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1. Introduction 

Embryonic stem (ES) cells are self-renewing and pluripotent cells that arise from the inner 

cell mass of the mammalian blastocyst (Smith, 2001). Their unique capability of potentially 

generating every cell type continuously attracts the interest of different fields of research. 

Indeed, ES cells represent a powerful tool for the study of the molecular mechanisms of cell 

differentiation with important applications in cell therapies, tissue engineering, regenerative 

medicine and pharmaceutical screening (Trounson, 2006; Vats et al., 2005). All these 

applications require rapid and sensitive assays to evaluate the differentiation process 

through the identification of specific markers of the differentiation status. To date, ES cell 

differentiation is mainly monitored by biochemical methods such as immunohistochemistry, 

gene expression analysis, functional assays of the differentiating cells and flow cytometry, 

that - even if providing a comprehensive characterization of cells - are time consuming, 

expensive and often require a complex sample handling. For these reasons, the development 

of new approaches for stem cell studies is highly desirable.  

In the last decades, optical spectroscopy approaches were applied to the study of intact cells 

and in particular vibrational spectroscopies revealed to be powerful techniques for the 

characterization of complex biological systems (Heraud & Tobin, 2009). In particular, 

Fourier transform infrared (FTIR) and Raman are non invasive and label-free vibrational 

(micro)spectroscopies that allow to obtain information on the molecular composition and 

structure of intact cells, tissues and whole organisms (Schulze et al., 2010 ; Tanthanuch et al., 

2010; Chan & Lieu, 2009; Walsh et al., 2009; Ami et al., 2004; Choo et al., 1996), providing a 

unique molecular fingerprint within a single measurement. In this way, it is possible to 

characterize rapidly different processes that take place simultaneously in biological systems, 

a non easy task for the standard biochemical approaches. Thanks to the use of an infrared 

microscope coupled to a FTIR spectrometer, it becomes possible to collect the absorption 

spectrum from a selected sample area. Interestingly, these techniques, thank to their  fast – 

time resolution, have been successfully used to snapshot and “freeze” molecular events in 

complex systems (Miller & Dumas, 2010; Hamm, 2009).   
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The potential of FTIR and Raman spectroscopies has been widely exploited to monitor 
biological processes in-situ, for instance in cancer diagnosis (Krafft et al., 2009; Baker et al., 
2008; Wang et al., 2007), in protein aggregation (Diomede et al., 2010; Doglia et al., 2008; Ami 
et al., 2005; Choo et al., 1996) and in stem cell research (Schulze et al., 2010; Heraud & Tobin, 
2009; Ami et al., 2008; Notingher et al., 2004a; Notingher et al., 2004b). Indeed, these 
vibrational approaches have been shown to be a promising tool for the characterization of 
cellular mechanisms, providing not only structural information, but also details on the 
dynamics of the structures (Miller & Dumas, 2010).  
Concerning in particular the study of complex biological systems, it is important to 
underline that the multivariate statistical analysis is an essential support to fully understand 
the spectroscopic response. Among the different statistical approaches, the combined 
principal component - linear discriminant analysis (PCA-LDA) allows to find in the 
spectrum the wavenumbers that contribute to the largest inter-spectral variance, thus 
validating the identification of the marker bands obtained by the direct inspection of the 
spectral data (Ami et al., 2008; Walsh et al., 2007; Fearn, 2002). In Figure 1 we illustrated the 
procedure that should be followed to successfully tackle the FTIR characterization of 
complex systems. 

 

Fig. 1. Scheme of a FTIR approach to study complex biological systems. The measured 
absorption spectra are analyzed by resolution enhancement approaches, as second 
derivatives, to resolve the overlapped absorption components and to follow their variations 
during the process under investigation. To validate the spectroscopic results, a multivariate 
analysis - such as PCA-LDA - is required. The assignment of the identified marker bands to 
specific biomolecules involved in the process is the next crucial step. The interpretation of 
the spectroscopic data should be then confirmed by  standard biochemical characterizations.  

In this chapter we will first give an overview of FTIR spectroscopy of isolated biomolecules: 
proteins, nucleic acids, lipids, and carbohydrates. Then, we will illustrate in detail the basis 
of the multivariate analysis applied to the study of complex biological systems. Finally, we 
will extend the spectroscopic study on intact cells, focusing our interest on the 
characterization of embryonic stem cell differentiation.  
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2. FTIR spectroscopy of biomolecules: proteins, nucleic acids, lipids and 
carbohydrates 

The application of FTIR (micro)spectroscopy to the study of biological systems is based on 
the knowledge of the band assignment of the infrared absorption due to the functional 
groups of the most important biomolecules. Indeed, proteins, nucleic acids, lipids and 
carbohydrates have specific absorptions in the mid infrared range, between 4000 and 400 
cm-1. To better illustrate this point, in Figure 2 the IR absorption spectra of model 
biomolecules are reported and compared with that of intact eukaryotic cells. 
 

 

Fig. 2. FTIR absorptions of model biomolecules and intact eukaryotic cells. Myoglobin, calf 
thymus DNA, phosphatidylethanolamine and galactose are taken as models for protein, 
nucleic acid, lipid, and carbohydrate IR absorptions respectively. A representative FTIR 
spectrum of intact murine ES cells is also reported for comparison. Hydrated films of the 
isolated biomolecules were measured in attenuated total reflection (ATR), while murine 
embryonic stem (ES) cells were measured in transmission, after dry-fixing for about 30 
minutes. 

Several spectroscopic studies on complex biological systems are found in literature and 

became possible since IR spectroscopy is not limited by the physical state of the sample 

(liquid, solid, etc).  

A limiting factor in the infrared characterization of biological molecules in their natural state 
was initially represented by the strong water absorption in the mid-IR range, where their 

Wavenumbers 
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internal vibrational modes occur. However, the development of high performing FTIR 
spectrometers that allow to obtain spectra with an excellent signal to noise ratio and baseline 
stability enables, nowadays, to subtract the solvent spectrum. Moreover, several strategies – 
as the use, for instance, of deuterated water – could help to overcome this problem. 
For the FTIR study of secondary structures, stability, and aggregation of proteins, 
particularly useful are the Amide I and the Amide II bands that occur, respectively, in the 
1700-1600 cm-1 and 1600-1500 cm-1 spectral regions. The Amide I band, the most used for 
protein analyses, is mainly due to the C=O stretching vibration of the peptide bond and it is 
sensitive to the protein secondary structures (Barth, 2007; Barth & Zscherp, 2002; Arrondo & 
Goni, 1999; Arrondo et al., 1993).  
Since FTIR spectroscopy allows to examine also highly scattering samples, proteins can be 
studied in different environmental conditions, including solutions, hydrated film, and also 
within intact cells and tissues.  
The Amide I of proteins and peptides usually appears as a broad band due to the 

overlapping of several spectral components arising from the peptide bond absorption in the 

different secondary structures. On the basis of computational analyses and experimental 

studies on model compounds - peptides and proteins with known three dimensional 

structures - it has been possible to assign these components to specific protein secondary 

structures according to their peak position (Barth, 2007; Barth & Zscherp, 2002; Arrondo & 

Goni, 1999; Arrondo et al., 1993). For this reason the first critical step on the FTIR analysis of 

proteins is the identification of the spectral components that contribute to the Amide I 

envelop, while the second step is the assignment of each component to a specific protein 

secondary structure. For the first step, two resolution enhancement procedures can be used: 

the second derivative analysis of the spectra (see below; Susi & Byler, 1986) and the Fourier 

self-deconvolution (FSD) method (not reported in this chapter, see Arrondo et al., 1993; 

Kauppinen et al., 1981).  Several reviews discuss extensively the Amide I band assignment 

to protein secondary structures (for instance Barth, 2007; Barth & Zscherp, 2002; Arrondo & 

Goni, 1999; Arrondo et al., 1993) and here we report only a scheme for protein in not-

deuterated solvent: alpha-helices (1660–1648 cm-1), beta-sheets (1640–1623 cm-1 and 1695–

1674 cm-1), turns (1686–1662 cm-1), random coils (1657–1642 cm-1), and aggregation and 

protein-protein interactions (1630–1620 cm-1  and 1698-1692 cm-1) . 

Concerning nucleic acids, their IR absorption is very complex and covers a wide range of 

frequencies (Banyay et al., 2003; Zhizhina & Oleinik, 1972; Tsuboi, 1961). For simplicity, the 

range of absorption is conventionally divided in different spectral regions. Here, we will 

briefly illustrate the most studied ones.  

The 1800-1500 cm-1 range is mainly due to nucleobase vibrations, sensitive to base stacking 

and base pairing interactions, while in the 1500-1250 cm-1 range marker bands sensitive to 

sugar puckering, glycosidic bond rotation and backbone conformation are found. Bands 

sensitive to nucleic acid backbone conformation occur also between 1250-1000 cm-1, due to 

vibrations along the sugar-phosphate chain. This last spectral region is of particular interest 

for cell biology studies, since a number of marker bands of the different DNA conformations 

(A, B, and Z) can be found in the spectra, allowing to obtain important insights into the 

nucleic acid dynamics and functions. For instance, it is known that double stranded DNA 

exists in two main family forms, the A and the B geometries. In particular, it is known to 

assume the A form in low relative humidity conditions and in the hybrid with RNA, during 

transcription (Banyay et al., 2003 and references therein).  

www.intechopen.com



Fourier Transform Infrared Microspectroscopy as a Tool for Embryonic Stem Cell Studies   

 

197 

Also of particular interest is the spectral range between 1000 and 800 cm-1 where bands due 
to the different sugar puckering modes (S-N types) are found. Since these are sensitive to 
changes in the DNA sugar conformation induced by cytosine methylation (Banyay & 
Graslund, 2002), the analysis of this range could be relevant for biological studies 
considering the extent of DNA methylation in cells. Theophanides & Tajmir-Riahi (1985) 
studied the conformational changes of DNA, identifying IR marker bands of A and B DNA 
forms thanks to the absorption of their different sugar conformations.  
Among the first nucleic acid FTIR studies, it should be mentioned the work of Tsuboi (1961), 
that studied the secondary structure of DNA in solution, native and denatured, enabling to 
detect the spectral changes due to the breakdown of its secondary structure.  
Being the main components of biological membranes, also the infrared absorption of lipids 
has been widely characterized (Casal & Mantsch, 1984; Arrondo & Goni, 1998). It originates 
mainly from molecular vibrations of the hydrophylic head-group and of the hydrophobic 
hydrocarbon tail. The most studied lipid spectral range is that between 3100-2800 cm-l, 
where the acyl chain vibrational modes occur with generally strong bands due to CH2 and 
CH3 stretching modes. The frequencies of these bands are conformation-sensitive and 
respond to temperature-induced changes of the trans/gauche ratio in acyl chains. In this 
way, it is possible to study lipid phase transitions and changes in lipid composition (Casal & 
Mantsch, 1984). For instance, through the analysis of the changes in the CH2 and CH3 
absorption bands, the stress response induced by protein aggregation in bacterial cells has 
been monitored in situ (Ami et al., 2009). Furthermore, through the CH stretching region 
analysis of mouse oocyte FTIR spectra and supported by the ester carbonyl band around 
1740 cm-1 (see below), Wood and colleagues (Wood et al., 2008) found that lipids - whose 
composition within the oocytes drastically changes during maturation stages – could be 
considered potential markers of oocyte developmental competence.  
Interestingly, the methyl group vibrations occurring in the 3100-2800 cm-1 spectral range 
could also give information on DNA/histone methylation and/or histone acetylation, 
important issues for epigenetic studies (Ami et al., 2010; O’Connell, 2005).  
Furthermore, also of particular interest for lipid studies is the so called interfacial region, 
between 1750-1700 cm-1, where the stretching vibrations of the C=O group involved in ester 
bonds occur. The resulting absorption bands are sensitive to changes in their local 
environment, such as polarity or hydrogen bonding (Casal & Mantsh, 1984; Arrondo & 
Goni, 1998).  
 We should add that FTIR spectroscopy has been also widely applied in several fields of 
carbohydrate research as it allows, for instance, to study mono and oligosaccharide 
composition and conformation (Kacurakova & Wilson, 2001) and protein glycosylation 
(Natalello et al., 2005). To this aim, the most used spectral range is in the fingerprint region 
between 1200 and 750 cm−1, whose band peak positions and intensities are specific for every 
polysaccharide. In particular, the IR response has been found to be highly sensitive to the 
carbohydrate conformation, to hydrogen bonding, to hydration, to the type of substituent, 
and to the linkage positions (Kacurakova & Wilson, 2001). Due to the complexity of the 
carbohydrate IR absorption, the band assignment could be not unequivocal, requiring 
accurate data analysis and validation of the results.  
Noteworthy, of particular interest for cell biology applications is the infrared response of 
glycogen that in tissues and in single cells displays its spectral signature at specific 
wavenumbers: ≈1028, ≈1081, and ≈1153 cm−1 (Heraud et al., 2010; Ami et al., 2008; Walsh et 
al., 2007; Wang et al., 2007;  Steller et al., 2006).  
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3. Infrared microspectroscopy applied to the study of intact cells: sample 
preparation 

Coupling an infrared microscope, with all reflecting optics, with a FTIR spectrometer offers 
the opportunity to study selected areas within the sample under investigation. 
Two main different types of infrared microscopy can be used: the first, conventional, allows 
the collection of the IR absorption spectra from a microvolume within the sample, with a 
spatial resolution not only due to the diffraction limit of Mid IR light (3-10 μm), but also to 
the level of the absorbed light. For these reasons, a spectrum of good quality can be collected 
by an area larger than 20 μm x 20 μm – when using a nitrogen cooled Mercury Cadmium 
Telluride (MCT) detector (Orsini et al., 2000). Thanks to the variable aperture of the 
microscope, it is possible to select a small area of few tens of microns within the sample, 
enabling the study of intact cells (Tanthanuc et al., 2010; Thumanu et al., 2009; Ami et al., 
2008; Wood et al., 2008), tissues (Choo et al., 1996) and whole model organisms, as 
nematodes (Diomede et al., 2010; Ami et al., 2004).  
Instead, more advanced IR microscopes employ a focal plane array (FPA) detection to 
collect the IR chemical imaging of the sample, with a spatial resolution improved compared 
to that of the conventional microscope. The image contrast is determined by the response of 
the different sample regions to the particular IR wavelengths selected by the user (Kazarian 
& Chan 2006; Levin & Bhargava 2005; Lewis et al., 1995).  
We should mention that infrared measurements can be performed mainly in transmission or 
in attenuated total reflection (ATR) mode. Typically, measurements on biomolecules and on 
complex biological systems, such as cells and tissues, are carried out in transmission, 
employing suitable IR transparent supports, for instance of barium fluoride or zinc selenide. 
However, sometimes, it could be useful to work in ATR when the samples of interest are 
highly absorbing or when they cannot be easily transferred onto an opportune infrared 
support (Walsh et al., 2007; Orsini et al., 2000). Indeed, in ATR measurements the sample is 
placed in contact with the ATR element (diamond, germanium, etc) characterized by a 
refractive index higher than that of the sample. In this device, an evanescent wave generates 
and penetrates into the sample for a path length of the size of a micron (Tamm & Tatulian 1997).  
In addition, the development of synchrotron light sources further improved the application 
of FTIR microspectroscopy to cell characterization. Indeed, due to its radiation source 100–
1000 times brighter than that of a conventional thermal one, it is possible to collect an 
infrared absorption spectrum at a higher spatial resolution from a sample area of only few 
microns. In this way, a synchrotron IR source enables to collect high signal – to –noise ratio 
spectra of subcellular compartments, providing better insights useful for the study of 
biological processes within single cells (Miller & Dumas, 2010). 
We should recall that - even if samples in different physical states can be examined by FTIR 
spectroscopy - the sample condition can strongly affect the FTIR spectra. This makes it 
necessary to standardize sample preparation and data acquisition procedures. Indeed, as 
discussed above for isolated biomolecules, water absorption – very high in the mid-IR - could 
represent a limit for FTIR analysis, as it makes difficult to perform measurements in vivo that 
require an aqueous environment. A successful strategy to overcome this problem is the dry 
fixing procedure: a cell suspension is deposited on an IR transparent support and then dried at 
room temperature for about 30 minutes, in order to remove excess water that would mask the 
IR response of the different biological components (Ami et al. 2008). Noteworthy, using Raman 
spectroscopy - a vibrational technique where the water signal is weak and does not affect the 
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Raman response of hydrated samples - it has been recently demonstrated that the rapid 
desiccation of cells doesn’t affect their spectroscopic response (Konorov et al., 2010). In 
particular, using Raman microspectroscopy the authors measured different stages of 
differentiation of human embryonic stem cells live and dry-fixed, and compared the 
spectroscopic responses obtained in the two conditions. The relative intensities of the bands 
due to tryptophan in proteins and to nucleic acid backbone and base vibrations - used as 
differentiation markers – were found to be the same in  living and in dry-fixed cells, allowing 
to monitor the same temporal patterns during differentiation in the two conditions.  
These results strongly indicate that dry-fixing is a suitable method for the study of intact 
cells by FTIR microspectroscopy. 
Furthermore, as recently pointed out by Zhao and colleagues (Zhao et al., 2010), changes 

due to aging of cells in culture could also interfere with the cell IR response. For this reason, 

the in-situ spectroscopic characterization of cell processes requires an accurate control of the 

stage of cell growth in culture, in order to obtain reliable and reproducible results. 

4. FTIR second derivative analysis 

Considering the complexity of the FTIR spectra of biological systems, it is often necessary to 

better resolve their absorption bands, often broad and overlapped one to the other, using the 

so called resolution enhancement procedures. To this aim, the second derivative analysis is 

widely applied to the measured spectra, as described and discussed by Susy & Byler (1986). 

In this way, the overlapping absorption components in the spectrum are identified as 

negative bands in the second derivative. This analysis requires spectra with high signal-to-

noise ratio and free of vapour absorption, as second derivative band intensity is inversely 

proportional to the square of the original band half-width, leading to an enhancement of the 

relative contribution of sharp lines, such as due to noise and vapour.  

Noteworthy, changes in the relative contributions of the different spectral components can 

be accurately monitored through the variations in intensity and peak position of the second 

derivative spectrum. 

5. Multivariate statistical analysis 

The multivariate statistical analysis (MVA) is an essential tool which allows to tackle the 
study of complex phenomena which are in general dependent by more than one statistical 
variable. 
In general, the MVA allows the: 

• simultaneous treatment of many variables and observations; 

• discovery and visualization of complex associations;  

• reduction of number of variables; 

• construction of descriptive models; 

• classification of data into groups. 
Among the numerous potential applications of MVA, we are now stressing the aspects 

related to variable reduction, descriptive models and data classification, which are generally 

applied to the analysis of spectroscopic data. 

In several cases, we are facing the question to find out which are the distinctive traits (if they 

exist) among samples of experiments done in different conditions, or at different times.  
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Each experiment can be repeated many times keeping fixed the experimental conditions. We 
then define a group as a collection of two or more replica of the same experiments. We also 
define the term instance or observation to refer to a specific experiment within one group.  
On every instance, we perform one or more measurements, which we believe are able to 
capture the fundamental variation among our groups. In such a way, we can express every 
instance as a vector composed by all our measurements. The measurement can also be a 
single one, but intrinsically composed of many variables, for example, an IR spectra, where 
each wavenumber corresponds to a different variable within the same measurement. 
In some cases it is also possible that we do not know, a priori, the distinction among different 
groups, but we would like only to determine if it is possible to classify our experiments into 
distinct groups. 
A very broad range of techniques has been developed to address these issues; they span 
from the statistical analysis to the machine learning field. 
For the purpose of this book, we will focus on those methodologies which are particularly 
successful  in the field of spectroscopy, namely the principal component analysis (PCA) and 
the linear discriminant analysis (LDA). 
In the first part, we will explain the basis of PCA with the role of dimensionality reduction 
combined with LDA as a method for descriptive analysis and classification.  
In the second section, we will briefly describe some other fundamental methodologies 
frequently used in multivariate statistical analysis. 

5.1 Principal component analysis (PCA) 
We describe here the basis of PCA with the specific aim of reducing the number of variables 
of our problem.  
As already mentioned in the introduction, we can express every observation as a vector 
composed by all our measurements. For example, suppose we have n observations, each one 

defined by a vector iy composed of m variables, where i=1,2,...,n stands for the i-th 

observation. 

The matrix of the original data Y is then composed by n rows (the observations) and m 
columns (the variables). 
We do not need, for the PCA, any information about the group membership of the 
observations, since no grouping of the observations or partitioning of the variables into 
subsets is assumed. 
By using PCA, our intent is to develop a smaller number of artificial variables (called 
principal components) that will account for most of the variance in the observed variables. 
We make the assumption that the original variables are redundant, which means that some 
variables are correlated to each other.  

Considering the linear combination of the original data, AYZ = , we want to find the matrix 

A such that the new variables Z (the principal components) are uncorrelated. The 
correlation between variables can be measured using the covariance matrix. Given the 

sample mean of the m-dimensional vector iy , iy ∑ i
n

= yy
1

, an unbiased estimator of the 

sample covariance matrix is  

 ( )( )Tii
n

= yyyyS −∑ −
− 1

1
 (1) 
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For uncorrelated variables, the off-diagonal values of the sample covariance matrix are zero, 
that is, S is diagonal. The covariance of linearly transformed variables AY=Z is equal 
to T

z ASA=S , where S is the sample covariance of the original data Y (Rencher, 2002). 
Thus, we want to find A such that the covariance matrix of the transformed data, zS , is 
diagonal, which corresponds to find the eigenvectors of the covariance matrix and the 
corresponding eigenvalues. 
The eigenvalues, which coincide with the matrix zS , are the sample variance of the 
principal components Z  and are ranked according to their magnitude. The first principal 
component is then the linear combination with maximal variance (largest eigenvalue). The 
second principal component is the linear combination with the maximal variance along a 
direction orthogonal to the first component, and so on (Manly, 2004). 
The number of eigenvalues is equal to the number of original variables; however, since the 
eigenvalues are equal to the variance of the principal components and they are sorted in a 
decreasing order, the first k eigenvalues explain a large portion of the variance of the data. 
Hence, to describe our original dataset we can use only the first k uncorrelated principal 
components, instead of the complete set of redundant m variables. In matrix notation this 
can be written as YAZ kk =  where kA is the eigenvectors matrix truncated to the k-th 
eigenvector, and kZ  is the matrix of the first k principal components. 
To choose how many principal components should be retained in order to summarize our 
data, we can use several strategies (Eriksson et al., 2006; Rencher, 2002). For example, one 
way commonly used is to retain sufficient components to explain a given total percentage of 
the variance, e.g 90% (Eriksson et al., 2006; Manly, 2004). 
The principal components obtained in this way can be used as a non redundant input for 
another analysis. 

5.2 Linear discriminant analysis (LDA) 
LDA is mainly a supervised technique, that is, it requires the knowledge of the group 
membership of the observations. Contrary to PCA, we assume that our data are partitioned 
into k groups (Fearn, 2002; Rencher, 2002; Fukunaga, 1990). 
LDA can have mainly two objectives. First, it can be a descriptive analysis used to describe 

and explain the differences among the groups. As we will see later, mathematically LDA 

finds the optimal hyperplane that separates the groups among each other. Or, in other 

words, it finds the optimal linear combination of the original variables that maximizes the 

distance among the groups. The transformed observations are called discriminant functions. 

The use of a linear combination implies that each original variable is weighted by a 

coefficient, which can be used to study the relative importance of the variable in the 

separation among the groups. A second possible role of LDA is to classify observations into 

groups. An observation, whose group membership is not known, is evaluated by a 

discriminant function (already calibrated) and it is assigned to one of the groups at which 

most likely it belongs (Eriksson et al., 2006; Manly, 2004; Rencher, 2002). 

Firstly, we will explain the “several groups discriminant analysis” applied as a descriptive 
technique, then we will show how it can be used as a classifier.  

5.2.1 Several groups descriptive discriminant analysis 

The initial dataset is an ensemble of multivariate observations partitioned into k distinct 
groups (e.g. different experimental treatments, times or conditions). Each of the k groups 
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contains in  observations, where i runs from 1 to k and refers to the i-th group. The 
multivariate observation vectors can be written as ijy  where in,=jk,,=i 1,...1,...  (i is the i-th 
group and j is the j-th observation). The vector has size m, which corresponds to the number 
of variables.   
Our goal in LDA is to search for the linear combination that optimally separates our 
multivariate observation into k groups. 
This can be visualized in the two group case in Figure 3. The new axis (the discriminant 
function) allows a better separation of the two clouds of points representing the two 
dimensional observations of two groups. 
 

 

 

Fig. 3. LDA two group case separation. Rotation of the axis along the direction of the 
maximal separation between the two groups. After the rotation the two groups can be 
totally distinguished using only one axis. 

The linear transformation of ijy  is written as ij
T

ij =z yw  

since ijz  is a linear transformation of ijy , the mean of the group i of the transformed data 

can be written as 

  i
T

i =z yw   (2)  

where iy  is the mean of the original variables, obtained as iiji n= /∑yy  

We now introduce the between-groups sum of squares B (measure of dispersion  among the 

groups) and the within-group sum of squares E (measure of dispersion within one group). 

First, we define them for the unidimensional case relatively to the untransformed data.  

( ) ( )2yyyB −∑ i
i
in=  

and 

( ) ( )∑∑ −
i j

ijij=
2

yyyE  

where ∑∑ ij
ink

= yy
11

 is the total average of the data. 
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Analogously, in the multivariate case (where each observation is constituted by m variables) 
we have the two matrices 

 ( ) ( )( )Tiiin= yyyyyB −−∑   (3) 

and 

 ( ) ( )( )Tiijiij= yyyyyE −−∑∑  (4) 

Finding the optimal linear combination that separates our multivariate observations into k 

groups means to find the vector w  which maximizes the rate between the between-groups 
sum of squares over the within-groups sum of squares. Using the equation for the mean of 
the transformed data (eq. 2) into the equations 3 and 4 we can write 

  
( )
( )

( )
( )zE

zB

wyEw

wyBw
==

T

T

λ   (5) 

We want to find  w such that lambda is maximized. 

Equation 5 can be rewritten in the form ( ) 0EwBww =λT − ; then we search for all the non 

trivial ( 0w =T  is excluded) solutions of this equation and we choose the one which gives 

the maximum value of lambda. This means to solve the eigenvalue problem  0EwBw =λ−  

which can be written in the usual form  

 ( ) 0wIA =λ−   (6)  

where BEA 1−=  

The solutions of equation 6 are the eigenvalues mλ,λ ...2,1,λ associated to the eigenvectors 

m, www ,...,2,1 . The solutions are ranked for the eigenvalues mλ>>λ> ...21λ . Hence, the 

first eigenvalue 1λ  corresponds to the maximum value of eq. 5. 
The discriminant functions are then obtained considering only the first s positive 
eigenvalues and multiplying the original data by the eigenvectors  

YwzYwzYwz T
ss

TT =,,=,= ...2211  

Discriminant functions are uncorrelated but not orthogonal since the matrix BEA 1−=  is not 
symmetric. 
In many cases the first two or three discriminant functions account for most of 

sλ++λ+ ...21λ . This allows to represent the multivariate observations as 2 or 3 dimensional 

points which can be plotted on a scatter plot. These plots are particularly helpful to visualize 
the separation of our observations into the different groups. Moreover, we can deduce, 
looking at the scatter plot, the meaning of a given discriminant function, i.e. we can 
associate the discriminant function to a given property of the analyzed system.  

The weighting vectors s, www ,...,2,1 are called unstandardized discriminant function coefficients 

and give the weight associated to each variable on every discriminant function.  
If the variables are on very different scales and with different variance, to assess the 
importance of each variable in the group separation the standardized discriminant functions 
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can be used. The standardization is done by multiplying the unstandardized coefficients by 
the square root of the diagonal element of the within-group covariance matrix.  
Another way to assess the variable importance is to look at the correlation between each 
variable and the discriminant function. These correlations are called structure or loading 

coefficients. However, it has been shown (Rencher, 2002) that these parameters are 
intrinsically univariate, and they only show how a single variable contributes to the 
separation among groups, without taking into account the presence of the other variables. 

5.2.2 LDA as classification method 

The discriminant analysis can be applied to a given ensemble of data to produce a set of 
discriminant functions as described in the previous section. Afterwards, this model can be 
used to classify new observations into the most probable groups. From this point of view the 
linear discriminant analysis becomes a predictive tool, since it is able to classify observations 
whose group membership is unknown (Eriksson et al., 2006; Rencher, 2002). In the same 
way we can test the discrimination ability of our LDA model by a procedure called “re-

substitution”  (Rencher, 2002). This method consists of producing an LDA model using our 
dataset (i.e. finding the optimal w). Then, each observation vector is re-submitted to the 
classification function (zij = wTyij) and assigned to a group. Since we know the group 
membership of the submitted vector, we can count the number of observations correctly 
classified and the number of observations misclassified.  
Then, we can estimate the apparent classification rate as the number of correctly classified 
observations over the total number of observations. This is summarized in a classification 
table or confusion matrix. As an example, given N observations, n1 belongs to the group 1 
and 2n belongs to the group 2. 11C  is the total number of observations correctly classified in 
group 1 and 12C  is the total number of data misclassified in group 2. Similarly, 22C is the 
total number of observations correctly classified in group 2 and 21C  is the number of 
misclassified in group 1. 
The confusion matrix becomes then: 
 

Actual group Predicted group 

 1 2 

1 C11 C12 

2 C21 C22 
 

And the accuracy (the apparent classification rate (acr)) is computed as 

21

2211

+nn

C+C
=acr   

In general, in evaluating the accuracy of a model, we have then to distinguish between two 

types of accuracy: the fitting accuracy and the prediction accuracy (Eriksson et al., 2006; 

Bishop, 1995). 

The fitting accuracy is the ability to reproduce the data, namely, how the model is able to 

reproduce the data that were used to build the model. This corresponds to the apparent 

classification rate, and it is obtained using the re-substitution procedure. The data used to 

build the model are called training set. 
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The prediction accuracy is the ability to predict the value or the class of an observation, 
which was not included in the construction of the model. This kind of accuracy is often 
referred as the ability of the model to generalize. The data used to measure this accuracy are 
called test set. The prediction accuracy can be called actual classification rate. This is mainly 
used in settings where the goal is prediction, and one wants to estimate how accurately a 
predictive model will perform in practice. 
To have an estimation of the actual classification rate, two main procedures can be applied: 
the hold-out and cross-validation (Eriksson et al., 2006).  
In the hold-out, the dataset is divided into two partitions, one partition is used to develop 
the model (e.g the discriminant functions) and the second partition is given as input to the 
model. The first partition is usually called training set or calibration set, while the second 
partition is the validation set (Bishop, 1995).  
When the number of observations is small, the cross-validation is usually preferred over the 
hold-out. The basic idea of the cross-validation procedure is to divide the entire dataset into L 
disjoint sets. L-1 sets are used to develop the model (i.e. this is the calibration set on which 
the discriminant functions are computed) and the omitted portion is used to test the model 
(i.e. the validation set given as input to the model). This is repeated on for all the L sets and 
an average result is obtained. 

5.3 Principal component - linear discriminant analysis (PCA-LDA) 
A powerful analysis tool is the combination of the principal component analysis with the 
linear discriminant analysis (Fearn, 2002). This is particularly helpful when the number of 
variables is large. In particular, if the number of observations (N) is less than the number of 
variables (m) - specifically N-1<m - the covariance matrix is singular and can not be inverted. 
We then need to find a way to reduce the number of variables, for example by using the 
PCA (Rencher, 2006; Jonathan et al., 1996).  
This procedure has been widely used for several problems in different fields (Ami et al., 
2008; Rezzi et al., 2007;  Skrobot et al., 2007; Walsh et al., 2007; Pereira et al., 2006; Héberger 
et al., 2003; Fearn, 2002). 

In particular, a low rate of (N-1)/m happened normally in spectroscopy, where the number of 

observations (N) is usually 2
10< and the number of variables (m) is typically within 2

10 to 3
10 . 

Let's take into account the same situation described for many group linear discriminant 
analysis. The original dataset is an ensemble of multivariate observations which is 
partitioned into k distinct groups. Again, we want to find the discriminant functions which 
optimally separate our multivariate observation into the k groups. Then, the discriminant 
functions can be used to identify the most important variables in terms of ability of 
distinguishing among the groups. 
Thus, first the original dataset is submitted to PCA to reduce the number of variables, 
subsequently the reduced dataset is analyzed using LDA.  

5.4 Other multivariate techniques 
In the following section, we will briefly illustrate other multivariate statistical approaches, 
relevant for the spectroscopic studies reported in this chapter. 

5.4.1 Multivariate Linear Regression (MLR) 

MLR can be used to model a linear relationship among a numerical variable z and one or 
more independent variables Y (Manly, 2004). Y is the usual matrix already introduced, 

www.intechopen.com



 Methodological Advances in the Culture, Manipulation and  
Utilization of Embryonic Stem Cells for Basic and Practical Applications 

 

206 

composed by n rows corresponding to observations and m columns corresponding to 
independent variables. The MLR is based, as many other statistical techniques, on the 
generalized linear model = +z Yβ ε , where β  is a matrix containing the parameters to be 
estimated, ε is a matrix which models the errors or noise. 

The coefficients beta are usually estimated using the ordinary least square, which consists of 

minimizing the sum of the squared differences of the n observed y's from their modeled 

values. Mathematically, the optimal values of beta are obtained by T 1 T( )= −β Y Y Y z . To 

apply the least square method we must have n - 1 > m, otherwise the matrix TY Y is singular 

and can not be inverted. Moreover, none of the independent variables must be a linear 

combination of any other (muticollinearity) (Eriksson et al., 2006; Manly, 2004).  

5.4.2 Partial Least Square (PLS) 
The goal of PLS regression is to predict Z from Y and to describe their common structure. 

When the number of variables is large compared to the number of observations, Y is likely 

to be singular and the regression approach is no longer feasible (i.e., because of 

multicollinearity) (Eriksson et al., 2006).  Several approaches have been developed to cope 

with this problem. One approach is to eliminate some predictors (e.g., using  

stepwise methods); another one, called principal component regression, is to perform a PCA of 

the Y matrix and then use the principal components (i.e., eigenvectors) of Y as regressors on 

Z.  

The problem is then of choosing an optimum subset of predictors that gives the best 

regression. One possibility is to choose the first k principal components; however, these 

components are obtained to best explain Y rather than Z, and so, nothing guarantees that 

they are also relevant for Z. In PLS we seek the components from Y that are relevant also for 

Z. In particular, PLS regression performs a simultaneous decomposition of Y and Z into 

principal components with the constraint that the components explain as much as possible 

the covariance between Y and Z (Rencher, 2002). 

5.4.3 Factor Analysis (FA) 
Factor analysis is a statistical method used to discover if the observed variables can be 

explained in terms of a much smaller number of variables called factors. It is closely related 

to PCA in that they both try to reduce the redundancy among the variables by using a 

smaller number of factors (or principal components in PCA); however it has some important 

differences: i) in PCA the components are defined as linear combinations of the original 

variables while in FA the original variables are linear functions of the factors; ii)  in PCA we 

seek to explain the total variance, while in FA we attempt to reproduce the covariance; iii) in 

PCA essentially no assumptions are required while in FA some fundamental assumptions 

are defined; iv) the principal components are unique, whereas the factors can be rotated. By 

rotating your factors you attempt to find a factor solution that is equal to that obtained in 

the initial extraction but which has the simplest interpretation. This last point is one of the 

main advantage of the FA over PCA, if our goal is to find and describe the underlying 

factors of the data. On the other hand, if we are simply searching for a smaller number of 

variables as input for another analysis, the PCA is preferred (Manly, 2004; Rencher, 2002; 

Bryant & Yarnold, 1994). 
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5.4.4 Cluster Analysis (CA) 
Cluster analysis is a procedure used to partition the data into groups so that the most similar 
observations are assigned in the same cluster and clusters are dissimilar to each other 
(Manly, 2004). 
CA is an unsupervised technique, that is, the group membership of the observations (and 
often the number of groups) is not known in advance. 
Since we are trying to group similar observations, a measure of similarity or dissimilarity is 
required. The most common distance functions are: i) the Euclidean distance; ii) the 
Manatthan distance;  iii) the Mahalanobis distance; iv) the maximum norm. 
Several types of clustering algorithms have been developed. Based on the procedure they 

use, they can be divided into three main groups: hierarchical, partitional and density-based 

clustering. 

Hierarchical clustering algorithms are sequential. They can be agglomerative or divisive. 

The agglomerative clustering starts with all observations placed in different clusters and in 

each step an observation or a cluster of observations are merged into another cluster. The 

divisive method starts with one single cluster containing all observations and then it divides 

the cluster into two sub-clusters at each step. 

The partitional algorithm assigns the observations to a set of clusters without using 

hierarchical approaches. One of the most used non-hierarchical approach is the k-means 

clustering. 

The density-based clustering seeks to search for region of high density without any 
assumption about the shape of the cluster. 

5.4.5 Artificial Neural networks (ANN) 
The artificial neural networks are mathematical models that were developed in analogy to a 

network of biological neurons (Krogh, 2008). In the brain, the highly interconnected network 

of neurons communicates sending electric pulses through the neural wiring of axons, 

synapses and dendrites. Mathematically, a neuron can be modeled as a switch that receives 

a series of values as input and produces an output consisting of a weighted sum of the input 

vectors eventually filtered by a function f. Many neurons can be combined to create more 

complex networks. Depending on the type of neurons and how the neurons are connected 

to each other, different kinds of neural networks can be created. The most common type of 

neural network is the feed-forward neural network, in which neurons are grouped into 

layers, each neuron of a layer is connected to all the neurons of the next layer and the 

information flows from the input to the output without loops. For a comprehensive 

description of neural networks and their applications see Haykin (1999) and Bishop (1995). 

6. Applications of vibrational spectroscopies to the study of stem cell 
differentiation 

Stem cells (SCs) are self-renewing cells characterized by the capacity to differentiate into a 

wide range of specialized cells. Two main types of SCs exist: embryonic and adult. 

Embryonic stem cells (ESCs) are derived from cells of an embryo - the inner cell mass of 

blastocyst - and are considered the most versatile type of SCs because they have the unique 

ability to retain the developmental capacity of generating all functional adult cell types 

(Thomson et al., 1998; Evans & Kaufman, 1981). 
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Adult SCs are found among differentiated cells of a tissue or organ that can renew itself and 
can differentiate into specialized cell types of the same tissue or organ where they reside 
(the stem cell niche). Indeed, their major role is to maintain and repair the tissue in which 
they are found. Adult SCs have been identified in many organs and tissues, including bone 
marrow, brain, liver, skeletal muscle, and skin (Verfaillie, 2002; Peterson & Davidson, 2000).  
As discussed in the introduction, Raman and FTIR microspectroscopies are successfully 

applied in stem cell research (Chan & Lieu, 2009; Heraud & Tobin, 2009). In the following 

pages, we will first report some studies that illustrate the potential of these vibrational tools 

to characterize embryonic stem cells. We will then illustrate a few research works on adult 

stem cells, that we believe could be relevant for a better understanding of stem cell biology.  

6.1 Embryonic stem cells 
FTIR and Raman microspectroscopies allow to detect rapidly and in a non invasive way 
biochemical changes during ES cell differentiation, providing unique markers for the 
identification in-situ of SCs differentiation status. 
One of the earliest studies aimed at the spectroscopic characterization of embryonic stem 

(ES) cells is that of Notingher and colleagues, who applied Raman microspectroscopy to 

monitor the murine ES cell differentiation process, spontaneous and via embryoid body (EB) 

formation (Notingher et al., 2004 a and b). The authors showed that undifferentiated, 

spontaneously differentiated, and EB differentiated murine ES cells exhibit unique Raman 

markers that, in association with PCA, could be used to identify the differentiation state of 

the ES cells. In particular, it was found that the most significant differences could be 

attributed to cell RNA content that in undifferentiated cells was higher than in differentiated 

ones, a result that suggests to the authors that differentiating ES cells use the pool of 

dormant mRNA to produce new specific proteins of the new phenotype. Indeed, as the ES 

cells start to differentiate toward various phenotypes, the translation of mRNA increases, as 

indicated by the decrease in the ratio between the areas of the 813 cm-1 RNA peak and the 

phenylalanine peak at 1005 cm-1, to reach values similar to those found in fully 

differentiated cells, after 16-20 days of differentiation. These results indicated that RNA and 

protein peaks in the Raman spectra of murine ES cells can be used as a differentiation 

marker, with important applications for the development of engineered tissues. 

Raman microspectroscopy, coupled with the multivariate PCA-LDA analysis, was also 
applied to explore the possibility to discriminate between undifferentiated human ES cells and 
their cardiac derivatives (Chan et al, 2009). Indeed, unlike other cell lineages, cardiomyocytes 
lack specific surface markers required for their physical identification and separation, making 
desirable the development of new analytical tools. In this work, the authors were able to detect 
spectroscopic signatures of ES cells and of their cardiac derivatives, mainly involving RNA 
and protein content. In particular, the authors found that undifferentiated cells were 
characterized by a more elevated mRNA level than differentiated cells, resulting from their 
different active cell cycles, as suggested by the different intensity of the peak at 811 cm-1 
(phosphodiester bond) observed in the two cases. Interestingly, their results were in 
agreement with those obtained by Notingher and colleagues on murine stem cells (Notingher 
et al., 2004 a and b) - as discussed above - and by Schulze and colleagues (2010) in a Raman 
study of the spontaneous differentiation process of human ES cells. Noteworthy, they also 
investigated the effect of laser exposure on cells, in order to verify the non-invasiveness of the 
spectroscopic method. Indeed, they demonstrated that the laser irradiation does not 
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compromise cell pluripotency, as it didn’t affect the expression of the human ES cells 
transcription factor OCT4, required to sustain ES cell self renewal. Moreover, no effects on cell 
morphology and cell proliferation were detected.  
Of great interest is the study of Heraud and colleagues (2010) that employed FTIR 
microspectroscopy with focal plane array detection to characterize human ES cell 
differentiation directed toward specific cell lineages, namely mesendoderm and ectoderm. 
Well defined spectral differences – confirmed also by partial least squares discriminant 
analysis (PLS-DA) and artificial neural network analysis (ANN) - were detected among the 
three different cell populations, mainly involving the lipid and the glycogen bands 
(respectively at 2920 cm-1 and at 1155 cm-1), whose intensities were found to be higher in the 
undifferentiated than in the differentiated cell populations. The results demonstrated that 
FTIR signatures can be used to successfully discriminate between human stem cells and 
their differentiated progenies, even at early stages of differentiation.  
Another application of FTIR microspectroscopy, coupled with PCA and unsupervised 

hierarchical cluster analysis (UHCA), was aimed at identifying specific marker bands of 

murine ES cell differentiation toward neural cell types (Tanthanuc et al., 2010). In particular, 

by applying focal plane array detection and synchrotron based FTIR microspectroscopy, the 

authors were able to find significant differences between undifferentiated and differentiated 

cells, mainly in spectral regions due to lipid and protein absorptions. In particular, they 

observed a dramatic increase of the acyl chain CH2 symmetric and asymmetric stretching 

modes - around 2850 cm-1 and 2920 cm-1 respectively - during the differentiation process, 

increment possibly related to changes in membrane lipids responsible for neural cell 

differentiation and signal transduction. This result has been also confirmed monitoring the 

lipid carbonyl band around 1740 cm-1, whose peak position and intensity were observed to 

change during differentiation. Furthermore, important changes in protein secondary 

structures were detected and in particular the differentiated cells appeared to be characterized 

by a higher content of alpha-helix proteins than undifferentiated cells. The authors explained 

this result as due to the increased expression of alpha-helix rich proteins of the cytoskeleton, as 

tubulin and actin, important for the establishment of neural structure and function.  

We applied FTIR microspectroscopy – supported by PCA-LDA analysis - to characterize in 

situ the early stages of murine ES cell spontaneous differentiation (Ami et al., 2010; Ami et 

al., 2008). We found that significant changes in nucleic acid, protein and lipid content 

occurred during the differentiation process.  

In Figure 4 we reported the second derivative spectra of ES cells at different maturation 
stages (from undifferentiated to 14 days of differentiation). 
As illustrated in the Figure, we first found that undifferentiated ES cells were characterized 
by a RNA content higher than differentiating cells, in agreement with what reported by 
Notingher and colleagues with Raman microspectroscopy (Notingher et al., 2004 a and b), as 
previously discussed. Moreover, we monitored the formation of the DNA/RNA hybrid 
through the simultaneous presence of the three components respectively 
around 954 cm-1 (CC stretching of DNA backbone), at 914 cm-1 (ribose ring) and at 899 cm-1 
(deoxyribose), after 4-7 days of differentiation. These results, indicating that the transcription 
activity for the new phenotype was taking place in that temporal range, were further 
supported by changes in the secondary structures of the whole protein content, likely due to 
the emergence of the new phenotype. Indeed, again starting from 4-7 days of differentiation, 
we observed an increase of alpha-helix and beta-turn components, respectively at 1658 cm-1  
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Fig. 4. Murine embryonic stem cell differentiation monitored by FTIR microspectroscopy. 
The second derivative of FTIR spectra of murine ES cells, undifferentiated (uES) and 
spontaneously differentiated (dES), are reported in three different spectral regions: i) 3000-
2800 cm-1 mainly due to lipid acyl chains; ii) 1750-1600 cm-1 where protein amide I band 
occurs; iii) 1200-800 cm-1, mainly due to glycogen and nucleic acid absorptions (see text). 
Spectra have been normalized at the tyrosine band around 1515 cm-1 and reported after 
magnification in each region, for the presentation of the data. 

and 1682 cm-1, that suggested that the expression of proteins typical of cardiomyocyte 
precursors was taking place. Indeed, it is known that these cells are rich in alpha-myosin, a 
protein belonging to alpha-helix fold and that they are characterized by the formation of gap 
junctions (Oyamada et al., 1996), whose main protein components are connexins, containing 
again alpha-helix structures and an important percentage of beta-turns. To support our 
hypothesis – confirmed by cytochemical analysis - after the “switch” of the new phenotype we 
also observed the emergence of IR bands due to glycogen at 1155 cm-1, 1081 cm-1 and between 
1035 and 1020 cm-1, typical of cardiomyocytes (Pasumarthi  & Field 2002). 

Also dramatic changes in lipid absorption were detected during ES cell differentiation. In 
particular, an increase of the CH2 vibrational modes at 2923 cm-1 and at 2852 cm-1 was 
monitored, starting as soon as the differentiation process was taking place, and up to the 
end of our investigation (9-14 days). These results indicated that significant changes in lipid 
composition occurred, suggesting that the new phenotype was characterized by new 
membrane properties. 
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The spectroscopic results were then validated by PCA-LDA analysis that allowed to obtain 
an excellent segregation of the data into five separated clusters, each corresponding to a 
specific differentiation stage, as reported in Figure 5. Moreover, this analysis enabled us to 
identify in the spectrum the wavenumbers that contributed to the largest inter-spectral 
variance during the differentiation process, and - in agreement with the direct inspection of 
the spectral data – they were found to be due to protein and nucleic acid components. 
 

 

Fig. 5. PCA-LDA analysis of murine ES cell differentiation. The clustering of FTIR 
absorption spectra – from 1800 to 800 cm-1 – as 3D score plot is shown. Data for 
undifferentiated cells (red) and at 4 (blue), 7 (green), 9 (light blue), and 14 (yellow) days of 
differentiation have been analysed. The ellipsoid semi-axes correspond to two standard 
deviations of the data. 

6.2 Adult stem cells  
An interesting investigation performed by synchrotron based FTIR microspectroscopy - 
coupled with principal component analysis (PCA) - enabled to discriminate in bovine 
cornea among SCs, transit-amplifying (TA) and terminally differentiated (TD) cells (German 
et al., 2006). Measuring the absorption spectra of individual cells in cryosections, the authors 
found significant spectral differences among the three different cell types, with only a slight 
overlap between  SC and TA cells. The most important differences mainly involved changes 
in spectral components due to nucleic acid absorptions, like the RNA band at 1120 cm-1 and 
the phosphate band around 1080 cm-1. Moreover, the authors  found that TD cells formed a 
well separated and homogeneous population with spectral features closer to TA cells than to 
SCs. As expected, the  spectral response  of the terminal differentiation state is characterized 
by important changes in nucleic acid and protein content, being associated with a loss of 
proliferative ability and the production of proteins associated with the new phenotype.  
A FTIR characterization of human corneal epithelium performed by the same research 
group (Bentley et al., 2007) confirmed the previous results obtained on bovine cornea. Also 
in this case, the authors were able to discriminate among SC, TA and TD cells, finding again 
important changes mainly in nucleic acid and protein content. In particular, the main 
spectral differences between TA and TD cells were found to involve the protein secondary 
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structures and the RNA expression, as discussed above. Noteworthy, in the two works, the 
authors detected small subpopulations of cells within the corneal epithelium SC niche with 
TA cell like characteristics, strongly suggesting that the TA cells are newly generated prior 
to their migration. 
 Furthermore, the entire tissue architecture was investigated using IR spectral imaging that 
enabled to localize and better characterize SCs (Nakamura et al., 2010). By this approach 
further details on the differences among SC, TA and TD cells were obtained, confirming that 
nucleic acid response - between 1425 and 900 cm-1 - accounts for the most significant 
differences among the three types of cell populations. Important changes in protein content, 
between 1800 and 1480 cm-1, have been also detected in the examined cell types, as expected 
considering their different functions. Interestingly, the most discriminating spectral features 
of SCs were associated to DNA and RNA conformations, as indicated by the bands at 1225 
cm-1 and at 1080 cm-1 respectively, whereas IR bands due to proteins and lipids, respectively 
at 1558 cm-1 and at 1728 cm-1, allowed to discriminate between TA and TD cells.  
Of particular relevance is also the work of Walsh and colleagues, where synchrotron FTIR 
microspectroscopy - supported by PCA-LDA analysis – was applied to characterize the 
different cell types, derived from stem cells, along the length of gastrointestinal tract, one of 
the most regenerative human tissue (Walsh et al., 2009). Through IR image maps with the 
related IR spectra collected from tissue sections at the single cell level, the authors detected 
spectral changes in the differentiation states along the gastrointestinal tract - with common 
features in related cell types – mainly involving DNA conformational changes, with one of 
the most important spectral marker at 1080 cm-1, due to phosphate vibrational mode. These 
results were further confirmed by PCA-LDA multivariate analysis, whose crucial role has 
been  critically highlighted in Walsh’ work. Indeed, this analysis allowed to identify as the 
most contributory wavenumbers those due to the phosphate mode absorptions, partly 
associated to protein phosphorylation. Overall, these results suggested to the authors that 
DNA conformational changes could be considered a significant stemness markers in 
gastrointestinal crypts.  

7. Conclusive remarks 

The examples reported in this chapter highlight the great potential of spectroscopic 
approaches providing new insights in stem cell biology. In particular, FTIR 
microspectroscopy is a powerful tool that enables to obtain - in a non invasive way - a 
chemical fingerprint of the cell types, giving information on the overall changes in the 
macromolecular content occurring during a biological event. In this way, this approach 
allows to assess in-situ the differentiation status of the cells through the identification of 
specific marker bands. Moreover, the time evolution of these bands enabled to follow the 
progress of the process by the simultaneous monitoring of the most important cellular 
components, as nucleic acids and proteins.  
We should underline that the successful application of the spectroscopic approach requires 
the use of an appropriate multivariate analysis to validate the spectral data and to identify 
the marker bands of the process under investigation. The integration with the established 
biochemical methods is, of course, an important requisite to understand the biological 
significance of the spectroscopic results.  
As a final comment, we would also like to point out that FTIR and Raman spectroscopic 
approaches, indeed,  might offer preliminary tools – rapid and inexpensive - to obtain useful 
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information on complex systems, in order to design conclusive biological experiments. As 
discussed above, these techniques allow to characterize the temporal correlation of 
biological events that occur simultaneously in a complex system, a result not easily tackled 
by the standard biochemical methods. 
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