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1. Introduction

New design tools and systematic design procedures has been developed in the past decade to
adaptive control for a set of general classes of nonlinear systems with uncertainties (Krstić et
al., 1995; Fradkov et al., 1999). In the absence of modeling uncertainties, adaptive controllers
can achieve in general global boundness, asymptotic tracking, passivity of the adaptation loop
and systematic improvement of transient performance. Also, other sources of uncertainty
like intrinsic disturbances acting on measures and exogenous perturbations are taking into
account in many approaches in order for the controllers to be more robust.
The development of adaptive guidance systems for unmanned vehicles is recently starting to
gain in interest in different application fields like autonomous vehicles in aerial, terrestrial as
well as in subaquatic environments (Antonelli, 2007; Sun & Cheah, 2003; Kahveci et al., 2008;
Bagnell et al., 2010). These complex dynamics involve a high degree of uncertainty (specially
in the case of underwater vehicles), namely located in the inertia, added mass, Coriolis and
centripetal forces, buoyancy and linear and nonlinear damping.
When applying digital technology, both in computing and communication, the
implementation of controllers in digital form is unavoidable. This fact is strengthened
by many applications where the sensorial components work inherently digitally at regular
periods of time. However, usual applications in path tracking of unmanned vehicles are
characterized by analog control approaches (Fossen, 1994; Inzartev, 2009).
The translation of existing analog-controller design approaches to the discrete-time domain
is commonly done by a simple digitalization of the controlling action, and in the case of
adaptive controllers, of the adaptive laws too (Cunha et al., 1995; Smallwood & Whitcomb,
2003). This way generally provides a good control system behavior. However the role
played by the sampling time in the stability and performance must be cautiously investigated.
Additionally, noisy measures and digitalization errors may not only affect the stability
properties significantly but also increase the complexity of the analysis even for the simplest
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approaches based on Euler or Tustin discretization methods (Jordán & Bustamante, 2009a;
Jordán & Bustamante, 2009b; Jordán et al., 2010).
On the other side, controller designs being carried out directly in the discrete-time domain
seem to be a more promising alternative than the translation approaches. This is sustained on
the fact that model errors as well as perturbations are included in the design approach directly
to ensure stability and performance specifications.
This work is concerned about a novel design of discrete-time adaptive controllers for
path tracking of unmanned underwater vehicles subject to perturbations and measure
disturbances. The presented approach is completely developed in the discrete time domain.
Formal proofs are presented for stability and performance. Finally, a case study related to a
complex guidance system in 6 degrees of freedom (DOF´s) is worked through to illustrate the
features of the proposed approach.

2. Notation

Throughout the chapter, vectors are denoted in lower case and bold letters, scalars in lower
case letters, matrices in capital letters. A function dependence on a variable is denoted
with brackets as for instance F[x]. Also brackets are employed to enclose the elements of a
vector. Elements of a set are described as enclosed in braces. Parentheses are only used to
separate factors with terms of an expression. Subscripts are applied to reference elements in
sequences, in matrices or sample-time points. In time sequences, one will distinguish between
a prediction xn+1 at time tn from a sample x[tn] = xtn at sample time tn. Often we apply the
notation for a derivative of a scalar function with respect to a quadratic matrix, meaning a
new matrix with elements describing the derivative of the scalar function with respect to each
element of the original matrix. For instance: let the functional Q be depending on the elements

xij of the matrix X in the form Q = (MXv1 )
T

v2 , then it has a derivative ∂Q/∂X = M
T
v2 v

T

1
.

Finally we will also make reference to ∂Q/∂xj meaning a gradient vector of the functional Q
with respect to the vector xj, being this the column j of X.

3. Vehicle dynamics

3.1 Physical dynamics from ODEs

Many systems are described as the conjugation of two ODEs in generalized variables, namely
one for the kinematics and the other one for the inertia (see Fig. 1). The block structure
embraces a wide range of vehicle systems like mobile robots, unmanned aerial vehicles (UAV),
spacecraft and satellite systems, autonomous underwater vehicles (AUV) and remotely
operated vehicles (ROV), though with slight distinctive modifications in the structure among
them.
Let η= [x, y, z, ϕ, θ, ψ]

T

be the generalized position vector referred on a earth-fixed coordinate
system termed O′, with displacements x, y, z, and rotation angles ϕ, θ, ψ about these directions,
respectively. The motions associated to the elements of η are referred to as surge, sway, heave,
roll, pitch and yaw, respectively.

Additionally let v= [u, v, w, p, q, r]
T

be the generalized rate vector referred on a vehicle-fixed
coordinate system termed O, oriented according to their main axes with translation rates
u, v, w and angular rates p, q, r about these directions, respectively.
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The vehicle dynamics is described as (see Jordán & Bustamante, 2009c; cf. Fossen, 1994)

.
v=M

−1
(

−C[v]v−D[|v|]v−g[η] + τc+τ

)

(1)

.
η=J[η](v+vc). (2)

Here M, C and D are the inertia, the Coriolis-centripetal and the drag matrices, respectively
and J is the matrix expressing the transformation from the inertial frame to the vehicle-fixed
frame. Moreover, g is the restoration force due to buoyancy and weight, τ is the generalized
propulsion force (also the future control action of a controller), τc is a generalized perturbation
force (for instance due to wind as in case of UAVs, fluid flow in AUVs, or cable tugs in ROVs)
and vc is a velocity perturbation (for instance the fluid current in ROVs/AUVs or wind rate
in UAVs), all of them applied to O.
Also disturbances acting on the measures are indicated as δη and δv, while noisy measures
are referred to as ηδ and vδ, respectively.
Particularly, in fluid environment the mass is broken down into

M = Mb + Ma, (3)

with Mb body mass matrix, Ma the additive mass matrix related to the dragged fluid mass in
the surroundings of the moving vehicle.
For future developments in the controller design, it is convenient to factorize the system
matrices into constant and variable arrays as (Jordán & Bustamante, 2009c)

C[v] =
6

∑
i=1

Ci. × Cvi [v] (4)

D[|v|] = Dl +
6

∑
i=1

Dqi |vi| (5)

g[η] = B1 g1[η]+B2g2[η], (6)

with ".×" being an element-by-element array product. The matrices Ci, Dl , Dqi , B1 and B2 are
constant and supposed unknown, while Cvi , g1 and g2 are state-dependent and computable
arrays and vi is an element of v.
The generalized propulsion force τ applied on O is broken down into force components
provided by each thruster. These components termed fi are arranged in the vector f which
obeys the relation

f=BT
(

BBT
)−1

τ, (7)

with B a commonly rectangular matrix that expresses the transformation of τ into these thrust
components.
On the other hand, f is related to a strong nonlinear characteristic which is proper of each
thruster. Specially for underwater vehicles this is modelled by (cf. Fossen, 1994)

f=K1 (|n| .n)−K2 (|n| .va) , (8)

where K1 and K2 are constant matrices accounting for the influence of the thruster angular
velocity n and the state va related to every thruster force component in f.
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The thruster dynamics usually corresponds to a controlled system with input nref and output
n given generally by a linear dynamics indicated generically as some linear vector funcion k

in Laplace variable form
n=k[nref ,v], (9)

where nref is the reference angular velocity referred to as the real input of the vehicle
dynamics.
Usually in the literature it is assumed that the rapid thruster dynamics is parasitic in
comparison with the dominant vehicle dynamics. In the same way we will neglect this
parasitics and so the equality n=nref will be employed throughout the chapter.
Moreover, we will concentrate henceforth on disturbed measures ηδ and vδ, and not on
exogenous perturbations τc and vc, so we have set τc=vc=0 throughout the paper. Similarly,

v=
−
v and η=

−
η (see Fig. 1). For details of the influence of τc and vc on adaptive guidance

systems see (Jordán and Bustamante, 2008; Jordán and Bustamante 2007), respectively.

3.2 Sampled-data behavior

For the continuous-time dynamics there exists an associated exact sampled-data dynamics

described by the set of sequences {η[ti], v[ti]}=
{

ηti
,vti

}

for the states η[t] and v[t] at sample

times ti with a sampling rate h.
On the other side, we let the sampled measures for the kinematics and positioning state
vectors be disturbed. So this is characterized in discrete time through the noisy measurements

in the sequence set {ηδ[ti], vδ[ti]}=
{

ηδti
,vδti

}

as illustrated in Fig. 1.

UV ODE

(kinematic part)

 ττττn
VUV ODE

(inertial part)

ηηηη

δδδδτ =ττττc

V

ηηηη

Adaptive

sampled-data

controller

εεεεηn
εεεενn

D/A
with sample 

holder

 ττττtn

ηηηηδ tn

A/D

Vc

~ηηηηtn

Vtn

~
δδδδV

Vδ

δδδδηηηη
    ηηηηδ

vδ tn

vr tn

ηηηηrtn

Fig. 1. Adaptive digital control system for underwater vehicles (UV) with noisy measures,
model errors and exogenous perturbations

3.3 Sampled-data model

Usually, sampled-data behavior can be modelled by n-steps-ahead predictors (Jordán &
Bustamante, 2009a). Accordingly, we attempt now to translate the continuous time dynamics
of the system into a discrete-time model. The ODEs in (1)-(2) can be described in a compact
form by

v̇ = M
−1

p[η,v]+M
−1

τ (10)

η̇ = q[η,v], (11)
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with p and q being Lipschitz vector functions located at the right-hand memberships of (1)
and (2), respectively. Here no exogenous perturbation was considered as agreed above.
Let us contemplate an approximation of first order of an Adams-Bashforth approximator
(Jordán & Bustamante, 2009b). It is valid

vn+1 = vtn+hM−1
(

pδtn
+τn

)

(12)

ηn+1 = ηtn
+hqtn , (13)

where ηn+1 and vn+1 are one-step-ahead predictions at the present time tn. Moreover, τn is the
discrete-time control action at tn, which is equal to the sample τ[tn] because of the employed
zero-order sample holder.
More precisely it is valid with (1)-(2)

ptn = −
6

∑
i=1

Ci. × Cvitn
vtn−Dlvtn− (14)

−
6

∑
i=1

Dqi |vitn
|vtn−B1 g1tn

−B2 g2tn

qtn = Jtn vtn (15)

where Cvitn
means Cvi [vtn ], g1tn

and g2tn
mean g1[ηtn

] and g2[ηtn
] respectively, J

−1

tn
means

J
−1
[ηtn

] and vitn
is an element of vtn . Similar expressions can be obtained for the other sampled

functions pti
and qti

in (18)-(19). Besides, the control action τ is retained one sampling period
h by a sample holder, so it is valid τn=τtn .
The accuracy of one-step-ahead predictions is defined by the local model errors as

εvn+1 = vtn+1−vn+1 (16)

εηn+1
= ηtn+1

−ηn+1, (17)

with εηn+1
, εvn+1 ∈ O[h] and O being the order function that expresses the order of magnitude

of the sampled-data model errors. It is noticing that local errors are by definition completely
lacking of the influence from sampled-data disturbances.
Since p and q are Lipschitz continuous in the attraction domains in v and η, then the samples,
predictions and local errors all yield bounded. So it is valid the property vn+1→vtn+1 and
ηn+1→ηtn+1

for h → 0.
Next, the disturbed dynamics subject to sampled-data noisy measures is dealt with in the
following.

3.4 1st-order predictor with disturbances

The one-step-ahead predictions with disturbances result from (18) and (19) as

vn+1 = vtn+δvtn+hM−1
(

pδtn
+τn

)

(18)

ηn+1 = ηtn
+δηtn

+hqδtn
, (19)
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where vtn+δvtn=vδtn
and ηtn

+δηtn
=ηδtn

are samples of the measure disturbances (see Fig.

1), and pδtn
and qδtn

are perturbed functions defined as pδtn
=p

[

vtn+δvtn ,ηtn
+δηtn

]

and

qδtn
=q

[

vtn+δvtn ,ηtn
+δηtn

]

.

3.5 Disturbed local error

Assuming bounded noise vectors δvi and δηi, we can expand (18) and (19) in series of Taylor
about the values of undisturbed measures v[tn] and η[tn]. So it is accomplished

−
εvn+1 = εvn+1+∆δvtn+1−hM−1

(

∂p
T

δ

∂v
δvtn+

∂p
T

δ

∂η
[tn]δηtn

+

+
∂τ

T

n

∂v
δvtn+

∂τ
T

n

∂η
δηtn

+o[δv
2
]+o[δη

2
]

)

(20)

−
εηn+1

= εηn+1
+∆δηtn+1

−h

(

∂q
T

δ

∂v
[tn]δvtn+

+
∂q

T

δ

∂η
[tn]δηtn

+o[δv
2
]+o[δη

2
]

)

, (21)

where εvn+1 and εηn+1
are the model local errors and ∆δvtn+1=δvtn+1−δvtn and ∆δηtn+1

=
δηtn+1

−δηtn
. The functions o are truncating error vectors of the Taylor series expansions, all of

them belonging to O[h
2
]. Moreover,

∂p
T

δ
∂v ,

∂p
T

δ
∂η

,
∂q

T

δ
∂v and

∂q
T

δ
∂η

are Jacobian matrices of the system

which act as variable gains that strengthen the sampled-data disturbances along the path.

It is worth noticing that the Jacobian matrices
∂τ

T

n
∂v and

∂τ
T

n
∂η

in (20) will be obtained from the

feedback law τn[
−
ηtn

,
−
vtn ] of the adaptive control loop.

4. Sampled-data adaptive controller

The next step is devoted to the stability and performance study of a general class of adaptive
control systems whose state feedback law is constructed from noisy measures and model
errors.
A design of a general completely adaptive digital controller based on speed-gradient control
laws is presented in (Jordán & Bustamante, 2011). To this end let us suppose the control
goal lies on the path tracking of both geometric and kinematic reference as ηrtn

and vrtn
,

respectively.

4.1 Control action

Accordingly to the digital model translation, we try out the following definitions for the exact
path errors

∽

ηtn
= ηtn

+δηtn
−ηrtn

(22)

∽

vtn = vtn+δvtn−J
−1

δtn
η̇rtn

+J
−1

δtn
Kp

∽

ηtn
. (23)
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where Kp = K
T

p ≥ 0 is a design gain matrix affecting the geometric path error and J
−1

δtn
means

J
−1
[ηtn

+δηtn
]. Clearly, if

∽

ηtn
≡0, then by (23) and (2), it yields vtn+δvtn−vrtn

≡0.
Then, replacing (18) and (19) in (22) for tn+1 one gets

∽

ηtn+1
=

(

I − hJtn J
−1

δtn
Kp

)

∽

ηtn
+ηrtn

−ηrtn+1
+δηtn+1

−δηtn
(24)

+εηn+1
+h

(

Jtn

∽

vtn + Jtn δvtn+Jtn J
−1

δtn
η̇rtn

)

.

Similarly, with (18) and (19) in (23) for tn+1 one obtains

∽

vtn+1 =
∽

vtn+J
−1

δtn
η̇rtn

−J
−1

δtn+1
η̇rtn+1

−J
−1

δtn
Kp

∽

ηtn
+ (25)

+J
−1

δtn+1
Kp

∽

ηtn+1
+εvn+1+δvtn+1−δvtn+hM

−1 (

pδtn
+τn

)

.

We now define a cost functional of the path error energy as

Qtn =
∽

η

T

tn

∽

ηtn
+

∽

v
T

tn

∽

vtn , (26)

which is a positive definite and radially unbounded function in the error vector space. Then
we state

∆Qtn = Qtn+1 − Qtn= (27)

=

(

(

I − hJtn J
−1

δtn
Kp

)

∽

ηtn
+h

(

Jtn

∽

vtn + Jtn δvtn+Jtn J
−1

δtn
η̇rtn

)

+

+ηrtn
−ηrtn+1

+εηn+1
+δηtn+1

−δηtn

)2

−∽

η

2

tn
+

+

(

∽

vtn+J
−1

δtn
η̇rtn

−J
−1

δtn+1
η̇rtn+1

−J
−1

δtn
Kp

∽

ηtn
+ J

−1

δtn+1
Kp

∽

ηtn+1

+ hM
−1 (

pδtn
+τn

)

+ δvtn+1 − δvtn+εvn+1

)2

−∽

v
2

tn
.

The ideal path tracking demands that

lim
tn→∞

∆Qtn = lim
tn→∞

(Qtn+1 − Qtn ) = 0. (28)

Bearing in mind the presence of disturbances and model uncertainties, the practical goal
would be at least achieved that {∆Qtn} remains bounded for tn → ∞.
In (Jordán & Bustamante, 2011) a flexible design of a completely adaptive digital controller
was proposed. Therein all unknown system matrices (Ci, Dqi , Dl , B1 and B2) that influence the
stability of the control loop are adapted in the feedback control law with the unique exception
of the inertia matrix M from which only a lower bound M is demanded. In that work a
guideline to obtained an adequate value of that bound is indicated.
Here we will transcribe those results and continue afterwards the analysis to the aimed goal.
First we can conveniently split the control thrust τn into two terms as

τn = τ1n
+ τ2n

, (29)
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where the first one is

τ1n
= −Kv

∽

vtn−
1

h
M

(

J
−1

δtn
η̇rtn

+J
−1

δtn
Kp

∽

ηtn
+ (30)

+J
−1

δtn+1
η̇rtn+1

−J
−1

δtn+1
Kp

∽

ηtn+1

)

−rδtn
,

with Kv = K
T

v ≥ 0 being another design matrix like Kp, but affecting the kinematic errors
instead. The vector rδtn

is

rδtn
=

6

∑
i=1

Ui. × Cvitn
vδtn

+U7vδtn
+ (31)

+
6

∑
i=1

U7+i|vitn
|vδtn

+U14g1δtn
+U15 g2δtn

,

where the matrices Ui in rδtn
will account for every unknown system matrix in pδtn

in order
to build up the partial control action τ1n

. Moreover, the Ui´s represent the matrices of the
adaptive sampled-data controller which will be designed later. Besides, it is noticing that rδtn

and pδtn
contain noisy measures.

The definition of the second component τ2n
of τn is more cumbersome than the first

component τ1n
.

Basically we attempt to modify ∆Qtn farther to confer the quadratic form particular properties
of sign definiteness. To this end let us first put (30) into (27). Thus

∆Qtn = Qtn+1 − Qtn= (32)

=

(

(

I − hJtn J
−1

δtn
Kp

)

∽

ηtn
+h

(

Jtn

∽

vtn + Jtn δvtn+Jtn J
−1

δtn
η̇rtn

)

+ηrtn
−ηrtn+1

+εηn+1
+δηtn+1

−δηtn

)2

−∽

η

2

tn
+

+

(

∽

vtn+J
−1

δtn
η̇rtn

−J
−1

δtn+1
η̇rtn+1

−J
−1

δtn
Kp

∽

ηtn
+J

−1

δtn+1
Kp

∽

ηtn+1
−

−hM
−1

Kv
∽

vtn−M
−1

M

(

J
−1

δtn
η̇rtn

−J
−1

δtn
Kp

∽

ηtn
−J

−1

δtn+1
η̇rtn+1

+J
−1

δtn+1
Kp

∽

ηtn+1

)

+hM
−1 (

pδtn
−rδtn

)

+hM
−1

τ2n
+δvtn+1−δvtn+εvn+1

)2

−∽

v
2

tn
,

where the old definition of J
−1

δtn
= J

−1
[ηtn

+δηtn
] can be rewritten as

J
−1

δtn
= J

−1

tn
+ ∆J

−1

tn
. (33)

Now defining an motion vector function (combination of acceleration and velocity) in the
form

stn=J
−1

δtn
η̇rtn

−J
−1

δtn+1
η̇rtn+1

−J
−1

δtn
Kp

∽

ηtn
+ J

−1

δtn+1
Kp

∽

ηtn+1
, (34)
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the (32) turns into

∆Qtn = Qtn+1 − Qtn= (35)

=

(

(

I − hKp
)∽

ηtn
− hJtn ∆J

−1

tn
Kp

∽

ηtn
+h

(

Jtn

∽

vtn + η̇rtn

)

+Jtn δvtn+Jtn ∆J
−1

tn
η̇rtn

+ηrtn
−ηrtn+1

+εηn+1
+δηtn+1

−δηtn

)2

−∽

η

2

tn
+

+

(

(

I − hM
−1

Kv

)

∽

vtn+
(

I − M
−1

M
)

stn−

+h
(

pδtn
−M

−1
rδtn

)

+hM
−1

τ2n
+ δvtn+1−δvtn+εvn+1

)2

−∽

v
2

tn
.

From this expression one achieves

∆Qtn = a(M−1
τ2n

)2+b
T
M

−1
τ2n

+c + (36)

+
∽

η

T

tn

√
aKp

(√
aKp − 2I

)∽

ηtn
+

+
∽

v
T

tn

√
aK∗

v

(√
aK∗

v − 2I
)

∽

vtn+

+ f∆Q1n
[εηn+1

,εvn+1 ,δηtn+1 ,δvtn+1 ],

where K
∗
v is an auxiliary matrix equal to K

∗
v = M

−1
Kv. The polynomial coefficients a, b and c

are

a = h
2

(37)

b = 2h(I−hK
∗
v)

∽

vtn + 2h
(

I − M
−1

M
)

stn+2hM
−1(

pδtn
−rδtn

)

+ 2h

(

δvtn+1 − δvtn+εvn+1

)

(38)

c = h
2
(

Jtn

∽

vtn+η̇rtn

)2

+ (39)

+ 2h
(

Jtn

∽

vtn+η̇rtn

)T(

ηrtn
−ηrtn+1

)

+

+
(

ηrtn
−ηrtn+1

)T(

ηrtn
−ηrtn+1

)

+

+ 2
(

(

I − hKp
)∽

ηtn

)T(

h(Jtn

∽

vtn+η̇rtn
)+ηrtn

−ηrtn+1

)

+

+
(

I − M
−1

M
)2

s
2

tn
+h

2
M

−1(

pδtn
−rδtn

)2

+

(

δvtn+1 − δvtn+εvn+1

)2

+ 2
((

I − M
−1

M
)

stn+hM
−1(

pδtn
−rδtn

)

)T (

δvtn+1 − δvtn+εvn+1

)
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and f∆Q1n
is a sign-undefined energy function of the model errors and measure disturbances

defined as

f∆Q1n
[εηn+1

,εvn+1 ,δηtn+1 ,δvtn+1 ] = (40)

(

εηn+1
+δηtn+1

−δηtn
−hJtn ∆J

−1

tn
Kp

∽

ηtn
+ Jtn δvtn+Jtn ∆J

−1

tn
η̇rtn

)2

+2

(

(

I − hKp
)∽

ηtn
+h

(

Jtn

∽

vtn + η̇rtn

)

+ ηrtn
−ηrtn+1

)T

×
(

εηn+1
+δηtn+1

−δηtn
−hJtn ∆J

−1

tn
Kp

∽

ηtn
+ Jtn δvtn+Jtn ∆J

−1

tn
η̇rtn

)

.

Clearly, there are many variables involved like the system matrices, model errors and measure
disturbances which are not known beforehand.
The idea now is to construct τ2n

so that the sum a(M−1τ2n
)2+b

T
M

−1
τ2n

+c in (36) be null. As
there are many variables in the sum which are unknown, we can construct an approximation
of it with measurable variables. So, it results

ā
(

M
−1

τ2n

)2
+b

T

nM
−1

τ2n
+c̄n=0. (41)

Now, the polynomial coefficients ā bn and c̄n are explained below. Here, there appear three
error functions, namely f∆Q1n

, and the new functions f∆Q2n
and fUin

, all containing noisy and
unknown variables which are described in the sequel.
The polynomial coefficients result

ā = a=h
2

(42)

bn = 2h(I−hK
∗
v)

∽

vtn + 2hM−1(pδtn
−rδtn

) (43)

cn = h
2

(

(

Jtn

∽

vtn+η̇rtn

)2

+
(

∆Jδtn

∽

vtn

)2

+2
(

Jtn

∽

vtn+η̇rtn

)T

∆Jδtn

∽

vtn

)

+ (44)

+2h
(

Jtn

∽

vtn+η̇rtn

)T (

ηrtn
−ηrtn+1

)

+2h
(

∆Jδtn

∽

vtn

)T (

ηrtn
−ηrtn+1

)

+

+
(

ηrtn
−ηrtn+1

)T (

ηrtn
−ηrtn+1

)

+

+2
(

(

I − hKp
)∽

ηtn

)T (

h
(

Jtn

∽

vtn+η̇rtn

)

+ηrtn
−ηrtn+1

)

+2
(

(

I − hKp
)∽

ηtn

)T (

h∆Jδtn

∽

vtn

)

+

+h
2
M−1

(

pδtn
−rδtn

)2

+ 2
(

hM−1(pδtn
−rδtn

)T
)

(I−hK∗
v)

∽

vtn ,

with pδtn
being an estimation of pδtn

in (14) given by

pδtn
=M

vtn−vtn−1

h
−τn. (45)
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The second component τ2n
of τn was contained in the condition (41) like a root pair that

enables ∆Qtn be the expression (47). It is

τn2=M

⎛

⎝

−b

2ā
± 1

2ā

√

b
T

b − 4āc

6
1

⎞

⎠ , (46)

with 1 being a vector with ones.
With the choice of (41) and (46) in ∆Qtn one gets finally

∆Qtn =
∽

η

T

tn
hKp

(

hKp − 2I
)∽

ηtn
+ (47)

+
∽

v
T

tn
hK∗

v (hK∗
v − 2I)

∽

vtn + f∆Q1n
[εηn+1

,εvn+1 ,δηtn+1 ,δvtn+1 ]+

+ f∆Q2n
[εηn+1

,εvn+1 ,δηtn+1 ,δvtn+1 ]+ fUin
[(U∗

i −Ui) , M−1 M].

The matrices U∗
i that appear in fUin

take particular constant values of the adaptive controller
matrices Ui´s. They take the values equal to the system matrices in (1)-(2) (Jordán and
Bustamante, 2008), namely

U
∗
i = Ci, with i = 1, ..., 6 (48)

U
∗
7 = Dl (49)

U
∗
i = Dqi , with i = 8, ..., 13 (50)

U
∗
14 = B1 (51)

U
∗
15 = B2 . (52)

Moreover, the error functions f∆Q2n
and fUin

in (47) are respectively

f∆Q2n
[εηn+1

,εvn+1 ,δηtn+1 ,δvtn+1 ] =2h

(

δvtn+1 − δvtn+εvn+1

)

× (53)

×M
−1

M

⎛

⎝− b

2ā
± 1

2ā

√

b
T

b − 4āc̄

6
1

⎞

⎠−h
2
(

∆Jδtn

∽

vtn

)2

−

−2h
2
(

∆Jδtn

∽

vtn

) (

ηrtn
−ηrtn+1

)

− 2h
2
(

Jtn

∽

vtn+η̇rtn

)T

∆Jδtn

∽

vtn −

−2h
(

(

I − hKp
)∽

ηtn

)T

∆Jδtn

∽

vtn +

(

δvtn+1 − δvtn+εvn+1

)2

+

+2
((

I − M
−1

M
)

stn+hM
−1 (

pδtn
−rδtn

)

)T (

δvtn+1 − δvtn+εvn+1

)

,
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with ∆b= b −b from (38) and (43), and

fUin
[(U∗

i −Ui) , M
−1

M] = (54)

(

M
−1

M b
)T (

M
−1

M b
)

4ā
+

1
T
(M

−1
M)

T
(M

−1
M)1

(

b
T

b

)

24ā
− b

T

M
−1

M b

2ā
∓

∓b
T
(

(

M
−1

M
)T (

M
−1

M
)

−M
−1

M

)

1

2ā

√

b
T

b − 4āc̄

6
1+

+2
(

h
2
(M−1−M−1)Kv

∽

vtn+h
2
M−1(pδtn

−rtn )−h
2
M−1(p̄tn−rδtn

)−

−h
(

I−M
−1

M
)

stn

)T

M
−1

M

⎛

⎝− b

2ā
± 1

2ā

√

b
T

b − 4āc̄

6
1

⎞

⎠+ h
2
M

−2
(pδtn

−rδtn
)

2

+

+
(

I−M
−1

M
)2

s
2

tn
+2h

(

M
−1
(pδtn

−rδtn
)
)T (

I−M
−1

M
)

stn+

+2

(

h
(

M
−1
(pδtn

−rδtn
)
)T

+s
T

tn

(

I−M
−1

M
)T)

(I−hM
−1

Kv)
∽

vtn−

−h
2
M

−2
(

pδtn
−rδtn

)2

−2

(

h
(

M
−1

(

pδtn
−rδtn

))T)

(I−hM
−1

Kv)
∽

vtn .

It is seeing from (40), (53) and (54), that the error functions go to lower bounds when Ui = U∗
i

(it is, when pδtn
=rδtn

), M
−1

M = I and δηtn+1=δvtn+1 =0. These bounds will ultimately depend

on the model errors εηn+1
and εvn+1 only.

It is noticing from (46) that the roots may be either real or complex. Clearly when the roots
are real, (41) is accomplished. If eventually complex roots appear, one can chose only the real

part of the resulting complex roots, namely τ2n
= M−bn

2ā . The implications of that choice will
be analyzed later in the section dedicated to the stability study.
Finally, the control action to be applied to the vehicle system is τn = τ1n

+ τ2n
with the two

components given in (30) and (46), respectively.

4.2 Adaptive laws

According to a speed-gradient law (Fradkov et al., 1999), the adaptation of the system
behavior occurs by the permanent actualization of the controller matrices Ui.
Let the following adaptive law be valid for i = 1, ..., 15

Uin+1

∆
= Uin

− Γi
∂∆Qtn

∂Ui
, (55)

with a gain matrix Γi = Γ
T

i ≥ 0 and
∂∆Qtn
∂Uin

being a gradient matrix for Uin
.
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First we can define an expression for the gradient matrix upon ∆Qtn in (47) but considering
that M is known. This expression is referred to the ideal gradient matrix

∂∆Qtn

∂Ui
= −2h

2
M

−T
(

M
−1

τ2n

)

(

∂rδtn

∂Ui

)
T

− (56)

−2h
2
M

−T
M

−1
(pδtn

−rδtn
)

(

∂rδtn

∂Ui

)
T

−

−2hM
−T
(I − hK

∗
v)

∽

vtn

(

∂rδtn

∂Ui

)
T

.

Now, in order to be able to implement adaptive laws like (55) we have to replace the unknown
M in (56) by its lower bound M. In this way, we can generate implementable gradient matrices

which will be denote by
∂∆Qtn

∂Ui
and is

∂∆Qtn

∂Ui
= −2h

2
M

−T
(

M
−1

τ2n

)

(

∂rδtn

∂Ui

)
T

− (57)

−2h
2
M

−T
M

−1
(pδtn

−rδtn
)

(

∂rδtn

∂Ui

)
T

−

−2hM
−T
(I − hK

∗
v)

∽

vtn

(

∂rδtn

∂Ui

)
T

,

with the property

∂∆Qtn

∂Ui
=

∂∆Qtn

∂Ui
+ ∆Uin

, (58)

where
∆Uin

= δM−2 Ain
+ δM−1 Bin

, (59)

and δM−2 =
(

M
−T

M
−1 − M

−T
M

−1
)

≥ 0 and δM−1 =
(

M
−1 − M

−1
)

≥ 0. Here Ain
and Bin

are

sampled state functions obtained from (56) after extracting of the common factors δM−2 and
δM−1 , respectively.
It is worth noticing that ∆Qtn and ∆Qtn

, satisfy convexity properties in the space of elements
of the Ui’s.
Moreover, with (58) in mind we can conclude for any pair of values of Ui, say U

′
i of U

′′
i , it is

valid

∆Qtn (U
′
i )−∆Qtn (U

′′
i ) ≤

∂∆Qtn (U
′′
i )

∂Ui

(

U
′
i−U

′′
i

)

≤ (60)

≤ ∂∆Qtn
(U

′′
i )

∂Ui

(

U
′
i−U

′′
i

)

. (61)

This feature will be useful in the next analysis.
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In summary, the practical laws which conform the digital adaptive controller are

Uin+1

∆
= Uin

− Γi
∂∆Qtn

∂Ui
. (62)

Finally, it is seen from (57) that also here the noisy measures ηδtn
and vδtn

will propagate into

the adaptive laws
∂∆Qtn

∂Ui
.

5. Stability analysis

In this section we prove stability, boundness of all control variables and convergence of the
tracking errors in the case of path following for the case of 6 DOF´s involving references
trajectories for position and kinematics.

5.1 Preliminaries

Let first the controller matrices Ui’s to take the values U
∗
i ’s in (48)-(52). So, using these constant

system matrices in (1),(4)-(6) and (14), a fixed controller can be designed.
For this particular controller we consider the resulting ∆Q

∗
tn

from (47) accomplishing

∆Q
∗
tn

=
∽

η

T

tn
hKp

(

hKp − 2I
)∽

ηtn
+ (63)

+
∽

v
T

tn
hK

∗
v

(

hK
∗
v − 2I

)

∽

vtn+

+ f ∗
∆Qn

[εηn+1
,εvn+1 ,δηtn ,δvtn ,M

−1
M],

where f ∗
∆Qn

is the sum of all errors obtained from (47) with (53) and (54). It fulfills with
pδtn

=rδtn

f ∗
∆Qn

= f∆Q1n
+ f∆Q2n

[pδtn
=rδtn

]+ fUin
[pδtn

=rδtn
]. (64)

Later, a norm of f ∗
∆Qn

will be indicated.

Since
(

εηn+1
+δηtn+1

−δηtn

)

,

(

δvtn+1 − δvtn+εvn+1

)

∈ l∞ and M
−1

M ∈ l∞, then one concludes

f ∗
∆Qn

∈ l∞ as well.

So, it is noticing that ∆Q
∗
tn
< 0, at least in an attraction domain equal to

B =
{

∽

ηtn
,
∽

vtn ∈ R6 ∩ B∗
0

}

, (65)

with B∗
0 a residual set around zero

B∗
0=

{

∽

ηtn
,
∽

vtn∈R6/∆Q
∗
tn
− f ∗

∆Qn
≤ 0

}

(66)

and with the design matrices satisfying the conditions

2

h
I > Kp ≥ 0 (67)

2

h
I > K∗

v ≥ 0, (68)
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which is equivalent to
2

h
M ≥ 2

h
M > Kv ≥ 0. (69)

The residual set B∗
0 depends not only on εηn+1

and εvn+1 and the measure noises δηtn and δvtn ,

but also on M
−1

M. In consequence, B∗
0 becomes the null point at the limit when h → 0, δηtn ,

δvtn → 0 and M = M.

5.2 Stability proof

The problem of stability of the adaptive control system is addressed in the sequel. Let a
Lyapunov function be

Vtn = Qtn +
1

2

15

∑
i=1

6

∑
j=1

(

∼
u

T

j

)

in+1

Γ−1
i

(∼
uj

)

in+1

− (70)

−1

2

15

∑
i=1

6

∑
j=1

(

∼
u

T

j

)

in

Γ−1
i

(∼
uj

)

in
,

with
(∼

uj

)

in
=

(

uj−u
∗
j

)

in
, where uj and u

∗
j are vectors corresponding to the column j of the

adaptive controller matrix Ui and its corresponding one U
∗
i in the fixed controller, respectively.

Then the differences ∆Vtn = Vtn+1 − Vtn can be bounded as follows

∆Vtn = ∆Qtn +
1

2

15

∑
i=1

6

∑
j=1

(

∆uT
j

)

in
Γ
−1

i

(

(∼
uj

)

in+1

+
(∼

uj

)

in

)

(71)

= ∆Qtn +
15

∑
i=1

6

∑
j=1

(

∆u
T

j

)

in
Γ
−1

i

(∼
uj

)

in
−1

2

15

∑
i=1

6

∑
j=1

(

∆u
T

j

)

in
Γ
−1

i

(

∆uj

)

in

≤ ∆Qtn −
15

∑
i=1

6

∑
j=1

(

∂∆Qtn

∂uj

)T
(∼

uj

)

in

≤ ∆Qtn −
15

∑
i=1

6

∑
j=1

(

∂∆Qtn

∂uj

)T
(∼

uj

)

in

≤ ∆Q∗
tn
< 0 in B ∩ B∗

0 ,

with
(

∆uj

)

in
a column vector of

(

Uin+1
−Uin

)

.

The column vector
(

∆uj

)

in
at the first inequality was replaced by the column vector

−Γi

(

∂∆Qtn
∂uj

)

and then by −Γi

(

∂∆Qtn
∂uj

)

in the right member according to (58) and (60)-(61).

So in the second and third inequality, the convexity property of ∆Qtn in (60) was applied for
any pair

(

U′ = Uin
, U′′ = U

∗
i

)

.
This analysis has proved convergence of the error paths when real square roots exist from
√

b
T

nbn−4āc̄n of (46).
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If on the contrary 4āc̄n > b
T

nbn occurs at some time tn, one chooses the real part of the complex
roots in (46). So a suboptimal control action is employed instead, In this case, it is valid

τ2n
=
−1

2a
M

−1
bn=

−M
−1

h
(I − hK∗

v)
∽

vtn . (72)

So it yields a new functional ∆Q∗∗
tn

in

∆Vtn ≤ ∆Q
∗∗
tn
= ∆Q

∗
tn
+ c̄n − 1

4h2
b

T

nbn<0 in B ∩ B
∗∗

0 , (73)

where ∆Q
∗
tn

is (63) with a real root of (46) and B∗∗
0 is a new residual set. It is worth noticing

that the positive quantity

(

c̄n − 1
4h2 b

T

nbn

)

can be reduced by choosing h small. Nevertheless,

B∗∗
0 results larger than B∗

0 in (71), since its dimension depends not only on εηn+1
and εvn+1 but

also on the magnitude of

(

c̄n − 1
4h2 b

T

nbn

)

.

This closes the stability and convergence proof.

5.3 Variable boundness

With respect to the boundness of the adaptive matrices Ui´s it is seen from (57) that the
gradients are bounded. Also the third term is more dominant than the remainder ones for h

small (h << 1), and so, the kinematic error
∽

vtn influences the intensity and sign of ∂∆Qtn
/∂Ui

more significantly than the others. From (62) one concludes than the increasing of |Ui| may
not be avoided long term, however some robust modification techniques like a projection zone
can be employed to achieve boundness. This is not developed here. The author can consult
for instance (Ioannou and Sun, 1995).

5.4 Incidence of model errors and noisy measures

It is seen in (66) that the residual set B∗
0 is conformed by the perturbation error function f ∗

∆Qn
.

In this section some guidelines can be given for a proper selection of the design parameters in
order to diminish the incidence of model errors and noisy measures. This concerns the design
matrices Kp and Kv as well as operation parameters like the cruise vehicle velocity and the
control action self.
To this end, let the sign-undefined term f ∗

∆Qn
be upper bounded by

∣

∣

∣
f ∗
∆Qn

∣

∣

∣ ≤ |f1 | |εηn+1
+δηtn+1

−δηtn
|+ |f1 | |Jtn |

∣

∣

∣∆J
−1

tn
Kp

∽

ηtn
+ ∆J

−1

tn
η̇rtn

∣

∣

∣+ |f1 | |Jtn | |δvtn |+ (74)

+ |f2 |
∣

∣

∣
∆Jδtn

∽

vtn

∣

∣

∣
+ |f3 | |εvn+1+δvtn+1−δvtn |+

2h
∣

∣

∣
M

−1
τ2n

∣

∣

∣ |εvn+1+δvtn+1 − δvtn |+h
2
∣

∣

∣
∆Jδtn

∽

vtn

∣

∣

∣

2

+
∣

∣

∣
εηn+1

+δηtn+1
−δηtn

−hJtn ∆J
−1

tn
Kp

∽

ηtn
+Jtn δvtn+Jtn ∆J

−1

tn
η̇rtn

∣

∣

∣

2

+ |εvn+1+δvtn+1−δvtn |
2

+

+ | f4|
∣

∣

∣I − M−1 M
∣

∣

∣
,
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where f1 ,f2 and f3 are bounded vector functions

f
T

1
= 2

(

(

I − hKp
)∽

ηtn
+h

(

Jtn

∽

vtn + η̇rtn

)

+ ηrtn
−ηrtn+1

)T

(75)

f
T

2
= −2h

(

h
(

ηrtn
−ηrtn+1

)

+ h
(

Jtn

∽

vtn+η̇rtn

)

+
(

I − hKp
)∽

ηtn

)T

(76)

f
T

3
=

((

I − M
−1

M
)

stn

)T

, (77)

and f4 is also a bounded scalar function which can be identified from (54) with pδtn
=rδtn

as

fUi
[pδtn

=rδtn
] = (78)

(

M
−1

M b
)T (

M
−1

M b
)

4ā
+

1T(M
−1

M)
T
(M

−1
M)1

(

b
T

b

)

24ā
− b

T

M
−1

M b

2ā
∓

∓b
T
(

(

M
−1

M
)T (

M
−1

M
)

−M
−1

M

)

1

2ā

√

b
T

b − 4āc̄

6
1+

+2
(

h
2
(M−1−M−1)Kv

∽

vtn−h
(

I−M
−1

M
)

stn

)T

M
−1

τ2n
+

+
(

I−M
−1

M
)2

s
2

tn
+2 sT

tn

(

I−M
−1

M
)T

(I−hM
−1

Kv)
∽

vtn ,

where the norm
∣

∣

∣
I − M

−1
M
∣

∣

∣
is implicitly contained herein.

Clearly, if h → 0, δηtn , δvtn → 0 and M = M, then f ∗
∆Qn

tends to zero conjointly.
At the first glance in (64) and (53), one notices that the inertia matrix M appears in f3 . So, it is
valid

|f3 |
|stn |

≤
(

1 − λmin

[

M
−1

M
])

|| (79)

which does reveal that the influence of M on f3 is reduced whatever M be a good estimate of

M, it is when λmin

[

M
−1

M
]

be close to one. Besides, no dependence of the sampling time h

on f3 is observed any longer in the tightest bound in (79).
Since the body inertia matrix Mb is plausible to be good estimated, we can choose M = Mb.
So it is valid

|f3 |
|stn |

≤ 1 −
∣

∣

∣(Mb + Ma)
−1

∣

∣

∣ |Mb| . (80)

Particularly, AUVs are designed with hydrodynamically slender profiles, they have
commonly much more smaller values of Ma than in the case of ROVs. In this sense, it is
expected that the uncertainty Ma affect more the steady-state performance in ROVs than in
AUVs.
The same analysis can be carried out for f1 in (74). In particular, a choice of Kp in f1 that is as
close as possible to the value I/h (see (67)), will reduce partially |f1 |. Analogously, the same
result for Kp could be obtained from f2 .
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On the other side, one sees that small differences of
(

ηrtn
−ηrtn+1

)

or equivalently small values

of η̇rtn
have the influence of decreasing |f1 | as well. Since the quantity η̇rtn

−
ηrtn+1

−ηrtn

h assumes
small values for h small, then large cruise velocities do not affect the performance if the
sampling time is chosen relatively small.

Besides, the term hJtn

∽

vtn in f1 leads to the same conclusion about the effect of h. However,
it is interesting to stress the fact that appears in vehicle rotations which may rise the norm
of Jtn [ϕ, θ, ψ] considerably when the pitch angle goes above about 30◦ (Jordán & Bustamante,
2011).
The scalar function f4, whose bound is implicitly included in (78) gets small when particularly
the vector b is small (this means also τn2 small), and the motion vector function stn is also
rather moderate.
Finally, there is the term 2hτ2n

in (74) that also contributes to increase f∆Q2n
particularly when

saturation values of the thrusters are achieved. Since τ2n
is fixed by the controller, the only

countermeasure to be applied lays in the fact that the controller always choose the lower τ2n

of the two possible roots in (46). So, the perturbation energy f∆Q2n
is reduced as far as possible

by the controller.
From (63) one can draw out that the choice Kv = 1

h Mb in the negative definite terms is much

more appropriate to increase the negativeness of ∆Q
∗
tn

. Equally the choice of Kp in the same
manner helps the trajectories to get the residual set more rapid.
Besides, the model errors and noisy measures (εvn+1+δvtn+1−δvtn+1 ) and
(

εηn+1
+δηtn+1

−δvtn+1

)

enter linearly and quadratically in the energy equation (74). As

they are usually small, only the linear terms are magnified/attenuated by f1 , f2 , f3 and τ2n
,

while f4 impacts nonlinearly in τn2 and stn as seen in (54).

5.5 Instability for large sampling time

Broadly speaking, the influence of the analyzed parameters will play a role in the instability
when (on the chosen h is something large, even smaller than one, because the quadratic terms
rise significantly to turn to be dominant in the error function f ∗

∆Qn
.

The study of this phenomenon is rather complex but it generally involves the function ∆Q
∗
tn

in (63) and f ∗
∆Qn

in (64).
For instante, when

f ∗
∆Qn

>
∽

η

T

tn
hKp

(

hKp − 2I
)∽

ηtn
+

∽

v
T

tn
hK

∗
v

(

hK
∗
v − 2I

)

∽

vtn , (81)

the path trajectories may not be bounded into a residual set because the domain for the
initial conditions in this situation is partially repulsive. So, depending on the particular initial
conditions and for h >> 0 the adaptive control system may turn unstable.
In conclusion, when comparing two digital controllers, the sensitivity of the stability to h is
fundamental to draw out robust properties and finally to range them.

6. Adaptive control algorithm

The adaptive control algorithm can be summarized as follows.
Preliminaries:
1) Estimate a lower bound M , for instance M = Mb (Jordán & Bustamante, 2011),

272 Discrete Time Systems

www.intechopen.com



2) Select a sampling time h as smaller as possible
3) Choose design gain matrices Kp and Kv according to (68)-(69), and simultaneously in order

to reduce f ∗
∆Qn

and ∆Q
∗
tn

(see related commentary in previous section),
4) Define the adaptive gain matrices Γi (usually Γi = αi I with αi > 0),
5) Stipulate the desired sampled-data path references for the geometric and kinematic
trajectories in 6 DOF´s: ηrtn

and vrtn
, respectively (see related commentary in previous section).

Continuously at each sample point:
6) Calculate the control thrust τn with components τ1n

in (30) and τ2n
(46) (or (72)),

respectively,
7) Calculate the adaptive controller matrices (56) with the lower bound M instead of M.
Long-term tuning:
7) Redefine Kp, Kv and h in order to achieve optimal tracking performance.

7. Case study

7.1 Setup

With the end of illustrating the features of our control system approach, we simulate a
path-tracking problem in 6 DOF´s for an underwater vehicle in a planar motion with some
sporadic immersions to the floor.
A continuous-time model of a fully-maneuverable underwater vehicle is employed for the
numerical simulations. Details of this dynamics are given in (Jordán & Bustamante, 2009c).
The propulsion system is composed by 8 thrusters, distributed in 4 vertical and 4 horizontal.
The simulated reference path ηr and the navigation path η are reproduced together by means
of a visualization program (see a photogram in Fig. 2). The units for the path run away are in
meters.
Basically the vehicle turns around a planar path. At a certain coordinate A it leaves the plane
and submerses to the point A′ for picking up a sample (of weight 10 (Kgf)) on the sea floor
and returns back to A with a typical maneuver (backward movement and rotation). Then it
continues on the planar trajectory till the coordinate B in where it submerses again to the point
B′ in order to place an equipment on the floor (of weight 20 (Kgf)) before to retreat and turn
back to B and to complete finally the cycle. The vehicle weight is about 60 (kgf).

Additionally to the geometric path, the rate function vr(t) = J−1(ηr)
·
ηr(t) along it, is also

specified, with short periods of rest at points A′ and B′ before beginning and after ending the
maneuvers on the bottom.
At the start point of the mission (represented by O in Fig. 2), it is assumed for the adaptive
control there is no information available about the vehicle dynamics matrices. Moreover, the
maneuvers at stretches A-A′ and B-B′ imply considerable changes of moments acting on the
vehicle in both a positive and negative quantities.
The reference velocity is programmed to be constant equal to 0.25(m/s) for the advance and
as well as for the descent/ascent along the path. This rate will be referred to as the cruise
velocity.
By the simulations, the adaptive control algorithm summarized in the previous section, is
implemented. It is coupled with the ODE (1)-(2) for the vehicle dynamics, whose solution is
numerically calculated in continuous time using Runge-Kutta approximators (the so-called
ODE45). The computed control action is connected to a zero-order sample&hold previously
to excite the vehicle.
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Fig. 2. Path tracking with grab sampling at coordinate A′, and with placing of an equipment
on the seafloor at coordinate B′

7.2 Design parameters

The most important a-priori information for the adaptive controller design is the
ODE-structure in (1)-(2) but not its dynamics matrices, with the exception of the lower bound
for the inertia matrix M. This takes the form

M = Mb + Ma (82)

with the components: the body matrix Mb and the additive matrix Ma given by

Mb = Mbn
+ δ(t − tA′ ) Mb∆+ − δ(t − tB′ ) Mb∆− (83)

Ma = Man + δ(t − tA′ ) Ma∆+ − δ(t − tB′ ) Ma∆− , (84)

where Mbn
and Man are nominal values of Mb and Ma at the start point O, and

Mb∆− , Mb∆+ ,Ma∆+ and Ma∆− are positive and negative variations at instants tA′ and tB′ on
the points A′ and B′ of Fig. 2. Here δ(t − ti) represents the Dirac function.
For our application Mbn

is determinable beforehand experimentally and it is set as the lower
bound M for the control and adaptive laws. In the simulated scenario, Mb∆− is assumed
known because it is about of an equipment deposited on the seafloor. In the case of Mb∆+ ,
Ma∆+ and even Ma∆− , we depart from unknown values.
The property of Ma ≥ 0 is not affected by the sign of Ma∆+ and Ma∆− , which may be positive
and negative as well. For that reason, a valid lower bound is chosen as M = Mbn

− Mb∆− .
Taking into account the simulation setup for the weight changes (the weight picked up from
the seafloor at tA′ and the second weight deposited on the seafloor at tB′ ), the lower bound for
M is

M = diag(60, 60, 60, 5, 10, 10), (85)
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and the mass variations are

Mb∆+ = diag(10, 10, 10, 0.6250, 4.2250, 3.6) (86)

Mb∆− = diag(20, 20, 20, 1.25, 1.25, 0) (87)

Ma∆+ = diag(6.3, 15.4, 0.115, 0.115, 0.261, 0.276) (88)

Ma∆− = diag(12.6, 30.8, 0.23, 0.23, 0.521, 0.551). (89)

The design gain matrices for the controller are

Kp = diag (5, 5, 5, 5, 5, 5)
Kv = diag (300, 300, 300, 25, 50, 50)

(90)

and the adaptive gain matrices about
Γi = I. (91)

Finally we have proposed a sampling time h = 0.2(s).
All quantities are expressed in the SI Units.

7.3 Control performance

Here the acquired performance by the autonomously guided vehicle under the described

simulated setup will be evaluated. First, in Fig. 3, the path error evolution corresponding

to every mode with their respective rates is shown for the different transient phases, namely:

the controller autotuning at the initial phase (to the left), the sampling phase on the sea bottom

at A′ (in the middle), and the release of an equipment on the floor at B′ (to the right).

The largest path errors had occurred during the initial phase because the amount of

information for the control adaptation was null. Here, the longest transient took about 5(s)

which is considered outstanding in comparison to the commonly slow open loop behavior.

Later, after the mass changes, the path errors behaved much more moderate and were

insignificant in magnitude (only a few centimeters or a few hundredths of a radian according

to translation/rotation). Among them, the errors in the surge, sway and pitch modes (x, z and

θ) resulted more perturbed than the remainder ones because they were more excited from the

main motion provided by the stipulated mission. In all evolutions the adaptations occurred

quick and smoothly.

The same scenario of control performance can be observed in Fig. 4 from the side of the

velocity path errors for every mode of motion. Qualitatively, all kinematic path errors were

attenuated rapid and smoothly in the autotuning phase as well as during the mass-change

periods. The magnitude of these errors is also related to the rapid changes of the reference vref

in the programmed maneuvers.

In the Fig. 5, the time evolution of the actuator thrust for two arbitrarily selected thrusters

(one horizontal and one vertical) is shown. Analogously as previous results, the forces are

compared within the three periods of transients. One observes that the intervention of the

controller after a sudden change of mass occurred immediately. Also the transients of these

interventions up to the practical steady state were relatively short.

Fig. 6 illustrates the time evolution of some controller matrices Ui. To this end, we had chosen

the induced norm of U8 which is partially related to the adaptation of the linear damping.

One sees that the norm of U8 evolved with significative changes. In contrast to analog

adaptive controllers of the speed-gradient class, here the Ui’s do not tend asymptotically to
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Fig. 3. Position path errors during transients in three different periods (from left to right
column: autotuning, adaptation by weight pick up and adaptation by weight deposit)

constant matrices because of the difference between M
−1

and M
−1

in (58)-(59) (cf. Jordán &

Bustamante, 2009c).

8. Conclusions

In this paper a novel design of adaptive control systems was presented. This is based on

speed-gradient techniques which are widespread in the form of continuous-time designs

in the literature. Here, we had focused their counterparts namely sampled-data adaptive

controllers.

The work was framed into the path tracking control problem for the guidance of vehicles

in many degrees of freedom. Particularly, the most complex dynamics of this class
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Fig. 4. Velocity path errors during transients in three different periods (from left to right
column: autotuning, adaptation by weight pick up and adaptation by weight deposit)

corresponding to unmanned underwater vehicles was worked through in this work. Noisy

measures as well as model uncertainties were considered by the design and analysis.

Formal proofs for stability of the digital adaptive control system and convergence of the path

error trajectories were presented and an extensive analysis of the control performance was

given.

It was shown that it is possible to stabilize the control loop adaptively in the six degrees of

freedom without any a-priori knowledge of the vehicle system matrices with the exception of

a lower bound for the inertia matrix.

Providing the noisy measures remain bounded, the adaptive controller can reduce

asymptotically the path errors up to a residual set in the space state. The residual set contains

the null equilibrium point and its magnitude depends on the upper bounds of the measure

noises and on the sampling time. This signalizes the quality of the control performance.
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However, as generally occurs by digital controllers, it was observed that a large sampling

time is an instabilizing factor.

It was also indicated the plausibility of obtaining a lower bound of the inertia matrix by simply

calculating the inertia matrix of the body only.

We will emphasize that the design presented here was completely carried out in the discrete

time domain. Other usual alternative design is the direct translation of a homologous but

analog adaptive controller by digitalizing both the control and the adaptive laws. Recent

results like in (Jordán & Bustamante, 2011) have shown that this alternative may lead to

unstable behaviors if the sampling time is particularly not sufficiently small. This fact stands

out the usefulness of our design here.

Finally, a case study was presented for an underwater vehicle in simulated sampling mission.

The features of the implemented adaptive control system were highlighted by an all-round

very good quality in the control performance.
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