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1. Introduction

The observer design problem for nonlinear time-delay systems becomes more and
more a subject of research in constant evolution Germani et al. (2002), Germani &
Pepe (2004), Aggoune et al. (1999), Raff & Allgöwer (2006), Trinh et al. (2004), Xu et al.
(2004), Zemouche et al. (2006), Zemouche et al. (2007). Indeed, time-delay is frequently
encountered in various practical systems, such as chemical engineering systems, neural
networks and population dynamic model. One of the recent application of time-delay is
the synchronization and information recovery in chaotic communication systems Cherrier
et al. (2005). In fact, the time-delay is added in a suitable way to the chaotic system in the
goal to increase the complexity of the chaotic behavior and then to enhance the security of
communication systems. On the other hand, contrary to nonlinear continuous-time systems,
little attention has been paid toward discrete-time nonlinear systems with time-delay. We
refer the readers to the few existing references Lu & Ho (2004a) and Lu & Ho (2004b), where
the authors investigated the problem of robust H∞ observer design for a class of Lipschitz
time-delay systems with uncertain parameters in the discrete-time case. Their method show
the stability of the state of the system and the estimation error simultaneously.
This chapter deals with observer design for a class of Lipschitz nonlinear discrete-time
systems with time-delay. The main result lies in the use of a new structure of the proposed
observer inspired from Fan & Arcak (2003). Using a Lyapunov-Krasovskii functional, a
new nonrestrictive synthesis condition is obtained. This condition, expressed in term of
LMI, contains more degree of freedom than those proposed by the approaches available in
literature. Indeed, these last use a simple Luenberger observer which can be derived from the
general form of the observer proposed in this paper by neglecting some observer gains.
An extension of the presented result to H∞ performance analysis is given in the goal to
take into account the noise which affects the considered system. A more general LMI is
established. The last section is devoted to systems with differentiable nonlinearities. In
this case, based on the use of the Differential Mean Value Theorem (DMVT), less restrictive
synthesis conditions are proposed.

Notations : The following notations will be used throughout this chapter.

• ‖.‖ is the usual Euclidean norm;
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• (⋆) is used for the blocks induced by symmetry;

• AT represents the transposed matrix of A;

• Ir represents the identity matrix of dimension r;

• for a square matrix S, S > 0 (S < 0) means that this matrix is positive definite (negative
definite);

• zt(k) represents the vector x(k− t) for all z;

• The notation ‖x‖ℓs2
=

(

∑
∞
k=0 ‖x(k)‖2

) 1
2

is the ℓs2 norm of the vector x ∈ Rs. The set ℓs2 is

defined by

ℓ
s
2 =

{

x ∈ R
s : ‖x‖ℓs2

< +∞
}

.

2. Problem formulation and observer synthesis

In this section, we introduce the class of nonlinear systems to be studied, the proposed state
observer and the observer synthesis conditions.

2.1 Problem formulation

Consider the class of systems described in a detailed forme by the following equations :

x(k + 1) = Ax(k) + Adxd(k) + B f
(

Hx(k), Hdxd(k)
)

(1a)

y(k) = Cx(k) (1b)

x(k) = x0(k), for k = −d, ..., 0 (1c)

where the constant matrices A, Ad, B,C, H and Hd are of appropriate dimensions.
The function f : R

s1 × R
s2 → R

q satisfies the Lipschitz condition with Lipschitz constant γ f ,
i.e :

∥
∥
∥ f

(

z1, z2

)

− f
(

ẑ1, ẑ2

)∥
∥
∥ ≤ γ f

∥
∥
∥
∥

[
z1 − ẑ1

z2 − ẑ2

]∥
∥
∥
∥

, ∀ z1, z2, ẑ1, ẑ2. (2)

Now, consider the following new structure of the proposed observer defined by the
equations (78) :

x̂(k + 1) = Ax̂(k) + Ad x̂d(k) + B f
(

v(k), w(k)
)

+ L
(

y(k) − Cx̂(k)
)

+ Ld

(

yd(k) − Cx̂d(k)
) (3a)

v(k) = Hx̂(k) + K1
(

y(k) − Cx̂(k)
)

+ K1
d

(

yd(k) − Cx̂d(k)
)

(3b)

w(k) = Hd x̂d(k) + K2
(

y(k) − Cx̂(k)
)

+ K2
d

(

yd(k) − Cx̂d(k)
)

. (3c)

20 Discrete Time Systems

www.intechopen.com



The dynamic of the estimation error is :

ε(k + 1) =
(

A− LC
)

ε(k) +
(

Ad − LdC
)

εd(k) + Bδ fk (4)

with
δ fk = f

(

Hx(k), Hdxd(k)
)

− f
(

v(k), w(k)
)

.

From (35), we obtain

∥
∥
∥δ fk

∥
∥
∥ ≤ γ f

∥
∥
∥
∥

[
(H− K1C)ε(k) − K1

dCεd(k)
(Hd − K2

dC)εd(k) − K2Cε(k)

]∥
∥
∥
∥

. (5)

2.2 Observer synthesis conditions

This subsection is devoted to the observer synthesis method that provides a sufficient
condition ensuring the asymptotic convergence of the estimation error towards zero. The
synthesis conditions, expressed in term of LMI, are given in the following theorem.

Theorem 2.1. The estimation error is asymptotically stable if there exist a scalar α > 0 and matrices
P = PT > 0, Q = QT > 0, R, Rd, K̄1, K̄2, K̄1

d and K̄2
d of appropriate dimensions such that the

following LMI is feasible :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P + Q 0 M13 M14 MT
15 MT

16

(⋆) −Q M23 M24 MT
25 MT

26

(⋆) (⋆) M33 0 0 0

(⋆) (⋆) (⋆) −P 0 0

(⋆) (⋆) (⋆) (⋆) −αγ2
f Is1 0

(⋆) (⋆) (⋆) (⋆) (⋆) −αγ2
f Is2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (6)

where

M13 = ATPB− CTRB (7a)

M14 = ATP− CTR (7b)

M15 = γ2
f

(

αH− K̄1C
)

(7c)

M16 = γ2
f K̄

2C (7d)

M23 = AT
d PB− CTRdB (7e)

M24 = AT
d P− CTRd (7f)

M25 = γ2
f K̄

1
dC (7g)

M26 = γ2
f

(

αHd − K̄2
dC

)

(7h)

M33 = BTPB− αIq (7i)
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The gains L and Ld,K1,K2,K1
d and K2

d are given respectively by

L = P−1RT , Ld = P−1RT
d

K1 =
1

α
K̄1, K2 =

1

α
K̄2,

K1
d =

1

α
K̄1
d, K2

d =
1

α
K̄2
d.

Proof. Consider the following Lyapunov-Krasovskii functional :

Vk = εT(k)Pε(k) +
i=d

∑
i=1

(

εTi (k)Qε i(k)
)

. (8)

Using the dynamics (4), we obtain

Vk+1 −Vk = ζTk M1ζk

where

M1 =

⎡

⎣

ÃTPÃ− P + Q ÃTPÃd ÃTPB

(⋆) ÃT
d PÃd −Q ÃT

d PB

(⋆) (⋆) BTPB

⎤

⎦ , (9a)

ζTk =
[
εT(k) εTd (k) δ f Tk

]
, (9b)

Ã = A− LC, (9c)

Ãd = Ad − LdC. (9d)

Using the notations K̄1 = αK1, K̄2 = αK2, K̄1
d = αK1

d and K̄2
d = αK2

d, the condition (5) can be
rewritten as follows :

ζTk M2ζk ≥ 0 (10)

with

M2 =

[
1

αγ2
f

M3 0

0 −αIq

]

, (11a)

M3 =

[
MT

15M15 + MT
16M16 MT

15M25 + MT
16M26

(⋆) MT
26M26 + MT

25M25

]

, (11b)

and M15, M16, M25, M26 are defined in (7).
Consequently

Vk+1 −Vk ≤ ζTk

(

M1 + M2

)

ζk. (12)

By using the Schur lemma (see the Appendix), we deduce that the inequality

M1 + M2 < 0
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is equivalent to
M4 < 0

where

M4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P + Q 0 ÃTPB ÃTP MT
15 MT

16

(⋆) −Q ÃT
d PB ÃT

d P M
T
25 M

T
26

(⋆) (⋆) M33 0 0 0

(⋆) (⋆) (⋆) −P 0 0

(⋆) (⋆) (⋆) (⋆) −αγ2
f Is1

0

(⋆) (⋆) (⋆) (⋆) (⋆) −αγ2
f Is2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)

Using the notations R = LTP and Rd = LTd P, we deduce that the inequality M4 < 0 is
identical to (6). This means that under the condition (6) of Theorem 2.1, the function Vk is
strictly decreasing and therefore the estimation error is asymptotically stable. This ends the
proof of Theorem 2.1.

Remark 2.2. The Schur lemma and its application in the proof of Theorem 2.1 are detailed in the
Appendix of this paper.

2.3 Illustrative example

In this section, we present a numerical example in order to valid the proposed results.
Consider an example of an instable system under the form (1) described by the following
parameters :

A =

⎡

⎣

4 2 0
0 4 2
0 0 3

⎤

⎦ , Ad =

⎡

⎣

0 0.5 0.3
0.5 0 0.3
0.3 0.3 0

⎤

⎦ ,

B =

⎡

⎣

0.01 0
0 0.01
0 0

⎤

⎦ , H =
[
1 0 1

]
,

Hd =
[
1 0 0

]
, C =

[
1 0 0

]

and

f (Hx, Hdxd , y) = γ f

[
sin(x1(k) + x3(k))

cos(x2(k− 1))

]

where
x =

[
x1 x2 x3

]T

and γ f = 10 is the Lipschitz constant of the function f .
Applying the proposed method (condition (6)), we obtain the following gains :

L =
[
0.0701 1.8682 2.9925

]T
,

Ld =
[
0.3035 0.2942 0.0308

]T
,
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K1 = 0.9961, K2 = −2.8074 × 10−5,

K1
d = −9.0820 × 10−4, K2

d = −0.0075

and
α = 10−7.

3. Extension to H∞ performance analysis

In this section, we propose an extension of the previous result to H∞ robust observer design
problem. In this case, we give an observer synthesis method which takes into account the
noises affecting the system.
Consider the disturbed system described by the equations :

x(k + 1) = Ax(k) + Adxd(k) + Eωω(k) + B f
(

Hx(k), Hdxd(k)
)

(14a)

y(k) = Cx(k) + Dωω(k) (14b)

x(k) = x0(k), for k = −d, ..., 0 (14c)

where ω(k) ∈ ℓs2 is the vector of bounded disturbances. The matrices Eω and Dω are constants
with appropriate dimensions.

The corresponding observer has the same structure as in (3). We recall it hereafter
with some different notations.

x̂(k + 1) = Ax̂(k) + Ad x̂d(k) + B f
(

v1(k), v2(k)
)

+ L
(

y(k) − Cx̂(k)
)

+ Ld

(

yd(k) − Cx̂d(k)
) (15a)

v1(k) = Hx̂(k) + K1
(

y(k) − Cx̂(k)
)

+ K1
d

(

yd(k) − Cx̂d(k)
)

(15b)

v2(k) = Hd x̂d(k) + K2
(

y(k) − Cx̂(k)
)

+ K2
d

(

yd(k) − Cx̂d(k)
)

. (15c)

Our aim is to design the matrices L, Ld,K1,K2,K1
d and K2

d such that (15) is an asymptotic
observer for the system (14). The dynamics of the estimation error

ε(k) = x(k) − x̂(k)

is given by the equation :

ε(k + 1) =
(

A− LC
)

ε(k) +
(

Ad − LdC
)

εd(k) + Bδ fk

+
(

Eω − LDω

)

ω(k)− LdDωωd(k)
(16)

24 Discrete Time Systems

www.intechopen.com



with
δ fk = f

(

Hx(k), Hdxd(k)
)

− f
(

v1(k), v2(k))
)

satisfies (5).
The objective is to find the gains L, Ld,K1,K2,K1

d and K2
d such that the estimation error

converges robustly asymptotically to zero, i.e :

‖ε‖ℓs2
≤ λ‖ω‖ℓs2

(17)

where λ > 0 is the disturbance attenuation level to be minimized under some conditions that
we will determined later.
The inequality (17) is equivalent to

‖ε‖ℓs2
≤ λ√

2

(

‖ω‖2
ℓs2

+ ‖ωd‖2
ℓs2
−

−1

∑
k=−d

ω2(k)
) 1

2
. (18)

Without loss of generality, we assume that

ω(k) = 0 for k = −d, ...,−1.

Then, (18) becomes

‖ε‖ℓs2
≤ λ√

2

(

‖ω‖2
ℓs2

+ ‖ωd‖2
ℓs2

) 1
2
. (19)

Remark 3.1. In fact, if ω(k) 	= 0 for k = −d, ...,−1, we must replace the inequality (17) by

‖ε‖ℓs2
≤ λ

(

‖ω‖2
ℓs2

+
1

2

−1

∑
k=−d

ω2(k)
) 1

2
(20)

in order to obtain (19).

Robust H∞ observer design problem Li & Fu (1997) : Given the system (14) and the
observer (15), then the problem of robust H∞ observer design is to determine the matrices
L, Ld,K1,K2,K1

d and K2
d so that

lim
k→∞

ε(k) = 0 for ω(k) = 0; (21)

‖ε‖ℓs2
≤ λ‖ω‖ℓs2

∀ ω(k) 	= 0; ε(k) = 0, k = −d, ..., 0. (22)

From the equivalence between (17) and (19), the problem of robust H∞ observer design (see
the Appendix) is reduced to find a Lyapunov function Vk such that

Wk = ∆V + εT(k)ε(k)− λ2

2
ωT(k)ω(k)− λ2

2
ωT

d (k)ωd(k) < 0 (23)

where
∆V = Vk+1 −Vk.

At this stage, we can state the following theorem, which provides a sufficient condition
ensuring (23).
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Theorem 3.2. The robust H∞ observer design problem corresponding to the system (14) and the
observer (15) is solvable if there exist a scalar α > 0 matrices P = PT > 0, Q = QT > 0,
R, Rd, K̄1, K̄2, K̄1

d and K̄2
d of appropriate dimensions so that the following convex optimization problem

is feasible :
min(γ) subject to Γ < 0 (24)

where

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎣

−P + Q + In 0 M13 0 0
(⋆) −Q M23 0 0
(⋆) (⋆) M33 M34 M35

(⋆) (⋆) (⋆) −γIs 0
(⋆) (⋆) (⋆) (⋆) −γIs

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

M14 MT
15 MT

16
MT

24 MT
25 MT

26
0 0 0

ET
ωP− CTR 0 0
−DωRd 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

M14 MT
15 MT

16
MT

24 MT
25 MT

26
0 0 0

ET
ωP− CTR 0 0
−DωRd 0 0

⎤

⎥
⎥
⎥
⎥
⎦

T
⎡

⎢
⎣

−P 0 0
(⋆) −αγ2

f Is1 0

(⋆) (⋆) −αγ2
f Is2

⎤

⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)

with

M34 = BTPEω − BTRTC, (26a)

M35 = −BTRT
dDω , (26b)

and M13, M14, M15, M16, M24, M25, M26, M33 are de�ned in (7).
The gains L and Ld,K1,K2,K1

d,K2
d and the minimum disturbance attenuation level λ are given

respectively by
L = P−1RT , Ld = P−1RT

d

K1 =
1

α
K̄1, K2 =

1

α
K̄2,

K1
d =

1

α
K̄1
d, K2

d =
1

α
K̄2
d,

λ =
√

2γ.

Proof. The proof of this theorem is an extension of that of Theorem 2.1.
Let us consider the same Lyapunov-Krasovskii functional defined in (8). We show that if the
convex optimization problem (24) is solvable, we have Wk < 0. Using the dynamics (16), we
obtain

Wk = ηT
S1η (27)

where

S1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1 +

⎡

⎣

In 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣

ÃTPẼω −ÃTPD̃ω

ÃT
d PẼω −ÃT

d PD̃ω

BTPẼω −BTPD̃ω

⎤

⎦

⎡

⎣

ÃTPẼω −ÃTPD̃ω

ÃT
d PẼω −ÃT

d PD̃ω

BTPẼω −BTPD̃ω

⎤

⎦

T
[
ẼT

ωPẼω − γIs ẼT
ωPD̃ω

D̃T
ωPẼω D̃T

ωPD̃ω − γIs

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (28)
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where

Ẽω = Eω − LC (29a)

D̃ω = LdDω (29b)

ηT =
[
εT εTd δ fk ωT ωT

d

]
, (29c)

γ =
λ2

2
. (29d)

The matrices M1, Ã and Ãd are defined in (9).
As in the proof of Theorem 2.1, since δ fk satisfies (5), we deduce, after multiplying by a scalar
α > 0, that

ηT
S2η ≥ 0 (30)

where

S2 =

⎡

⎢
⎢
⎢
⎣

1
αγ2

f

M3 0 0 0

0 −αIq 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦

(31)

and M3 is defined in (11b).
The inequality (31) implies that

Wk = ηT(S1 + S2)η. (32)

Now, using the Schur Lemma and the notations R = LTP and Rd = LTd P, we deduce that
the inequality S1 + S2 < 0 is equivalent to Γ < 0. The estimation error converges robustly
asymptotically to zero with a minimum value of the disturbance attenuation level λ =

√
2γ if

the convex optimization problem (24) is solvable. This ends the proof of Theorem 3.2.

Remark 3.3. We can obtain a synthesis condition which contains more degree of freedom than the
LMI (6) by using a more general design of the observer. This new design of the observer can take the
following structure :

x̂(k + 1) = Ax̂(k) + Ad x̂d(k) + B f
(

v(k), w(k)
)

+ L
(

y(k) − Cx̂(k)
)

+
d

∑
i=1

Li

(

yi(k) − Cx̂i(k)
) (33a)

v(k) = Hx̂(k) + K1
(

y(k) − Cx̂(k)
)

+
d

∑
i=1

K1
i

(

yi(k) − Cx̂i(k)
)

(33b)

w(k) = Hd x̂d(k) + K2
(

y(k) − Cx̂(k)
)

+
d

∑
i=1

K2
i

(

yi(k) − Cx̂i(k)
)

. (33c)
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If such an observer is used, the adequate Lyapunov-Krasovskii functional that we propose is under
the following form :

Vk = εT(k)Pε(k) +
j=d

∑
j=1

i=j

∑
i=1

(

εTi (k)Qjε i(k)
)

. (34)

4. Systems with differentiable nonlinearities

4.1 Reformulation of the problem

In this section, we need to assume that the function f is differentiable with respect to x.
Rewrite also f under the detailed form :

f (Hx, Hdz) =

⎡

⎢
⎢
⎢
⎢
⎣

f1(H1x, Hd
1 z)

.

.

.

fq(Hqx, Hd
q z)

⎤

⎥
⎥
⎥
⎥
⎦

. (35)

where Hi ∈ Rsi×n and Hd
i ∈ Rri×n for all i ∈ {1, ..., q}. Here, we use the following

reformulation of the Lipschitz condition :

− ∞ < aij ≤
∂ fi
∂ζ ij

(ζ i, zi) ≤ bij < +∞, ∀ ζ i ∈ R
si , ∀ zi ∈ R

ri (36)

− ∞ < adij ≤
∂ fi

∂ζ ij
(xi, ζ i) ≤ bdij < +∞, ∀ ζ i ∈ R

ri , ∀ xi ∈ R
si (37)

where xi = Hix and zi = Hd
i z.

The conditions (36)-(37) imply that the differentiable function f is γ f -Lipschitz where

γ f =

√
√
√
√
√

i=q

∑
i=1

max

⎛

⎝

j=si

∑
j=1

max
(

|aij|2, |bij|2
)

,
j=ri

∑
j=1

max
(

|adij|2, |bdij|2
)

⎞

⎠

The reformulation of the Lipschitz condition for differentiable functions as in (36) and (37)
plays an important role on the feasibility of the synthesis conditions and avoids high gain as
shown in Zemouche et al. (2008). In addition, it is shown in Alessandri (2004) that the use of
the classical Lipschitz property leads to restrictive synthesis conditions.

Remark 4.1. For simplicity of the presentation, we assume, without loss of generality, that f
satis�es (36) and (37) with aij = 0 and adlm = 0 for all i, l = 1, ..., q, j = 1, ..., s and m = 1, ..., r, where

s = max
1≤i≤q

(si) and r = max
1≤i≤q

(ri). Indeed, if there exist subsets S1, Sd1 ⊂ {1, ..., q}, S2 ⊂ {1, ..., s} and

Sd2 ⊂ {1, ..., r} such that aij 	= 0 for all (i, j) ∈ S1 × S2 and adlm 	= 0 for all (l,m) ∈ Sd1 × Sd2 , we can
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consider the nonlinear function

f̃ (xk, xk−d) = f (Hxk, Hdxk−d) −
(

∑
(i,j)∈S1×S2

aijHijHi

)

xk

−
(

∑
(l,m)∈Sd

1×Sd
2

adlmH
d
lmH

d
l

)

xk−d

(38)

where
Hij = eq(i)e

T
si(j) and Hd

lm = eq(l)e
T
rl(m).

Therefore, f̃ satis�es (36) and (37) with ãij = 0, ãdij = 0, b̃ij = bij − aij and b̃dij = bdij − adij, and then

we rewrite (1a) as
xk+1 = Ãxk + Ãdxk−d + B f̃ (xk, xk−d)

with
Ã = A + B ∑

(i,j)∈S1×S2

aijHijHi, Ãd = Ad + B ∑
(i,j)∈Sd

1×Sd
2

adijH
d
ijH

d
i

Inspired by Fan & Arcak (2003), we consider the following state observer :

x̂k+1 = Ax̂k + Ad x̂k−d +
i=q

∑
i=1

Beq(i) fi(v
i
k,wi

k)

+ L
(

yk − Cx̂k

)

+ Ld
(

yk−d − Cx̂k−d

)
(39a)

vik = Hi x̂k + Ki

(

yk − Cx̂k

)

(39b)

wi
k = Hd

i x̂k−d + Kd
i

(

yk−d − Cx̂k−d

)

(39c)

x̂k = x̂0, ∀ k ∈ {−d, ..., 0} (39d)

Therefore, the aim is to find the gains L ∈ R
n×p, Ld ∈ R

n×p, Ki ∈ R
si×p and Kd

i ∈ R
ri×p, for

i = 1, ..., q, such that the estimation error

εk = xk − x̂k (40)

converges asymptotically towards zero.
The dynamics of the estimation error is given by :

εk+1 =
(

A− LC
)

εk +
(

Ad − LdC
)

εk−d +
i=q

∑
i=1

Beq(i)δ fi (41)

where
δ fi = fi(Hixk, Hd

i x̂k) − fi(v
i
k, w

i
k).
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Using the DMVT-based approach given firstly in Zemouche et al. (2008), there exist zi ∈
Co(Hix, vi), zdi ∈ Co(Hd

i xk−d, wi) for all i = 1, ..., q such that :

δ fi =
j=si

∑
j=1

hij(k)e
T
si(j)χi +

j=ri

∑
j=1

hdij(k)e
T
ri(j)χd

i (42)

where
χi =

(

Hi − KiC
)

εk (43)

χd
i =

(

Hd
i − Kd

i C
)

εk−d (44)

hij(k) =
∂ fi
∂vij

(

zi(k), Hd
i xk−d

)

(45)

hdij(k) =
∂ fi
∂vij

(

vik, zdi (k)
)

(46)

Hence, the estimation error dynamics (41) becomes :

εk+1 =
(

A− LC
)

εk +
(

Ad − LdC
)

εk−d

+
i=q

∑
i=1

j=si

∑
j=1

hij(k)BHijχi

+
i=q

∑
i=1

j=ri

∑
j=1

hdij(k)BH
d
ijχ

d
i

(47)

4.2 New synthesis method

The content of this section consists in a new observer synthesis method. A novel sufficient
stability condition ensuring the asymptotic convergence of the estimation error towards zero
is provided. This condition is expressed in term of LMI easily tractable.

Theorem 4.2. The estimation error (40) converges asymptotically towards zero if there exist matrices
P = PT > 0, Q = QT > 0, R, Rd, Ki and Kd

i , for i = 1, ..., q, of adequate dimensions so that the
following LMI is feasible :

⎡

⎢
⎢
⎢
⎢
⎣

−P + Q 0 M 0 ATP− CTR

(⋆) −Q 0 N AT
d P− CTRd

(⋆) (⋆) −Υ 0 ΣTP

(⋆) (⋆) (⋆) −Υd (Σd)TP
(⋆) (⋆) (⋆) (⋆) −P

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (48)

where
M =

[

M1(K1) · · ·Mq(Kq)
]

(49)

Mi(Ki) =
[

(Hi − KiC)T...(Hi − KiC)T
︸ ︷︷ ︸

si times

]

(50)
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N =
[

N1(K
d
1) · · ·Nq(K

d
q )

]

(51)

Ni(K
d
i ) =

[

(Hd
i − Kd

i C)T...(Hd
i − Kd

i C)T
︸ ︷︷ ︸

ri times

]

(52)

Σ = B
[

H11 · · ·H1s1
H21 · · ·Hqsq

]

(53)

Σd = B
[

Hd
11 · · ·Hd

1r1
H21 · · ·Hqrq

]

(54)

Υ = diag
(

β11 Is1 , ..., β1s1
Is1 , β21 Is2 , ..., βqsq Isq

)

(55)

Υd = diag
(

βd
11 Ir1 , ..., βd

1r1
Ir1 , βd

21 Ir2 , ..., βd
qrq Irq

)

(56)

βij =
2

bij
, βd

ij =
2

bdij
(57)

Hence, the gains L, Ld are given, respectively, by L = P−1RT , Ld = P−1(Rd)T and the matrices
Ki, K

d
i are free solutions of the LMI (48).

Proof. For the proof, we use the following Lyapunov-Krasovskii functional candidate :

Vk = εTk Pεk +
i=d

∑
i=1

εTk−iQεk−i

Considering the difference ∆V = Vk+1 −Vk along the system (1), we have

∆V = εTk

[(

A− LC
)T

P
(

A− LC
)

− P + Q

]

εk + εTk−d

[(

Ad − LdC
)T

P
(

Ad − LdC
)

−Q

]

εk−d

+ 2εTk

(

A− LC
)T

P
(

Ad − LdC
)

εk−d + 2εTk

(

A− LC
)T

P

⎛

⎝

i=q

∑
i=1

j=si

∑
j=1

BHijζij

⎞

⎠

+ 2εTk

(

A− LC
)T

P

⎛

⎝

i=q

∑
i=1

j=ri

∑
j=1

BHd
ijζ

d
ij

⎞

⎠ + 2εTk−d

(

Ad − LdC
)T

P

⎛

⎝

i=q

∑
i=1

j=si

∑
j=1

BHijζij

⎞

⎠

+ 2εTk−d

(

Ad − LdC
)T

P

⎛

⎝

i=q

∑
i=1

j=ri

∑
j=1

BHd
ijζ

d
ij

⎞

⎠ +

⎛

⎝

i=q

∑
i=1

j=si

∑
j=1

BHijζij

⎞

⎠

T

P

⎛

⎝

i=q

∑
i=1

j=si

∑
j=1

BHijζij

⎞

⎠

+

⎛

⎝

i=q

∑
i=1

j=ri

∑
j=1

BHd
ijζ

d
ij

⎞

⎠

T

P

⎛

⎝

i=q

∑
i=1

j=ri

∑
j=1

BHd
ijζ

d
ij

⎞

⎠

(58)

where
ζij = hij(k)χi, ζdij = hdij(k)χd

i . (59)
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From (36) and (37), we have

i=q

∑
i=1

j=si

∑
j=1

ζTij

(

1

hij
− 1

bij

)

ζij ≥ 0 (60)

i=q

∑
i=1

j=ri

∑
j=1

(ζdij)
T

(

1

hdij
− 1

bdij

)

ζdij ≥ 0 (61)

Using (43) and (59), the inequalities (60) and (61) become, respectively,

i=q

∑
i=1

j=si

∑
j=1

εT
(

Hi − KiC
)T

ζij −
i=q

∑
i=1

j=si

∑
j=1

1

bij
ζTijζij ≥ 0 (62)

i=q

∑
i=1

j=ri

∑
j=1

εTk−d

(

Hd
i − Kd

i C
)T

ζdij −
i=q

∑
i=1

j=ri

∑
j=1

1

bdij
(ζdij)

Tζdij ≥ 0 (63)

Consequently,

∆V ≤

⎡

⎢
⎢
⎣

εk
εk−d

ζk
ζdk

⎤

⎥
⎥
⎦

T ⎡

⎢
⎢
⎣

Γ11 Γ12 Γ13 Γ14

(⋆) Γ22 Γ23 Γ24

(⋆) (⋆) Γ33 Γ34

(⋆) (⋆) (⋆) Γ44

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

εk
εk−d

ζk
ζdk

⎤

⎥
⎥
⎦

(64)

where

Γ11 =
(

A− LC
)T

P
(

A− LC
)

− P + Q (65)

Γ12 =
(

A− LC
)T

P
(

Ad − LdC
)

(66)

Γ13 = M
T(K1, ...,Kq) +

(

A− LC
)T

PΣ (67)

Γ14 =
(

A− LC
)T

PΣd (68)

Γ22 =
(

Ad − LdC
)T

P
(

Ad − LdC
)

−Q (69)

Γ23 =
(

Ad − LdC
)T

PΣ (70)

Γ24 = N
T(Kd

1 , ...,Kd
q ) +

(

Ad − LdC
)T

PΣd (71)

Γ33 = ΣTPΣ − Υ (72)

Γ34 = ΣTPΣd (73)

Γ44 = (Σd)TPΣd − Υd (74)

ζk = [ζT11, ..., ζT1s1
, ζT21, ..., ζTqsq ]

T (75)

ζdk = [(ζd11)
T, ..., (ζd1r1

)T, (ζd21)
T, ..., (ζdqrq)

T]T (76)
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and M(K1, ...,Kq), Σ, Υ are defined in (49), (53) and (55) respectively.

Using the Schur Lemma and the notation R = LTP, the inequality (48) is equivalent to

⎡

⎢
⎢
⎣

Γ11 Γ12 Γ13 Γ14

(⋆) Γ22 Γ23 Γ24

(⋆) (⋆) Γ33 Γ34

(⋆) (⋆) (⋆) Γ44

⎤

⎥
⎥
⎦

< 0. (77)

Consequently, we deduce that under the condition (48), the estimation error converges
asymptotically towards zero. This ends the proof of Theorem 4.2.

Remark 4.3. Note that we can consider a more general observer with more degree of freedoms as
follows :

x̂k+1 = Ax̂k + Adxk−d +
i=q

∑
i=1

Beq(i) fi(v
i
k,wi

k) +
l=d

∑
l=0

Ll

(

yk−l − Cx̂k−l

)

(78a)

vik = Hi x̂k +
l=d

∑
l=0

Ki,l

(

yk−l − Cx̂k−l

)

(78b)

wi
k = Hd

i x̂k−d +
l=d

∑
l=0

Kd
i,l

(

yk−d − Cx̂k−d

)

(78c)

This leads to a more general LMI using the general Lyapunov-Krasovskii functional :

Vk = εTk Pεk +
j=d

∑
j=1

i=j

∑
i=1

εTk−iQjεk−i

4.3 Numerical example

Now, we present a numerical example to show the performances of the proposed method. We
consider the modified chaotic system introduced in Cherrier et al. (2006), and described by :

ẋ = Gx + F(x(t), x(t− τ)) (79)

where

G =

⎡

⎣

−α α 0
1 −1 1
0 −β −γ

⎤

⎦ , F(x(t), x(t− τ)) =

⎡

⎣

−αδ tanh(x1(t))
0

ǫ sin(σx1(t− τ))

⎤

⎦

Since the proposed method concerns discrete-time systems, then we consider the discrete-time
version of (79) obtained from the Euler discretization with sampling period T = 0.01. Hence,
we obtain a system under the form (1a) with the following parameters :

A = I3 + TG, Ad = 0R3×3 , B =

⎡

⎣

−αδT 0
0 0
0 ǫT

⎤

⎦

and

f (xk, xk−d) =

[
tanh(x1(k))

sin(σx1(k− d)

]
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that we can write under the form (35) with

H1 =
[
1 0 0

]
, Hd

1 =
[
0 0 0

]

H2 =
[
0 0 0

]
, Hd

2 =
[
σ 0 0

]

Assume that the first component of the state x is measured, i.e. : C =
[
1 0 0

]
.

The system exhibits a chaotic behavior for the following numerical values :

α = 9, β = 14, γ = 5, d = 2

δ = 5, ǫ = 1000, σ = 100

as can be shown in the figure 1.
The bounds of the partial derivatives of f are

−5

0

5

−10

0

10
−100

−50

0

50

100

x
1

x
2

x
3

Fig. 1. Phase plot of the system

a11 = 1, b11 = 1, ad21 = −1, bd21 = 1

According to the remark 4.1, we must solve the LMI (48) with

b̃d21 = bd21 − ad21 = 2, Ãd =

⎡

⎣

0 0 0
0 0 0
0 0 −Tǫσ

⎤

⎦

Hence, we obtain the following solutions :

L =

⎡

⎣

1.3394
4.9503
40.8525

⎤

⎦ , Ld =

⎡

⎣

0
0

−1000

⎤

⎦ , K1 = 0.9999, K2 = −0.0425, Kd
1 = −1.792× 10−13 , Kd

2 = 100

The simulation results are shown in figure 2.
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Fig. 2. Estimation error behavior

5. Conclusion

This chapter investigates the problem of observer design for a class of Lipschitz nonlinear
time-delay systems in the discrete-time case. A new observer synthesis method is proposed,
which leads to a less restrictive synthesis condition. Indeed, the obtained synthesis condition,
expressed in term of LMI, contains more degree of freedom because of the general structure
of the proposed observer. In order to take into account the noise (if it exists) which affects
the considered system, a section is devoted to the study of H∞ robustness. A dilated LMI
condition is established particularly for systems with differentiable nonlinearities. Numerical
examples are given in order to show the effectiveness of the proposed results.

A. Schur Lemma

In this section, we recall the Schur lemma and how it is used in the proof of Theorem 2.1.
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Lemma A.1. Boyd et al. (1994) Let Q1, Q2 and Q3 be three matrices of appropriate dimensions such
that Q1 = QT

1 and Q3 = QT
3 . Then, the two following inequalities are equivalent :

[
Q1 Q2

QT
2 Q3

]

< 0, (80)

Q3 < 0 and Q1 −Q2Q
−1
3 QT

2 < 0. (81)

Now, we use the Lemma A.1 to demonstrate the equivalence between M1 + M2 < 0 and
M4 < 0.
We have

M1 + M2 =

⎡

⎣

−P+ Q 0 ÃTPB
(⋆) −Q ÃT

d PB
(⋆) (⋆) BTPB− αIq

⎤

⎦ +

⎡

⎣

ÃTPÃ ÃTPÃd 0
(⋆) ÃT

d PÃd 0
(⋆) (⋆) 0

⎤

⎦

+
1

αγ2
f

⎡

⎣

MT
15M15 + MT

16M16 MT
15M25 + MT

16M26 0
(⋆) MT

26M26 + MT
25M25 0

(⋆) (⋆) 0

⎤

⎦ .

(82)

By isolating the matrix

Λ =

⎡

⎢
⎣

P 0 0

0 αγ2
f Is1 0

0 0 αγ2
f Is2

⎤

⎥
⎦

we obtain

M1 + M2 =

⎡

⎣

−P + Q 0 ÃTPB
(⋆) −Q ÃT

d PB
(⋆) (⋆) BTPB− αIq

⎤

⎦−

⎡

⎢
⎢
⎢
⎢
⎣

ÃT MT
15 MT

16

ÃT
d MT

25 MT
26

0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Υ(−Λ)−1Υ

⎡

⎢
⎢
⎢
⎢
⎣

Ã Ãd 0

M15 M25 0

M16 M26 0

⎤

⎥
⎥
⎥
⎥
⎦

(83)

where

Υ =

⎡

⎣

P 0 0
0 Is1 0
0 0 Is2

⎤

⎦ .

By setting

Q1 =

⎡

⎣

−P + Q 0 ÃTPB

(⋆) −Q ÃT
d PB

(⋆) (⋆) BTPB− αIq

⎤

⎦ , Q2 =

⎡

⎢
⎢
⎢
⎢
⎣

ÃT MT
15 MT

16

ÃT
d MT

25 MT
26

0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Υ and Q3 = −Λ

we have
M1 + M2 = Q1 −Q2Q

−1
3 QT

2 . (84)

Since Q3 < 0, we deduce from the Lemma A.1 that

M1 + M2 < 0
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is equivalent to (80), which is equivalent to

M4 < 0

where M4 is defined in (13). This ends the proof of equivalence between M1 + M2 < 0 and
M4 < 0. The Lemma A.1 is used of the same manner in theorem 3.2.

B. Some Details on Robust H∞ Observer Design Problem

Hereafter, we show why the problem of robust H∞ observer design is reduced to find a
Lyapunov function Vk so that Wk < 0, where Wk is defined in (23). In other words, we show
that Wk < 0 implies that the inequalities (21) and (22) are satisfied.
If ω(k) = 0, we have Wk < 0 implies that ∆V < 0. Then, from the Lyapunov theory, we deduce
that the estimation error converges asymptotically towards zero, and then we have (21).
Now, if ω(k) 	= 0; ε(k) = 0, k = −d, ..., 0, we obtain Wk < 0 implies that

N

∑
k=0

‖ε(k)‖2
<

λ2

2

N

∑
k=0

‖ω(k)‖2 +
λ2

2

N

∑
k=0

‖ωd(k)‖2 −
N

∑
k=0

(Vk+1 −Vk) (85)

Since without loss of generality, we have assumed that ω(k) = 0 for k = −d, ...,−1 and
ε(k) = 0, k = −d, ..., 0, we deduce that

N

∑
k=0

‖ε(k)‖2
<

λ2

2

N

∑
k=0

‖ω(k)‖2 +
λ2

2

N−d

∑
k=0

‖ω(k)‖2 −VN <
λ2

2

N

∑
k=0

‖ω(k)‖2 +
λ2

2

N−d

∑
k=0

‖ω(k)‖2. (86)

When N tends toward infinity, we obtain

∞

∑
k=0

‖ε(k)‖2 ≤ λ2

2

∞

∑
k=0

‖ω(k)‖2 +
λ2

2

∞−d

∑
k=0

‖ω(k)‖2 ≤ λ2

2

N

∑
k=0

‖ω(k)‖2 +
λ2

2

N−d

∑
k=0

‖ω(k)‖2. (87)

As
∞

∑
k=0

‖ω(k)‖2 =
∞−d

∑
k=0

‖ω(k)‖2 = ‖ω‖2
ℓs2

then the final relation (22) is inferred.
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