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1. Introduction 

A stem cell is a specific kind of cell that has the unique capacity to renew itself and to give 
rise to specialized cell type.  
In terms of potentially, stem cells can be classified in three types: 
• Totipotent:  is the ability to form all cell types, including the extra-embryonic tissues. In 

mammals, the fertilized egg, zygote and the first 2, 4, 8, 16 blastomeres from the early, 
are examples of totipotent cells. 

• Pluripotency: is the ability to differentiate into several cell types derived from any of the 
three germ layers (ectoderm, mesoderm, endoderm), but they are unable to produce 
extra-embryonic tissues. Cells from the inner cell mass of blastocyst are pluripotent. 

• Multipotent: cells can form a small number of tissues that are restricted to a particular 
germ layer origin: e.g. blood cells or bone cells. 

In according to their source, stem cells are categorized in embryonic or adult (Fig. 1): 
• Embryonic stem cells (ES cells) are derived from the inner cell mass of the blastocyst (an 

early stage embryo) and have a high proliferative capabilities and differ from other 
stem cells because they have the ability to generate derivatives of all three germ layers. 
Embryonic stem cells have been shown to contribute to all cell lineages, including the 
germ line, following microinjection studies in murine embryos which give rise to 
chimeras (Bradley et al., 1984; Nagy et al., 1990). In vitro, murine ES cells can be 
propagated indefinitely in an undifferentiated state, under specific culture conditions 
they can differentiated into specific cell types. 

• Adult stem cells are undifferentiated cells found among differentiated cells of a specific 
tissue, including bone marrow (de Haan, 2002), skin (Watt, 2001), intestinal epithelium 
(Potten, 1998), liver (Theise et al., 1999), retina (Tropepe et al., 2000), central nervous 
system (Okano, 2002), pancreas (Ramiya et al., 2000) and skeletal muscle (Seale et al., 
2001).  They typically can differentiate into a relatively limited number of cell types. 

There is no doubt that stem cells have the potential to treat many human afflictions, 
including cancer, diabetes, neurodegeneration, as well as for studying basic developmental 
biology, and intensive screening of drug and toxic (Watt and Driskell, 2010).  
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Fig. 1. Origin of embryonic and adult stem cells 

2. Derivation of mouse embryonic stem cells 

Embryonic stem cells are derived from the inner cell mass (ICM) of the mammalian 
blastocyst. The first mammalian ES cell lines were derived from mouse blastocyst in 1981 
from two independent groups (Evans and Kaufman, 1981; Martin, 1981).  
One distinct property of ES cells is that they remain diploid even after being cultured for 
many weeks. This is in contrast to other tissue culture cell lines that often do not remain 
diploid but spontaneously gain or lose chromosomes at high rate. A second unique property 
of ES cells is that they remain pluripotent and maintain the ability, like ICM cells, to form 
chimeras. These two properties, maintaining normal karyotype and extensive contribution 
in chimeras, are both necessary for ES cells to form functional germ cells in chimeras (Sedivy 
and Joyner, 1992) and, moreover, have made ES cells a unique tool for gene targeting and 
generation of genetically modified mice.  
A surprising feature of mouse ES cell lines is that the majority of cell lines genetically tested 
are of male origin (40XY). In female (XX) ES cells, both X chromosome are active, that may 
result in the unsuitable propagation of ES cells (Rastan and Robertson, 1985). In either case, 
the XY genotype confers appreciable advantages for germ line transmission. 
ES cells clonally derived from a single cell could differentiate into a variety of cell types in 
vitro and form teratocarcinomas when injected into mice (Martin, 1981). Most important, 
cells karyotypically normal contribute at a high frequency to a variety of tissue in chimeras, 
including germ cells, thus providing a practical way to introduce modifications to the 
mouse germline (Bradley et al., 1984). 
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After the first derivation of mouse ES cell lines from blastocysts, several standard protocols 
were developed (Robertson, 1987; Abbondanzo et al., 1993; Hogan et al., 1994; Nagy et al., 
2003). The efficiency of mouse ES cell derivation is strongly influenced by genetic 
background. For example, ES cells can be easily derived from the inbred 129/ter-Sv strain 
but less efficiently from the C57BL/6 strain (Ledermann and Burki, 1991). However, mouse 
ES cells can be derived from some non permissive strains using modified protocols (McWhir 
et al., 1996; Bryja et al., 2006a; Bryja et al., 2006b). Mouse ES cells have also been derived 
from cleavage stage embryos and even from individual blastomeres of two- to eight-cell 
stage embryos (Chung et al., 2006; Wakayama et al., 2007). 
ES cells or ES cell-likes have been produced in other animal models, including: medakafish 
from midblastulae stage (Hong et al., 1998), zebrafish from midblastulae stage (Sun et al., 
1995), chickens from stage X blastoderm (Pain et al., 1996), hamsters (Doetschman et al., 
1988), mink (Sukoyan et al., 1992), rabbit (Schoonjans et al., 1996), cattle (Cibelli et al., 1998; 
Strelchenko et al., 2004), sheep (Wells et al., 1997), and pigs (Li et al., 2003), however, only 
mouse and chicken ES cells are capable of colonizing the germ line. 

3. Maintenance of mouse embryonic stem cells 

ES cells can be stably propagated indefinitely and maintain a normal karyotype without 
undergoing cell senescence in vitro when cultured in the presence of leukemia inhibitory factor 
(LIF) and, depending on ES cell lines, with or without a layer of mitotically inactivated 
mouse embryonic fibroblasts (MEFs). LIF, a member of the IL-6 family, is known to strongly 
promote self-renewal in ES cells (Smith et al., 1992). LIF binds to LIF receptor (LIFR) to 
dimerize with interleukin 6 signal transducer (gp130), resulting in the phosphorylation of 
signal transducer and activator  of transcription 3 (Stat3) via Janus kinase (Jak) activation 
(Burdon et al., 2002). Phosphorylated Stat3 dimerizes and translocates to the nucleus to 
activate a variety of downstream genes. Repression of Stat3 results in differentiation (Niwa et 
al., 2009), whereas artificial activation of  Stat3 is sufficient to maintain pluripotency without 
LIF in the media (Matsuda et al., 1999). 
 

 

Fig. 2. Fluorescent immunostaining of undifferentiated mouse ES cells. All the 
undifferentiate ES cells expressed pluripotency specific marker Oct4. Immunostaining with 
DAPI (nuclear marker), Oct4 antibody, merge DAPI/Oct4 

In combination with the LIF-Stat3 pathway, the pluripotency of ES cells is modulated by 
transforming growth factor β (TGFβ) superfamily members. These include Bmp and 
Activin, which generally play diverse roles in cellular homeostasis. In the ES cells, Bmp4 
activates the MAD homolog 1 (Smad1). This upregulates the expression inhibitor of DNA-
binding genes (Id), which suppress differentiation in combination with the LIF signal. 
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Activin/nodal signaling contributes to promote the growth of ES cells (Ying et al., 2003; 
Ogawa et al., 2007; Wu and Hill, 2009). Wnt signalling also contributes to the maintenance of 
pluripotency. In the canonical Wnt pathway, the Wnt receptor Frizzled transduces the signal 
to glycogen synthase kinase 3β (GSK3β) and adenomatosis polyposis coli (Apc). This 
enables catenin beta 1 (Ctnnb1) to traslocate into the nucleus to form the Ctnnb1/Tcf 
complex, which in turn activates the downstream genes (Willert and Jones, 2006). In the 
presence of Wnt signalling, transcription factor (Tcf3) activates the downstream genes that 
promote pluripotency maintenance by collaborating with the pivotal transcription factors 
Otc3/4 (Fig. 2), Sox2 and Nanog (Masui, 2010).    

4. Derivation of human embryonic stem cells 

There was a considerable delay between the derivation of mouse ES cells (1981) and the 
derivation of human ES cells in 1998 (Thomson et al., 1998). This delay was primarily due to 
species-specific ES cell differences and suboptimal human embryo culture media. In fact the 
first study to describe the isolation of human ICM cells was published by Bongso et al. 
(Bongso et al., 1994), but subsequent culture in media supplemented with LIF and serum 
resulted only in differentiation, not in the derivation of stable pluripotent cell lines. Human 
ES (hES) cells can be characterized by their immortality, expression of telomerase 
expression, pluripotentiality, ability to form teratomas, and maintenance of a stable 
karyotype and, even after prolonged undifferentiated proliferation, maintain the 
development potential to contribute to advanced derivatives of all three germ layers, even 
after clonal derivation (Amit et al., 2000). For obvious ethical reasons, experiments involving 
blastocyst injections and ectopic grafting in adult hosts cannot be performed in the human.  
Human ES cells have been derived from morula, later blastocyst embryos (Stojkovic et al., 
2004; Strelchenko et al., 2004), single blastomeres (Klimanskaya et al., 2006), and 
parthenogenetic embryos (Lin et al., 2007). 
Previous reports suggest that the success rate in deriving hES cell lines is highly dependent 
on the quality of recovered blastocysts, isolation condition used and technical expertise 
(Pera et al., 2000; Mitalipova et al., 2003).  
ES cell lines are usually derived by immunosurgery. In this process the trophoblast layer of 
the blastocyst is selectively removed, and the intact inner cell mass is further cultured on 
MEFs (Amit and Itskovitz-Eldor, 2002). Although the cloning efficiency of the hES cells was 
relatively poor, a several fold increase was observed when serum-free medium 
supplemented with basic fibroblast growth factor (βFGF) was used (Amit et al., 2000). 

5. Maintenance of human embryonic stem cells 

Mechanical and enzymatic transfer methods are used to maintain hES cell lines (Oh et al., 
2005). The mechanical transfer method is laborious and time-consuming, although remains 
an efficient technique for the transfer of undifferentiated hES cells and results in similar 
clump sizes. The enzymatic transfer method is used when the bulk production of cells are 
required for various experiments and results in the more rapid growth and larger 
production of hES cells. 
However, the cell clumps vary in size, and there is a higher probability that both differentiated 
and undifferentiated cell will be transferred. In the case of passaging more differentiated 
colonies, a combination of both methods allows mass production of hES cells by excluding 
differentiated colonies from passage by manual selection prior to enzyme treatment.  
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Another limiting factor relating to cell culture systems is that hES cells still require the 
presence of feeder layer. In fact, feeder-free system for hES cell culture is required if hES cell 
cultures are to become clinical-grade, since the use of animal feeders and/or ingredients for 
growth of hES cells limits the large-scale culture and medical applicability of hES cells. At 
present, feeder-free systems are not optimal for the derivation and growth of clinical-grade 
hES cell lines since the presence of animal ingredient carriers the potential risk for the cross-
transfer of different infectious agents. In fact, it has been reported that hES cells embryoid 
body can incorporate the N-glycolylneuraminic acid (Neu5Gc) from MEFs or from 
conditioned medium, which resulted in an immune response (Martin et al., 2005).  
The first attempt to produced feeder-free cultures of hES cells was reported by Xu et al. (Xu 
et al., 2001). They propaged hES cells using Matrigel, an animal based extracellular matrix 
(ECM) preparation, or laminin substrates in medium conditioned by MEFs. This system 
enabled the long term propagation of the stem cell phenotype, with strong suppression of 
spontaneous differentiation even at high passages (Carpenter et al., 2001). 
In 2005, Prowse et al. identified 102 proteins from conditioned medium of human neonatal 
fibroblasts which provide invaluable information regarding the factors that may help 
maintain hES cells (Prowse et al., 2005).  
The growth factor, ActivinA, paracrinely secreted by MEFs, is capable of supporting the 
growth of hES cells on laminin coated dishes for more 20 passages without the need for 
feeder layers (Beattie et al., 2005). Sato et al. (2004) suggest that Wnt signalling modulation 
can help to support  the growth of hES cells cultures short-term and maintain their capacity 
to express some stem cell markers in the absence of a feeder cell layer (Sato et al., 2004). 
Another study demonstrated that noggin (BMP antagonist) combined with high βFGF 
concentrations in medium support the long term proliferation of undifferentiated hES cells 
in the absence of feeder cells and/or conditioned medium. However in this case Matrigel 
coated dishes were used, but this represent a problem for potential medical application of 
hES cells because xenogeneic pathogens can be transmitted through culture conditions 
(Wang et al., 2005; Xu et al., 2005). 
Moreover, it has been reported that the combination of FGF2, TGFβ, LIF and a proprietary 
serum replacer can achieve serum-free, feeder-free maintenance of hES cells when cultured 
on fibronectin ECM (Amit et al., 2004). 
The establishment of feeder-free system for the culture of hES cells is critical for genetic 
manipulation. In fact, homologous recombination could be used as a tool for the repair of 
specific gene defects in stem cell lines derived from patients suffering disease. 

6. Comparison between human and mouse ES cells 

Many of the differences between mouse and human ES cells are only beginning to be 
elucidated, yet it has already been demonstrated that mouse and human ES cells differ in 
respect to cell surface markers, with human ES cells expressing the stage specific antigens 
SSEA-3 and SSEA-4, the glycoproteins TRA-1-60 and TRA-1-81, and GCTM-2, none of which 
are detected in the mouse. In contrast, mouse ES cells express SSEA-1, which remain 
undetected within human ES cultures. Moreover human ES cells are insensitive to the 
differentiation suppressing effects of LIF pathway (Thomson et al., 1998; Reubinoff et al., 2000). 
However, there remain many similarities between human and murine ES cell populations. 
ES cells are derived from both species using very similar protocols, and same aspects of their 
propagation, such as the ability of MEFs to support their growth in an undifferentiated state 
remain almost identical (Fig. 3). Furthermore, human and mouse ES cells possess similar 
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properties of spontaneous differentiation and expression of the pluripotent-associated 
transcription factor Oct-4. 

 

 

Fig. 3. Phase contrast microscopy images of mouse (A) and human (B) embryonic stem cells 
on mouse embryonic fibroblast 

7. Differentiation of mouse embryonic stem cells in vitro 

In the absence of feeder cells and anti-differentiating agents such as LIF, mouse ES cells 
spontaneously differentiate and, under appropriate conditions, generate progeny consisting 
of derivatives of the three embryonic germ layer: mesoderm, endoderm, and ectoderm 
(Keller, 1995; Smith, 2001). 
Mesoderm derived lineages include the hematopoietic, vascular, and cardiac. Endoderm 
derivatives include pancreatic β  cell and hepatocytes.  Ectoderm differentiation of mouse ES 
cells is well established, as numerous studies have documented and characterized 
neuroectoderm commitment and neural differentiation. 
Three general approaches are used to initiate ES cell differentiation. With the first method, 
the hanging drop method (Fig. 4), ES cells are allowed to aggregate and form three 
dimensional colonies known as embryoid bodies (EBs) (Doetschman et al., 1985; Keller, 
1995). In the second method, ES cells are cultured directly on stromal cells, and 
differentiation takes place in contact with these cells (Nakano et al., 1994). The third protocol 
involves differentiating ES cells in a monolayer on extracellular matrix proteins (Nishikawa 
et al., 1998) or in presence of specific differentiation medium (Takahashi et al., 2003; Fico et 
al., 2008). 

7.1 Cardiac differentiation  

The development of the cardiac lineage in ES cell differentiation cultures is easily detected 
by the appearance of areas of contracting cells that display characteristics of 
cardiomyocytes. Development of the cardiomyocyte lineage progresses through distinct 
stages that are similar to development of the lineage in vivo. An ordered pattern of 
expression of cardiac genes is observed in the differentiation cultures, with expression of the 
transcription factors gata-4 and nkx2.5 that are required for lineage development preceding 
the expression of genes such as atrial natriuretic protein (ANP), myosin light chain (MLC)-2v, -
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myosin heavy chain (-MHC), β-myosin heavy chain (β-MHC), and connexin 43 that are 
indicative of distinct maturation stages within the developing organ in vivo (Hescheler et al., 
1997; Boheler et al., 2002). Several different studies have begun to investigate the 
mechanisms regulating the development of the cardiac lineage in ES cell differentiation 
cultures. It has been demonstrated that the EGF-CFC factor Cripto, known to be essential for 
development in vivo (Ding et al., 1998; Xu et al., 1999), plays a pivotal role in differentiation 
of ES cells to the cardiac lineage, in fact, Cripto-/- ES cells display a deficiency in generating 
cardiomyocytes (Parisi et al., 2003). Notch signaling also plays a role in cardiac development 
from ES cells (Schroeder et al., 2003), in fact ES cells lacking a downstream signalling 
molecule of all Notch (Jk) generate more cardiac cells than wild type ES cells (Keller, 2005). 
However, in this case, inhibition of the pathway appears to be important for cardiac 
differentiation. Other factors, including BMP2 and FGF2 (Kawai et al., 2004) as well as nitric 
oxide (Kanno et al., 2004) and ascorbic acid (Takahashi et al., 2003), have been shown to 
promote or improve cardiomyocyte differentiation in ES cell cultures. 
 

 

Fig. 4. Schematic rappresentation of method used to form embryoid bodies. This method is 
generally used to induce ES cells differentiation into cardiomyocytes or, adding retinoic 
acid, into neurons. MF-20 specific marker of cardiac cells, bIIITubulin (bIIITub) specific 
neural marker, DAPI nuclear marker 

7.2 Primitive and definitive hematopoiesis 

ES cells undergo hematopoietic differentiation in optimized culture conditions following 
serum induction (Keller, 1995). Gene expression and progenitor cell analysis revealed that 
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the differentiation program in these cultures closely parallels that in the early embryo, 
progressing through a primitive streak stage, to mesoderm, and subsequently to a yolk sac-
like hematopoietic program. Detailed analysis of these early stages led to the identification 
of the hemangioblast, a progenitor that displays hematopoietic and vascular potential (Choi 
et al., 1998). After the hemangioblast appears, primitive erythroid progenitors develop in ES 
cells cultures, establishing the primitive erythropoiesis phase of hematopoiesis. In addition 
to primitive erythrocytes, other progenitors including those of the macrophage, definitive 
erythroid, megakaryocyte, and mast cell lineages develop in the differentiation cultures with 
a kinetic pattern similar to that observed in the yolk sac (Murry and Keller, 2008).  
However, despite extensive efforts, to induce the formation of transplantable hematopoietic 
stem cells (HSCs) the development of HSCs from ESCs remains a challenge, which may 
reflect the complexities of embryonic hematopoietic development where different 
hematopoietic programs are generated at different times from different embryonic sites 
(Murry and Keller, 2008). 

7.3 Endoderm differentiation 

The generation of endoderm derivatives, in particular pancreatic β-cells and hepatocytes, 
has become the focus of many investigators in the field of ES cell biology. The interest in the 
efficient and reproducible development of these cell types derives from their clinical 
potential for the treatment of Type I diabetes and liver disease, respectively (Keller, 2005). 
Several genes used as markers of definitive endoderm (Foxa2, Gata4, and Sox17) (Arceci et 
al., 1993; Monaghan et al., 1993; Sasaki and Hogan, 1993; Laverriere et al., 1994; Kanai-
Azuma et al., 2002), early liver (a-fetoprotein and albumin) (Dziadek and Adamson, 1978; 
Meehan et al., 1984; Sellem et al., 1984), and early pancreas (Pdx1 and insulin) (McGrath and 
Palis, 1997) development are also expressed by visceral endoderm, a population of 
extraembryonic endoderm. Given the overlapping expression patterns, it can be difficult to 
distinguish definitive and extraembryonic endoderm in the ES cell differentiation cultures. 
Another problem encountered in endoderm differentiation from ES cells is the lack of 
specific inducers of this lineage.  
It has been investigated the potential of ES cells to differentiate into endoderm derivatives and 
developed two different protocols that promote the generation of these cell types (Kubo et al., 
2004). The first is a restricted exposure of the EBs to serum followed by a period of serum-free 
culture, and the second is induction with Activin A in the absence of serum. Endoderm 
development was quantified based on the proportion of cells that expressed Foxa2, a 
transcription factor found in the earliest stages of definitive endoderm development 
(Monaghan et al., 1993; Sasaki and Hogan, 1993). All of the Foxa2+ cells that developed in 
these cultures also expressed the primitive streak marker brachyury, a gene that is not 
expressed in visceral endoderm. This observation strongly suggests that the Foxa2+ cells 
represented definitive endoderm. Based on the number of Foxa2+ cells, the Activin A protocol 
was found to be the most efficient as >50% of the total population in these cultures expressed 
this protein, in fact, low level of Activin A promote a mesoderm fate, and high levels of 
Activin A induced the formation of endoderm cells (Green et al., 1992; Hudson et al., 1997). 
In 2009 Borowiak et al. identified two potent small molecules, IDE1 and IDE2, that can direct 
mouse ES cell differentiation such that 70%–80% of cells are endoderm cells. This efficiency 
of induction compares favorably with published protocols employing TGF-β family 
members, e.g., Activin A or Nodal, which produce about 45% endoderm. The application of 
small molecules to differentiate mouse and human ES cells into endoderm represents a step 
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toward achieving a reproducible and efficient production of desired ES cell derivatives 
(Borowiak et al., 2009). 

7.4 Neural differentiation 

Several different protocols have evolved to promote neuroectoderm differentiation. The 
various approaches include (1) treatment of serum-stimulated EBs with retinoic acid (Bain et 
al., 1995), (2) sequential culture of EBs in serum followed by serum-free medium (Okabe et 
al., 1996), (3) differentiation of ES cells as a monolayer in serum-free medium (Tropepe et al., 
2001; Ying et al., 2003; Fico et al., 2008), and (4) differentiation of ES cells directly on stromal 
cells in the absence of serum (Kawasaki et al., 2000; Barberi et al., 2003). As with the 
mesoderm and endoderm lineages, development of the ectoderm lineages in the ES 
differentiation cultures appears to recapitulate their development in the early embryo 
(Barberi et al., 2003). In vitro it is possible to form the three major neural cell types: neurons, 
astrocytes and oligodendrocytes. 
The protocols for differentiation to specific types of neurons have included the sequential 
combination of regulators that are known to play a role in the establishment of these 
lineages in the early embryo. For instance, midbrain dopaminergic neurons have been 
generated in the EB system by overexpression in the cells of the transcription factor nuclear-
receptor-related factor1 (Nurr1), and the addition to the cultures of sonic hedgehog (SHH) 
and FGF8 (Kim et al., 2002). Nurr1, SHH, and FGF8 are required for the development of this 
class of neurons in the early embryo (Ye et al., 1998; Simon et al., 2003). Other studies have 
demonstrated the development of cholinergic, serotonergic, and GABAergic neurons in 
addition to dopaminergic neurons, when differentiated on MS5 stromal cells in the presence 
of different combinations of cytokines (Barberi et al., 2003). Using the coculture approach 
together with the appropriate signaling molecules and selection steps, cells that display 
many of the characteristics of motor neurons has been successfully generated (Wichterle et 
al., 2002).  
When cultured at low density in serum-free medium in the presence of LIF, ES cells generate 
a population that has been called primitive neural stem cells (Tropepe et al., 2001). These cells 
have been characterized by their ability to generate neurosphere-like colonies composed of 
cells that express the neural precursor cell marker, nestin (Lendahl et al., 1990). When 
cultured on a matrigel substrate in the presence of low amounts of serum, cells within these 
colonies generated neurons, astrocytes, and oligodendrocytes. In 2008, Fico et al. established a 
one-step protocol that allowed differenziation of mouse ES cells into a highly enriched 
population of neuronal cells, simply by culturing them on gelatin-coated dishes in a 
chemically defined serum-free medium. This differentiation method is able to generate a 
wide range of neural subtypes and glial cells from mouse ES cells (Fico et al., 2008).  
The ability to generate different types of neurons from ES cells has dramatically raised the 
interest in repair of nervous system disorders by cell replacement therapy. 

8. Human embryonic stem cells differentiation 

Human embryonic stem cells are characterized by their ability to proliferate in the 
undifferentiated state in culture for a prolonged period, and by their capacity to differentiate 
into derivatives of all three germ layers. A variety of studies have described in vitro 
spontaneous and directed differentiation of hES cells into different lineages: cardiomyocytes 
(Kehat et al., 2001; Xu et al., 2002), neurons and glia (Carpenter et al., 2001; Reubinoff et al., 
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2001), endothelial cells (Levenberg et al., 2002), hematopoietic precursors (Kaufman et al., 
2001), trophoblast, and hepatocyte-like cells (Rambhatla et al., 2003). The most common 
method used for in vitro differentiation is to remove the hES cells from the feeder layer and 
culture in suspension in absence of MEFs. Following culturing in suspension, hES cells 
aggregate into EBs (Itskovitz-Eldor et al., 2000). The aggregation process itself triggers initial 
cell differentiation. It is thought that the EBs consist of derivatives of all three germ layers, 
which interact and cross-induce each other, resulting in complex differentiation into the 
various lineages. This process is considered to recapitulate early embryonic development 
from the blastocyst stage to the egg-cylinder stage. 

8.1 Cardiac differentiation 

In order to generate a cardiomyocyte-differentiating system from the hES cells, small 

clumps of 3–20 cells were grown in suspension for 8 days (Amit et al., 2000). The EBs were 

then plated on gelatin-coated culture dishes and observed microscopically for the 

appearance of spontaneous contraction. Rhythmically contracting areas appeared at 6 to 12 

days after plating. Cells isolated from the beating areas expressed cardiac-specific structural 

genes, such as cardiac troponin I and brachyury (T), atrial natriuretic peptide (ANP), atrial 

and ventricular myosin light chains (MLCs). Immunostaining studies demonstrated the 

presence of the cardiac-specific sarcomeric proteins myosin heavy chain, -actinin, desmin, 

and cardiac troponin I, as well as ANP (Kehat et al., 2001).  

Cardiomyocyte differentiation can be enhanced in the mouse ES cell system following the 

addition of differentiation factors including, dimethyl sulfoxide (DMSO), retinoic acid (RA), 

and small molecoles. Addition of the demethylating agent 5-aza-2’-deoxycytidine to EB 

cultures has also been shown to be effective for mouse ES cell and human ES cell 

differentiation into cadiomyocytes. In contrast, RA in hES cells did not induce a higher 

proportion of cardiomyocytes in vitro (Schuldiner et al., 2000). An alternative method for 

deriving cardiomyocytes has been achieved following the coculture of pluripotent hES cell 

lines with END-2 cells (visceral-endoderm-like cell lines) (Mummery et al., 2003). 

8.2 Hematopoietic differentiation 

Several studies have documented hematopoietic development of hES cells using different 

induction schemes (Murry and Keller, 2008). As observed in the mouse system, the 

predominant population generated during the first 7–10 days of hES cell differentiation is 

primitive erythroid progenitors, indicating that the equivalent of yolk-sac hematopoiesis 

develops first in these cultures (Zambidis et al., 2005; Kennedy et al., 2007). As observed 

with mouse ES cell and the mouse embryo, the onset of hematopoiesis in hES cell cultures is 

marked by development of the hemangioblast between days 2 and 4 of differentiation, prior 

to establishment of the primitive erythroid lineage (Kennedy et al., 2007; Lu et al., 2007; 

Davis et al., 2008) 

8.3 Neural differentiation 

In 2001, Reubinoff and Zhang highlighted the potential of hES cells to generated neural cells 
(Reubinoff et al., 2001; Zhang et al., 2001). Zhang et al. have combined the techniques which 
were initially developed for the neural differentiation of mouse ES cells and adapted these 
to produce human neural stem cells. This occurs via a successive stepwise approach, which 
consists of inducing the formation of EBs and from these generating neural rosettes, which 
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are proliferating structures that mimic neural tube formation. Rosettes are subsequently 
harvested by selective dissociation and are cultured as free-floating aggregates of neural 
precursors, capable of generating neurons and glia (Zhang et al., 2001).  
Reubinoff demonstrated that neural differentiation was induced by overgrowth of 

undifferentiated ES cells. Maintaining hES cells in culture without passage or replenishing 

feeder cells led to spontaneous neural differentiation within a heterogeneous population of 

hES cell progeny. Individual clusters of presumptive neural progenitors were identified by 

phase contrast microscopy and manually transferred onto uncoated dishes. Following 

culture in defined medium supplemented with βFGF and epidermal growth factor (EGF), 

these cells formed aggregates highly enriched with neural precursor cells. After withdrawal 

of βFGF and EGF, downregulation of nestin and mash-1 is followed by upregulated 

expression of neuron-specific NFM, synaptophysin, Nurr1, and tyrosine hydroxylase (TH) 

genes. A decreased formation of nestin-positive cells is assimilated with an increased 

number of neuronal cells expressing neuron-specific protein. Mature neuronal cells are 

evidenced by the production of neurotransmitters such as dopamine, serotonin, GABA, and 

glutamate. These results suggest that in presence of neuronal differentiation factors, such as 

retinoic acid, FGF4, FGF8, or βFGF, hES-derived cells, led to the enrichment of cholinergic, 

serotinergic, dopaminergic and GABAergic neurons, respectively (Okabe et al., 1996; Lee et 

al., 2000; Rolletschek et al., 2001; Barberi et al., 2003). 

Li et al. (2005) differentiated hES cells into spinal motoneurons using retinoic acid and in the 
presence of SHH (Li et al., 2005). 

8.4 Pancreatic β -islet cells 

1–3% of cells within 60–70% of human EBs produced from hES cells have been observed to 
stain positively for insulin (Assady et al., 2001).  
A modification of Lumelskey and colleagues (2001) method resulted in the production of 

insulin-secreting cells derived from hES cells (Lumelsky et al., 2001). This was achieved 

following an additional step of culture including, a lowering of the glucose concentration in 

the medium, removal of βFGF and addition of nicotinamide. Dissociating the cells and 

growing them in suspension resulted in the formation of clusters, which secreted higher 

levels of insulin than their in vivo counterparts and could be maintained in vitro. These cells 

expressed pancreatic genes and following immunofluorescence and in situ hybridization 

studies, it was confirmed that a high percentage of insulin-expressing cells were located 

within these cell clusters (Segev et al., 2004). 

9. A new age for ES cells: induced pluripotent stem cells 

Takahashi and Yamanaka recently achieved a significant breakthrough in reprogramming 

somatic cells back to an ES like state (Takahashi and Yamanaka, 2006). They successfully 

reprogrammed mouse embryonic fibroblasts and adult fibroblasts to pluripotent ES-like 

cells after viral-mediated transduction of the four transcription factors Oct4, Sox2, c-myc 

and Klf4 followed by selection for activation of the Oct4 target gene Fbx15. Cells that had 

activated Fbx15 were designated with a coined expression “induced pluripotent stem” (iPS) 

cells. These cells were shown to be pluripotent by their ability to form teratomas although 

they were unable to generate live chimeras. In subsequent experiments when activation of 

the endogenous Oct4 or Nanog genes was used as a more stringent selection criterion for 
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pluripotency, the resulting Oct4-iPS or Nanog-iPS cells, in contrast to Fbx15-iPS cells, were 

fully reprogrammed to a pluripotent ES cell state by molecular and biological criteria 

(Maherali et al., 2007; Wernig et al., 2007). Shortly after the reprogramming of mouse cells 

had been achieved the generation of iPS cells from human fibroblasts was reported 

(Takahashi et al., 2007; Yu et al., 2007). 

While genetic experiments have established that Oct4 and Sox2 are essential for 
pluripotency (Chambers and Smith, 2004), the role of the two oncogenes, c-myc and Klf4, in 
reprogramming is less clear. Some of these oncogenes may, in fact, be dispensable for 
reprogramming as both mouse and human iPS cells have been obtained in the absence of c-
myc transduction, although with low efficiency (Nakagawa et al., 2008; Wernig et al., 2008). 
One of the promises of patient-specific ES cells is the potential for customized therapy of 

diseases. Previous studies have shown that disease-specific ES cells produced by nuclear 

cloning in combination with gene correction can be used to correct an immunologic disorder 

in a proof-of-principle experiment in mice (Rideout et al., 2002). In a similar approach, by 

using a humanized sickle cell anemia mouse model, it has been shown that mice can be 

rescued after transplantation with hematopoietic progenitors obtained in vitro from 

autologous iPS cells (Hanna et al., 2007).  Finally, it has been shown that iPS cells can be 

efficiently differentiated into neural precursor cells giving rise to neuronal and glial cell 

types in culture. Neural precursors derived from iPS cell were able to improve behaviour in 

a rat model of Parkinson’s disease upon transplantation into the adult brain demonstrating 

the therapeutic potential of directly reprogrammed fibroblasts for neuronal cell replacement 

in an animal model (Wernig et al., 2008; Jaenisch, 2009). 

10. Conclusion 

Embryonic stem cells represent a powerful tool for future regenerative medicine due to their 

capacity of self-renewal and pluripotency. Studies in animal models have shown that 

transplantation of fetal stem cell, ES cells, or pluripotent stem cell derivatives can 

successfully treat many chronic diseases, such as Parkinson’s disease, diabetes,  traumatic 

spinal cord injury, Purkinje cell degeneration, Duchenne’s muscular dystrophy, liver or 

heart failure, and osteogenesis imperfecta (Zhang et al., 1996; Horwitz et al., 1999; 

McDonald et al., 1999; Kobayashi et al., 2000; Li et al., 2000; Soria et al., 2000; Kim et al., 

2002). 

Almost every day there are reports in the media of new stem cell therapies. There is no 

doubt that stem cells have the potential to treat many human afflictions, including ageing, 

cancer, diabetes, blindness and neurodegeneration. In January 2009, the US Food and Drug 

Administration approved the first clinical trial involving human ES cells, just over 10 years 

after they were first isolated. In this trial, the safety of ES cell-derived oligodendrocytes in 

repair of spinal cord injury will be evaluated. Nevertheless, one of the attractions of 

transplanting iPS cells is that the patient’s own cells can be used, obviating the need for 

immunosuppression (Watt and Driskell, 2010). 

Adult tissue stem cells, ES cells and iPS cells can all be used to screen for compounds that 

stimulate selfrenewal or promote specific differentiation programmes. Finding drugs that 

selectively target cancer stem cells offers the potential to develop cancer treatments that are 

not only more effective, but also cause less collateral damage to the patient’s normal tissues 

than drugs currently in use (Watt and Driskell, 2010). 
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