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1. Introduction  

The integration of information from a combination of different types of observed 
instruments (sensors) are often used in the design of high-accuracy control systems. Typical 
applications that benefit from this use of multiple sensors include industrial tasks, military 
commands, mobile robot navigation, multi-target tracking, and aircraft navigation (see (hall, 
1992, Bar-Shalom, 1990, Bar-Shalom & Li, 1995, Zhu, 2002, Ren & Key, 1989) and references 
therein). One problem that arises from the use of multiple sensors is that if all local sensors 
observe the same target, the question then becomes how to effectively combine the 
corresponding local estimates. Several distributed fusion architectures have been discussed 
in (Alouani, 2005, Bar-Shalom & Campo, 1986, Bar-Shalom, 2006, Li et al., 2003, Berg & 
Durrant-Whyte, 1994, Hamshemipour et al., 1998) and algorithms for distributed estimation 
fusion have been developed in (Bar-Shalom & Campo, 1986, Chang et al., 1997, Chang et al, 
2002, Deng et al., 2005, Sun, 2004, Zhou et al., 2006, Zhu et al., 1999, Zhu et al., 2001, Roecker 
& McGillem, 1998, Shin et al, 2006). To this end, the Bar-Shalom and Campo fusion formula 
(Bar-Shalom & Campo, 1986) for two-sensor systems has been generalized for an arbitrary 
number of sensors in (Deng et al., 2005, Sun, 2004, Shin et al., 2007) The formula represents 
an optimal mean-square linear combination of the local estimates with matrix weights. The 
analogous formula for weighting an arbitrary number of local estimates using scalar weights 
has been proposed in (Shin et al., 2007, Sun & Deng, 2005, Lee & Shin 2007). 
However, because of lack of prior information, in general, the distributed filtering using the 
fusion formula is globally suboptimal compared with optimal centralized filtering (Chang et 
al., 1997). Nevertheless, in this case it has advantages of lower computational requirements, 
efficient communication costs, parallel implementation, and fault-tolerance (Chang et al., 
1997, Chang et al, 2002, Roecker & McGillem, 1998). Therefore, in spite of its limitations, the 
fusion formula has been widely used and is superior to the centralized filtering in real 
applications.  
The aforementioned papers have not focused on prediction problem, but most of them have 
considered only distributed filtering in multisensory continuous and discrete dynamic 
models. Direct generalization of the distributed fusion filtering algorithms to the prediction 
problem is impossible. The distributed prediction requires special algorithms one of which 
for discrete-time systems was presented in (Song et al. 2009). In this paper, we generalize the 
results of (Song et al. 2009) on mixed continuous-discrete systems. The continuous-discrete 
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approach allows system to avoid discretization by propagating the estimate and error 
covariance between observations in continuous time using an integration routine such as 
Runge-Kutta. This approach yields the optimal or suboptimal estimate continuously at all 
times, including times between the data arrival instants. One advantage of the continuous-
discrete filter over the alternative approach using system discretization is that in the former, 
it is not necessary for the sample times to be equally spaced. This means that the cases of 
irregular and intermittent measurements are easy to handle. In the absensce of data the 
optimal prediction is given by performing only the time update portion of the algorithm. 
Thus, the primary aim of this paper is to propose two distributed fusion predictors using 

fusion formula with matrix weights, and analysis their statistical properties and relationship 

between them. Then, through a comparison with an optimal centralized predictor, 

performance of the novel predictors is evaluated. 

This chapter is organized as follows. In Section 2, we present the statement of the 

continuous-discrete prediction problem in a multisensor environment and give its optimal 

solution. In Section 3, we propose two fusion predictors, derived by using the fusion 

formula and establish the equivalence between them. Unbiased property of the fusion 

predictors is also proved. The performance of the proposed predictors is studied on 

examples in Section 4. Finally, concluding remarks are presented in Section 5. 

2. Statement of problem – centralized predictor 

We consider a linear system described by the stochastic differential equation 

 t t t t tx F x G v , t 0 ,= + ≥$  (1) 

where n
tx ∈ℜ is the state, q

tv ∈ℜ is a zero-mean Gaussian white noise with covariance 

( ) ( )T
t s tE v v Q δ t-s= , and t ,n nF ×∈ℜ t ,n qG ×∈ℜ  and t .q qQ ×∈ℜ  

Suppose that overall discrete observations tk

mY ∈ℜ  at time instants 1 2t , t ,...  are composed 

of N  observation subvectors (local sensors) 
k k

(1) (N)
t ty ,...,y , i.e., 

 
T T

k k k

(1) (N) T
t t tY =[y y ] ,…  (2) 

where 
k

(i)
ty , i=1, ,N…  are determined by the equations 

 

1

kk k k k

N

kk k k k

(1) (1) (1) (1) m
tt t t t

(N) (N) (N) (N) m
tt t t t

k+1 k 0 1 N

y =H x +w ,  y ,

                     

y =H x +w ,  y ,

k=1,2,...; t >t t =0 ; m=m + +m ,

∈ℜ

∈ℜ

≥

B

A

 (3) 

where i

k

(i) m
ty ∈ℜ  is the local sensor observation, i

k

(i) n m
tH ×∈ℜ , and { }i

k

(i) m
tw , k 1,2,...∈ℜ =  

are zero-mean white Gaussian sequences, ( )
k k

(i) (i)
t tw ~ 0,R , i=1,...,N’ . The distribution of the 

initial state 0x  is Gaussian, ( )0 0 0x ~ x ,P’ , and 0x , tv , and { }
k

(i)
tw , i 1,...,N=  are assumed 

mutually uncorrelated. 
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A problem associated with such systems is to find the distributed weighted fusion predictor 

t+Δx̂ , 0Δ ≥  of the state t+Δx  based on overall current sensor observations 

 { }k

1 k1

t
t t 1 ktY = Y ,...,Y , t <...<t t t , 0.≤ ≤ + Δ Δ ≥  (4) 

2.1 The optimal centralized predictor 

The optimal centralized predictor is constructed by analogy with the continuous-discrete 

Kalman filter (Lewis, 1986, Gelb, 1974). In this case the prediction estimate opt
t+Δx̂  and its error 

covariance opt
t+ΔP  are determined by the combining of time update and observation update, 

 k k

k k

opt optopt opt
s s s k s=t t

opt optopt opt opt T
s s s s s s s=t t

ˆ ˆ ˆ ˆx =F x , t s t+Δ , x =x ,

P =F P +P F +Q , P =P ,

⎧ ≤ ≤⎪
⎨
⎪⎩

$

#$
 (5) 

where the initial conditions represent filtering estimate of the state 
k

opt
tx̂  and its error 

covariance 
k

opt
tP  which are given by the continuous-discrete Kalman filter equations (Lewis, 

1986, Gelb, 1974): 

 
-- -

k-1 k-1

-- - -

k-1 k-1

opt optopt opt
τ τ τ k-1 k τ=t t

opt optopt opt opt T
τ τ τ τ τ τ τ=t t

:

ˆ ˆ ˆ ˆx =F x , t τ t , x =x ,

P =F P +P F +Q , P =P ,

Time update between observations

⎧ ≤ ≤⎪
⎨
⎪⎩

$

#$
  (6a) 

 

( )
( )

( )

- -

k kk k k k

- -

k k k kk k k

-

kk k k

opt opt opt opt
t tt t t t

-1
opt opt optT T

t t t tt t t

opt opt opt
n tt t t

:

ˆ ˆ ˆx =x +L Y -H x ,

L =P H H P H +R ,

P = I -L H P .

kObservation update at time t

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

 (6b) 

Here nI  is the n n×  identity matrix, T
t t t tQ =G Q G ,#  

T T

k k k

(1) (N)T
t t tY = y y ,⎡ ⎤…⎢ ⎥⎣ ⎦

 

T T

k k k

(1) (N)T
t t tH = H H ,⎡ ⎤…⎢ ⎥⎣ ⎦

 
k k k

(1) (N)
t t tR =diag R R ,⎡ ⎤

⎣ ⎦…  and the matrices tF , tG , tQ  and 
k

(i)
tR  

are defined in (1)-(3). Note that in the absence of observation 
ktY , the centralized predictor 

includes two time update equations (5) and (6a), and in case of presence at time kt=t  the 

initial conditions 
k

opt
tx̂  and 

k

opt
tP  for (5) computed by the observation update equations (6b). 

Many advanced systems now make use of a large number of sensors in practical 
applications ranging from aerospace and defence, robotics automation systems, to the 
monitoring and control of process generation plants. Recent developments in integrated 
sensor network systems have further motivated the search for decentralized signal 
processing algorithms. An important practical problem in the above systems is to find a 
fusion estimate to combine the information from various local estimates to produce a global 
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(fusion) estimate. Moreover, there are several limitations for the centralized estimators in 
practical implementation, such as computational cost and capacity of data transmission. 
Also numerical errors of the centralized estimator design are drastically increased with 
dimension of the state n

tx ∈ℜ  and overall observations 
k

m
tY ∈ℜ . In these cases the 

centralized estimators may be impractical. In next Section, we propose two new fusion 
predictors for multisensor mixed continuous-discrete linear systems (1), (3). 

3. Two distributed fusion predictors 

The derivation of the fusion predictors is based on the assumption that the overall 

observation vector 
ktY combines the local subvectors (individual sensors) 

k k

(1) (N)
t ty ,...,y , which 

can be processed separately. According to (1) and (3), we have N  unconnected dynamic 

subsystems ( i 1,...,N= ) with the common state tx  and local sensor 
k

(i)
ty : 

 
kk k k

t t t t t 0

(i) (i) (i)
tt t t

k+1 k 0

x =F x +G v , t t ,

y =H x +w , 

k=1,2,...; t >t t 0 ,

≥

≥ =

$
  (7) 

where i is the index of subsystem. Then by the analogy with the centralized prediction 

equations (5), (6) the optimal local predictor (i)
t+Δx̂  based on the overall local observations 

{ }
1 k

(i) (i)
kt ty ,...,y , t t t≤ ≤ + Δ  satisfies the following time update and observation update 

equations: 

 k k

k k

(i) (i)(i) (i)
s s s k s=t t

(ii) (ii)(ii) (ii) (ii) T
s s s s s s s=t t

ˆ ˆ ˆ ˆx =F x , t s t+Δ , x =x ,

P =F P +P F +Q , P =P ,

⎧ ≤ ≤⎪
⎨
⎪⎩

$

#$
 (8) 

where the initial conditions 
k

(i)
tx̂  and its error covariance 

k

(ii)
tP  are given by the continuous-

discrete Kalman filter equations 

 
-- -

k-1 k-1

-- - -

k-1 k-1

(i) (i)(i) (i)
τ τ τ k-1 k τ=t t

(ii) (ii)(ii) (ii) (ii) T
τ τ τ τ τ τ τ=t t

:

ˆ ˆ ˆ ˆx =F x , t τ t , x =x ,

P =F P +P F +Q , P =P ,

Time update between observations

⎧ ≤ ≤⎪
⎨
⎪⎩

$

#$
 (9a) 

 

( )
( )

( )

- -

k k k k k k

- T - T

k k k k k k k

-

k k k k

(i) (i) (i) (i) (i) (i)
t t t t t t

-1
(i) (ii) (i) (i) (ii) (i) (i)
t t t t t t t

(ii) (i) (i) (ii)
nt t t t

:

ˆ ˆ ˆx =x +L y -H x ,

L =P H H P H +R ,

P = I -L H P .

kObservation update at time t

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

 (9b) 

Thus from (8) we have N  local filtering (i) (i)
t s=t

ˆ ˆx =x  and prediction (i) (i)
t+Δ s=t+Δˆ ˆx x=  estimates, 

and corresponding error covariances (ii)
tP  and (ii)

t+ΔP  for i=1,...,N  and kt t≥ . Using these 

values we propose two fusion prediction algorithms. 
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3.1 The fusion of local predictors (FLP Algorithm) 

The fusion predictor FLP
t+Δx̂  of the state t+Δx  based on the overall sensors (2), (3) is 

constructed from the local predictors (i)
t+Δx̂ , i 1,...,N=  by using the fusion formula (Zhou et 

al., 2006, Shin et al., 2006): 

 
N N

(i) (i) (i)FLP
t+Δ nt+Δ t+Δ t+Δ

i=1 i=1

ˆx = a x ,  a =I ,∑ ∑  (10) 

where (1) (N)
t+Δ t+Δa , ,a…  are n n×  time-varying matrix weights determined from the mean-

square criterion, 

 

2N
(i) (i)FLP

t+Δ t+Δ t+Δ t+Δ
i=1

J =E x - a x .
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑  (11) 

The Theorems 1 and 2 completely define the fusion predictor FLP
t+Δx̂  and its overall error 

covariance FLP FLP FLP FLP FLP
t+Δ t+Δ t+Δ t+Δ t+Δ t+ΔˆP =cov(x ,x ) , x =x -x .# # #  

Theorem 1: Let (1) (N)
t+Δ t+Δˆ ˆx , ,x…  are the local predictors of an unknown state t+Δx . Then  

a. The weights (1) (N)
t+Δ t+Δa , ,a…  satisfy the linear algebraic equations 

 
N N

(ij)(i) (iN) (i)
nt+Δ t+Δ t+Δ t+Δ

i=1 i=1

a P -P =0,  a =I , j=1, ,N-1;⎡ ⎤ …⎣ ⎦∑ ∑  (12) 

b. The local covariance (ii) (i) (i) (i) (i)
t+Δt+Δ t+Δ t+Δ t+Δ t+ΔˆP =cov(x ,x ) , x =x -x# # #  satisfies (8) and local cross-

covariance ( ) ( )( )cov( , ) ,ij ji
t t tP x x i j+Δ +Δ +Δ= ≠# #  describes the time update and observation update 

equations: 

 ( ) ( )

-- - -

k-1 k-1

-

k k k k k k

k k

(ij) (ij)(ij) (ij) (ij) T
τ τ τ τ τ τ k-1 kτ=t t

T(ij) (ij) (j) (j)(i) (i)
n n kt t t t t t

(ij) (ij)(ij) (ij) (ij) T
s s s s s s ks=t t

P =F P +P F +Q , P =P , t τ t ,

P = I +L H P I +L H , t=t ,

P =F P +P F +Q , P =P , t s t+Δ;

⎧ ≤ ≤⎪
⎪⎪
⎨
⎪
⎪ ≤ ≤
⎪⎩

#$

#$

 (13) 

c. The fusion error covariance FLP
t+ΔP  is given by  

 
TN

(ij) (j)(i)FLP
t+Δ t+Δ t+Δ t+Δ

i,j=1

P = a P a .∑  (14) 

Theorem 2: The local predictors (1) (N)
t+Δ t+Δˆ ˆx , ,x…  and fusion predictor FLP

t+Δx̂  are unbiased, i.e., 

( ) ( )(i)
τ τˆE x =E x  and ( ) ( )FLP

t+Δ t+ΔˆE x =E x  for 0 τ t+Δ≤ ≤ . 

The proofs of Theorems 1 and 2 are given in Appendix. 

Thus the local predictors (8) and fusion equations (10)-(14) completely define the FLP 
algorithm. In particular case at N 2= , formulas (10)-(12) reduce to the Bar-Shalom and 
Campo formulas (Bar-Shalom & Campo, 1986): 
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(1) (1) (2) (2)FLP
t+Δ t+Δ t+Δ t+Δ t+Δ

-1(1) (22) (21) (11) (22) (12) (21)
t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ

-1(2) (11) (12) (11) (22) (12) (21)
t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ

ˆ ˆ ˆx =a x +a x ,

a = P -P P +P -P -P ,

a = P -P P +P -P -P .

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

 (15) 

Further, in parallel with the FLP we offer the other algorithm for fusion prediction. 

3.2 The prediction of fusion filter (PFF Algorithm) 

This algorithm consists of two parts. The first part fuses the local filtering estimates 

k k

(1) (N)
t t

ˆ ˆx , ,x .…  Using the fusion formula, we obtain the fusion filtering (FF) estimate 

 
k k k k

N N
(i) (i) (i)FF

t nt t t
i=1 i=1

ˆ ˆx = b x , b =I ,∑ ∑  (16) 

where the weights 
k k

(1) (N)
t tb , ,b…  do not depend on lead Δ . 

In the second part we predict the fusion filtering estimate 
k

FF
tx̂  using the time update 

prediction equations. Then the fusion predictor PFF
t+x̂ Δ  and its error covariance 

PFF PFF PFF PFF PFF
t+Δ t+Δ t+Δ t+Δ t+Δ t+ΔˆP =cov(x ,x ), x =x -x# # #  satisfy the following equations: 

 k k

k k

PFF PFF PFF FF
s s s k s=t t

PFF PFF PFF T PFF FF
s s s s s s s=t t

ˆ ˆ ˆ ˆx =F x , t s t+Δ , x =x ,

P =F P +P F +Q , P =P .

⎧ ≤ ≤⎪
⎨
⎪⎩

$

#$
 (17) 

Next Theorem completely defines the PFF algorithm. 

Theorem 3: Let 
k k

(1) (N)
t t

ˆ ˆx , ,x…  are the local filtering estimates of an unknown state tx . Then  

a. The weights 
k k

(1) (N)
t tb , ,b…  satisfy the linear algebraic equations 

 
k k k

N N
(ij)(i) (iN) (i)

nt t t t
i=1 i=1

b P -P =0, b =I , j 1, ,N 1;
k

⎡ ⎤ = −⎣ ⎦∑ ∑ …  (18) 

b. The local covariance 
k

(ii)
tP  and cross-covariance 

k

(ij)
tP  in (18) are determined by equations (9) and 

(13), respectively; 

c. The initial conditions 
k

FF
tx̂  and 

k

FF
tP  in (17) are determined by (16) and formula  

 
T

k k k k

N
(ij) (j)(i)FF

t t t t
i,j=1

P = b P b ,∑  (19) 

respectively; 

d. The fusion predictor PFF
t+Δx̂  in (17) is unbiased, i.e., PFF

t+Δ t+ΔˆE(x )=E(x ) . 
The proof of Theorem 3 is given in Appendix. 

3.3 The relationship between FLP and PFF 

Here we establish the relationship between the prediction fusion estimates FLP
t+Δx̂  and PFF

t+Δx̂  

determined by (10) and (16), respectively. 
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Theorem 4: Let FLP
t+Δx̂  and PFF

t+Δx̂  be the fusion prediction estimates determined by (10) and (16), 

respectively, and the local error covariances (ij)
s kP , t s t+Δ , i,j 1,...,N≤ ≤ =  are nonsingular. Then  

 FLP PFF
t+Δ t+Δˆ ˆx =x for 0.Δ >  (20) 

The proof of Theorem 4 is given in Appendix. 

Remark 1 (Uniqueness solution): When the local prediction covariances (ij)
t+ΔP , i,j 1,...,N=  are 

nonsingular, the quadratic optimization problem (11) has a unique solution, and the wights 
(1) (N)
t+Δ t+Δa , ,a…  are defined by the expressions (11). The same result is true for the covariance 

k

(ij)
tP  and the weights 

k k

(1) (N)
t tb , ,b…  (Zhu et al., 1999, Zhu, 2002). 

Remark 2 (Computational complexity): According to Theorem 4, both the predictors FLP and 

PFF are equivalent; however, from a computational point of view they are different. To 

predict the state t+Δx  using FLP we need to compute the matrix weights (1) (N)
t+Δ t+Δa , ,a…  for 

each lead 0Δ > . This contrasts with PFF, wherein the weights 
k k

(1) (N)
t tb , ,b…  are computed 

only once, since they do not depend on the leads Δ . Therefore, FLP is deemed more 

complex than PFF, especially for large leads. 

Remark 3 (Real-time implementation): We may note that the local filter gains (i)
tL , the error 

cross-covariances (ij)
tP , (ij)

t+ΔP , and the weights (i)
t+Δa , 

k

(i)
tb  may be pre-computed, since they do 

not depend on the current observations 
k

(i)
ty , i 1,...,N= , but only on the noises statistics tQ  

and (i)
tR , and system matrices tF , tG , (i)

tH , which are part of the system model (1), (3). 

Thus, once the observation schedule has been settled, the real-time implementation of the 

fusion predictors FLP and PFF requires only the computation of the local estimates (i)
tx̂ , 

(i)
t+Δx̂ , i 1,...,N=  and final fusion predictors FLP

t+Δx̂  and PFF
t+Δx̂ . 

Remark 4 (Parallel implementation): The local estimates (i)
tx̂ , (i)

t+Δx̂ , i 1,...,N=  are separated 

for different sensors. Therefore, they can be implemented in parallel for various types of 

observations (i)
ty , i 1,...,N= . 

4. Examples 

4.1 The damper harmonic oscillator motion 

System model of the harmonic oscillator is considered in (Lewis, 1986). We have 

 *
t t t2

n

   0         1 0
x = x + v ,  0 t ,  

1-ω    -2α
t

⎡ ⎤ ⎡ ⎤
≤ ≤⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
$  (21) 

where T
t 1,t 2,t=[x x ]x , and 1,tx  is position, 2,tx  is velocity, and tv  is zero-mean white 

Gaussian noise with intensity q , t s t-sE(v v )=qδ , 0 0 0x ~ (x ,P )’ . Assume that the observation 

system contains N  sensors which are observing the position 1,tx . Then we have 

 
kk k k

kk k k

(1) (1) (1)
tt t t

(N) (N) (N) *
t 0 1 2t t t

y =H x +w ,

                

y =H x +w , 0=t <t <t <...<t ,

B  (22) 

where 
k

(j)
tH [1 0]= , and 

k

(j)
tw , 1,...,Nj =  are uncorrelated zero-mean white Gaussian noises 

with constant variances ( )r j , respectively. 
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For model (21), (22), three predictors are applied: centralized predictor (CP) in (5), (6), FLP 

in (10) and PFF in (16), (17). The performance comparison of the fusion predictors for 

N 2,3=  was expressed in the terms of computation load (CPU time CPUT ) and MSEs, 
2

, i,t+Δ i,t+ΔˆP =E(x -x ) ,i t+Δ where CP FLP
i,t+Δ i,t+Δ i,t+Δˆ ˆ ˆx =x , x  or PFF

i,t+Δx̂ , i=1, 2.  The model parameters, 

noise statistics, initial conditions, and lead are taken to 

 [ ] [ ]
( )

(1) (2) (3)2 *
n

T
0 0

k k-1

ω =3, α=2.5, t =3, q=5, r =3.0, r =2.0, r =1.0,

x = 10.0 0.0 , P =diag 0.5 0.5 ,

Δ=0.1~0.5 sec , t -t =0.1.

 (23) 

Figs. 1 and 2 illustrate the MSEs for position 1(x ) , CP
1,t+ΔP , FLP

1,t+ΔP , PFF
1,t+ΔP , and analogously for 

velocity 2(x ) , CP
2,t+ΔP , FLP

2,t+ΔP , PFF
2,t+ΔP  at N 2,3=  and lead Δ =0.2. The analysis of results in 

Figs. 1 and 2 show that the fusion predictors FLP and PFF have the same accuracy, i.e., 
FLP PFF
i,t+Δ i,t+ΔP =P , and the MSEs of each predictor are reduced from N 2=  to N 3= . The usage of 

three sensors allows to increase the accuracy of fusion predictors compared with the optimal 

CP for two sensors, i.e., i,t+ΔPFLP (N=3) = PFF
i,t+ΔP (N=3) < CP

i,t+ΔP (N=2). Moreover the differences 

between optimal CP
i,t+ΔP  and fusion MSEs FLP

i,t+ΔP , PFF
i,t+ΔP  are small, especially for steady-state 

regime. The results of numerical experiments on an Intel® Core 2 Duo with 2.6GHz CPU 

and 3G RAM are reported. The CPU time for CP, FLP, and PFF are represented in Table 1. 

We find that although FLP
i,t+ΔP  and PFF

i,t+ΔP  are equal (see Theorem 4), the CPU time PFF
CPUT  for 

evaluation of the prediction PFF
i,t+Δx̂  is 4~5 times less than FLP

CPUT  for FLP
i,t+Δx̂  ( PFF

CPUT < FLP
CPUT ) and 

this difference tends to increase with increasing the dimension of the state n or the number 

of sensors N. This is due to the fact that the PFF’s weights 
k

(i)
tb  do not depend on the leads 

Δ  in contrast to the FLP’s weights (i)
t+Δa . Also, since CPU time difference between CP and 

PFF is negligible, PFF algorithm prefer to implement in real application rather than CP, 

especially for distributed system or sensor network. 
 

 

Fig. 1. Position MSE comparison of three predictors at N 2,3= and lead Δ =0.2. 
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Fig. 2. Velocity MSE comparison of three predictors at N 2,3= and lead Δ =0.2. 

 

CPU time (sec) Number 
of sensors 

Lead Δ (sec) CP
CPUT  FLP

CPUT  PFF
CPUT  

0.1 0.172 0.826 0.185 

0.2 0.298 1.475 0.310 

0.3 0.384 1.863 0.405 

0.4 0.500 2.552 0.550 

N = 2 

0.5 0.656 3.137 0.691 

0.1 0.187 1.024 0.200 

0.2 0.305 1.743 0.340 

0.3 0.452 2.454 0.471 

0.4 0.602 3.306 0.621 

N = 3 

0.5 0.754 4.203 0.776 

Table 1. Comparison of CPU time at N 2,3=  and 0.1 ~ 0.5Δ =  

4.2 The water tank mixing system 

Consider the water tank system which accepts two types of different temperature of the 
water and throw off the mixed water simultaneously (Jannerup & Hendricks, 2006). This 
system is described by  

 

0.0139 0 0 1

0 0.0277 0 1 ,   0,

0 0.1667 0.1667 1
t t tx x v t

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + ≥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

$  (24) 

where 1, 2, 3,[ ]Tt t t tx x x x=  and 1,tx  is water level, 2,tx  is water temperature, 3,tx  is sensor 

temperature, and tv  is a white Gaussian noise with intensity ,q ( ) ,t s t sE v v qδ −=  

0 0 0~ ( , )x x P’ . The measurement model contains two sensors (N = 2) which sense water 

level. Then we have  
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 [ ]( ) ( ) *
0 1 21 0 0 , 0=t <t <t <...<t ,   i=1,2, 

kk k

i i
tt ty x w= +  (25) 

where (1)

ktw  and (2)

ktw  are uncorrelated white Gaussian sequences with zero-mean and 

constant intensities (1)r  and (2)r , respectively. 
 

 

Fig. 3. CP, FLP and PFF MSEs for water level at lead ∆ = 0.2s 

 

 

Fig. 4. Computational time of water tank mixing system using 3 predictors at leads  
∆ = 0.05, 0.1,…,0.5s. 

The parameters are subjected to 1,q =  (1) 2,r =  (2) 1,r =  * 3,t =  0 [1 1 0] ,Tx =  

0 [0.7 0.7 0.1]P diag= , k k-1t -t =0.1 , 0.05 ~ 0.5Δ = . Fig. 3 illustrates the MSEs of the water 

level 1,
CP

tP +Δ , 1,
FLP

tP +Δ  and 1,
PFF

tP +Δ  at lead Δ =0.2. As we can see in Fig. 3 the CP is better than the 

fusion predictors and the fusion MSEs for water level 1( )x  of FLP and PFF are equal, i.e., 

1,
CP

tP +Δ < 
1,
FLP

tP +Δ =
1,
PFF

tP +Δ . The CPU times for CP, FLP and PFF are represented in Fig. 4, where it 

is shown that FLP requires considerably more CPU time than PFF, but CPU time of PFF is 

similar to CP. 
Thus, from Examples 4.1 and 4.2 we can confirm that PFF is preferable to FLP in terms of 
computation efficiency. 
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5. Conclusions 

In this chapter, two fusion predictors (FLP and PFF) for mixed continuous-discrete linear 

systems in a multisensor environment are proposed. Both of these predictors are derived by 

using the optimal local Kalman estimators (filters and predictors) and fusion formula. The 

fusion predictors represent the optimal linear combination of an arbitrary number of local 

Kalman estimators and each is fused by the MSE criterion. Equivalence between the two 

fusion predictors is established. However, the PFF algorithm is found to more significantly 

reduce the computational complexity, due to the fact that the PFF’s weights 
k

(i)
tb  do not 

depend on the leads 0Δ >  in contrast to the FLP’s weights (i)
t+Δa . 

Appendix 

Proof of Theorem 1 
(a), (c) Equation (12) and formula (14) immediately follow as a result of application of the 
general fusion formula [20] to the optimization problem (10), (11). 

(b) In the absence of observations differential equation for the local prediction error 
(i) (i)
τ τ τˆx x -x=#  takes the form  

 (i) (i) (i)
τ τ τ τ τ τ τˆx =x -x =F x +G v .$$# $ #  (A.1) 

Then the prediction cross-covariance ( )T(ij) (j)(i)
τ τ τP =E x x# #  associated with the (i)

τx#  and (j)
τx#  

satisfies the time update Lyapunov equation (see the first and third equations in (13)). At 

kt=t  the local error 
k

(i)
tx#  can be written as 

( )- - - - -

k k kk k k k k k k k k k k k k k k k k k

(i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)
t t t nt t t t t t t t t t t t t t t t t t

ˆ ˆ ˆ ˆx =x -x =x -x -L y -H x =x -L H x +w -H x I -L H x -L w .⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
# # #   (A.2) 

Given that random vectors 
k k

(i) (i)
t tx , w#  and 

k

(j)
tw  are mutually uncorrelated at i j≠ , we obtain 

observation update equation (13) for ( )T

k k k

(ij) (j)(i)
t t tP =E x x# # . 

This completes the proof of Theorem 1. 
Proof of Theorem 2 

It is well known that the local Kalman filtering estimates (i)
τx̂  are unbiased, i.e., (i)

τ τˆE(x )=E(x )  

or ( ) ( )(i) (i)
τ τ τˆE x =E x -x =0#  at k0 τ t≤ ≤ . With this result we can prove unbiased property at 

kt τ t+Δ< ≤ . Using (8) we obtain 

 
k k

(i) (i)(i) (i) (i)
τ τ τ τ τ τ τ kτ=t t

ˆx =x -x =F x +G v , x =x , t τ t+Δ ,≤ ≤$$# $ # # #  (A.3) 

or 

 ( ) ( ) ( ) ( )
k k

(i) (i)(i) (i)d
τ τ τ kτ=t tdτ E x =F E x , E x =E x =0 , t τ t+Δ .≤ ≤# # # #  (A.4) 

Differential equation (A.4) is homogeneous with zero initial condition therefore it has zero 

solution ( ) ( ) ( )(i) (i)
τ τ τ k

ˆE x 0 or E x =E x , t τ t+Δ .≡ ≤ ≤#  

Since the local predictors (i)
t+Δx̂ , i 1,...,N=  are unbiased, then we have  

 ( ) ( ) ( ) ( )
N N

(i) (i) (i)FLP
t+Δ t+Δ t+Δt+Δ t+Δ t+Δ

i=1 i=1

ˆ ˆE x = a E x = a E x =E x .
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∑  (A.5) 
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This completes the proof of Theorem 2. 
Proof of Theorem 3 
a., c. Equations (18) and (19) immediately follow from the general fusion formula for the 
filtering problem (Shin et al., 2006) 
b. Derivation of observation update equation (13) is given in Theorem 1.  

d. Unbiased property of the fusion estimate PFF
t+Δx̂  is proved by using the same method as in 

Theorem 2. 
This completes the proof of Theorem 3. 
Proof of Theorem 4 
By integrating (8) and (17), we get 

 ( )
kk

(i) (i) PFF FF
k t+Δ k tt+Δ t

ˆ ˆ ˆ ˆx =Φ t+Δ,t x , i 1,...,N , x =Φ(t+Δ,t )x ,=  (A.6) 

where Φ(t,s)  is the transition matrix of (8) or (17). From (10) and (16), we obtain 

 
k k k

k k k k k

N N N
(i) (i) (i) (i) (i) (i)FLP

t+Δ kt+Δ t+Δ t+Δ t t,t ,Δ t
i=1 i=1 i=1

N N
(i) (i) (i) (i)PFF FF

t+Δ k t k t t t,t ,Δ t
i=1 i=1

ˆ ˆ ˆ ˆx = a x = a Φ(t+Δ,t )x = A x ,

ˆ ˆ ˆ ˆx =Φ(t+Δ,t )x = Φ(t+Δ,t )b x = B x ,

∑ ∑ ∑

∑ ∑
 (A.7) 

where the new weights take the form:  

 ( ) ( )
k k k

(i) (i) (i) (i)
k kt+Δt,t ,Δ t,t ,Δ tA =a Φ t+Δ,t , B =Φ t+Δ,t b .  (A.8) 

Next using (12) and (18) we will derive equations for the new weights (A.8). Multiplying the 
first (N-1) homogeneous equations (18) on the left hand side and right hand side by the 

nonsingular matrices Φ(t+Δ,tk) and Φ(t+Δ,tk)T, respectively, and multiplying the last non-

homogeneous equation (18) by Φ(t+Δ,tk) we obtain  

 

( ) ( )

( )

k k k

k

N
T(ij)(i) (iN)

k kt t t
i=1

N
(i)

k kt
i=1

Φ t+Δ,t b P -P t+Δ,t =0, j=1,...,N-1;

Φ t+Δ,t b =Φ(t+Δ,t ).

⎡ ⎤Φ⎣ ⎦∑

∑
 (A.9) 

Using notation for the difference (ijN) (ij) (iN)
s s sδP =P -P  we obtain equations for 

k

(i)
t,t ,ΔB , i 1,...,N=  such that 

 ( )
k k k

N N
T(ijN)(i) (i)

k kt,t ,Δ t t,t ,Δ
i=1 i=1

B δP t+Δ,t =0, j=1,...,N-1; B =Φ(t+Δ,t ).Φ∑ ∑  (A.10) 

Analogously after simple manipulations equation (12) takes the form  

 

( ) ( ) ( )
k

k

N N
1 1(ij) (ijN)(i) (iN) (i)

k k kt+Δ t+Δ t+Δ t+Δt,t ,Δ
i=1 i=1

N N
(i) (i)

k kt+Δ t,t ,Δ
i=1 i=1

a Φ t+Δ,t Φ t+Δ,t P -P = A Φ t+Δ,t δP =0,

a Φ(t+Δ,t )= A =Φ(t+Δ,t ).

− −⎡ ⎤
⎣ ⎦∑ ∑

∑ ∑
 (A.11) 
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or  

 ( )
k k

N N
1 (ijN)(i) (i)

k kt+Δt,t ,Δ t,t ,Δ
i=1 i=1

A Φ t+Δ,t δP =0, j 1,...,N-1; A =Φ(t+Δ,t ).
− =∑ ∑  (A.12) 

As we can see from (A.10) and (A.12) if the equality  

 ( ) ( )
k

T -1(ijN) (ijN)
k k t+ΔtδP Φ t+Δ,t =Φ t+Δ,t δP  (A.13) 

will be hold then the new weights 
k

(i)
t,t ,ΔA  and 

k

(i)
t,t ,ΔB  satisfy the identical equations. To 

show that let consider differential equation for the difference (ijN) (ij) (iN)
s s sδP =P -P . Using (13) 

we obtain the Lyapunov homogeneous matrix differential equation 

 ( ) ( )(ijN) (ij) (ij) (ij) (ijN) (ijN)(iN) (iN) (iN) T T
s s s s s s s s s s s s s kδP =P -P =F P -P + P -P F =F δP +δP F , t s t+Δ,≤ ≤$ $ $  (A.14) 

which has the solution 

 ( ) ( )
k

T(ijN) (ijN)
k kt+Δ tδP =Φ t+Δ,t δP Φ t+Δ,t .  (A.15) 

By the nonsingular property of the transition matrix k(t+Δ,t )Φ  the equality (A.13) holds, 

then 
k k

(i) (i)
t,t ,Δ t,t ,ΔA B= , and finally using (A.7) we get 

 
k k k k

N N
(i) (i) (i) (i)FLP PFF

t+Δ t+Δt,t ,Δ t t,t ,Δ t
i=1 i=1

ˆ ˆ ˆ ˆx = A x B x x .= =∑ ∑  (A.16) 

This completes the proof of Theorem 4. 
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