 0, 1, · · · , L − 1) , (87)

and

M
(i,j)
t = Pt−i,t−j/t −

(
Pt−i,t/t Ct

T − δ0,i Ht Rt

)
Ct

−1
(

Ct Pt,t−j/t − δ0,j Rt Ht
T
)

(i, j = 0, 1, · · · , L) . (88)

Remark 5.2. Since the equalities

Pt/t = Pt ( in Proposition 2.2 )

and
M

(0,0)
t = Mt ( in Proposition 2.2 )

hold, the part of the optimal filter in Theorem 5.1 is identical to that in Proposition 2.2. When
Et ≡ O holds for all t (i.e., the unknown input term is zero), we shall see that fixed-lag
smoother (80)-(88) is identical to the well known fixed-lag smoother (see e.g. Katayama (2000))
obtained from the standard Kalman filter. Thus, our algorithm is consistent with the known
fixed-lag smoothing algorithm for systems without unknown inputs. This can be readily
shown as in Remark 4.3.

Proof of Theorem 5.1 Rewriting (77)-(78) with the component matrices explicitly, we have

⎡
⎢⎢⎢⎢⎢⎣

x̂t+1/t+1

x̂t/t+1

x̂t−1/t+1
...

x̂t−L+1/t+1

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
t+1

{
x̂t/t +

(
Pt/tCt

T − HtRt

)
Ct

−1
(yt − Ct x̂t/t)

}

x̂t/t +
(

Pt/t Ct
T − Ht Rt

)
Ct

−1
(yt − Ct x̂t/t)

x̂t−1/t + Pt−1,t/t Ct
TCt

−1
(yt − Ct x̂t/t)

...

x̂t−L+1/t + Pt−L+1,t/t Ct
TCt

−1
(yt − Ct x̂t/t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

Ht+1 yt+1 + Tt+1 Bt ut

O
O
...

O

⎤
⎥⎥⎥⎥⎥⎦

. (89)
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The statements in (i)-(iii) easily follow from (89).
Let M̃t be defined by

M̃t = P̃t − G̃t

(
C̃t P̃t − Rt H̃t

T
)

= P̃t −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pt/tCt
T−Ht Rt

Pt−1,t/t Ct
T

Pt−2,t/t Ct
T

...

Pt−L,t/t Ct
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ct
−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pt/tCt
T−Ht Rt

Pt−1,t/t Ct
T

Pt−2,t/t Ct
T

...

Pt−L,t/t Ct
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

We also introduce component matrices of M̃t as follows:

M̃t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
(0,0)
t M

(0,1)
t M

(0,2)
t . . . M

(0,L)
t

M
(1,0)
t M

(1,1)
t M

(1,2)
t . . . M

(1,L)
t

M
(2,0)
t M

(2,1)
t M

(2,2)
t . . . M

(2,L)
t

...
...

...
. . .

...

M
(L,0)
t M

(L,1)
t M

(L,2)
t . . . M

(L,L)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Concerning P̃t+1, we have

P̃t+1 = Ã1
t+1 M̃t Ã1

t+1

T
+ T̃t+1 J̃t Qt J̃t

T
T̃t+1

T
+ H̃t+1 Rt+1 H̃t+1

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
t+1M

(0,0)
t A1

t+1
T

A1
t+1M

(0,0)
t A1

t+1M
(0,1)
t . . . A1

t+1M
(0,L−1)
t

M
(0,0)
t A1

t+1
T

M
(0,0)
t M

(0,1)
t . . . M

(0,L−1)
t

M
(1,0)
t A1

t+1
T

M
(1,0)
t M

(1,1)
t . . . M

(1,L−1)
t

...
...

...
. . .

...

M
(L−1,0)
t A1

t+1
T

M
(L−1,0)
t M

(L−1,1)
t . . . M

(L−1,L−1)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tt+1QtTt+1
T+Ht+1Rt+1Ht+1

T O O . . . O

O O O . . . O

O O O . . . O

...
...

...
. . .

...

O O O . . . O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The final part (iv) can be obtained from the last three equalities.
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6. Conclusion

In this chapter, we considered discrete-time linear stochastic systems with unknown inputs

(or disturbances) and studied three types of smoothing problems for these systems. We

derived smoothing algorithms which are robust to unknown disturbances from the optimal

filter for stochastic systems with unknown inputs obtained in our previous papers. These

smoothing algorithms have similar recursive forms to the standard optimal filters and

smoothers. Moreover, since our algorithms reduce to those known smoothers derived from

the Kalman filter when unknown inputs disappear, these algorithms are consistent with the

known smoothing algorithms for systems without unknown inputs.

This work was partially supported by the Japan Society for Promotion of Science (JSPS) under

Grant-in-Aid for Scientific Research (C)-22540158.
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