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1. Introduction 

Since the landmark paper on carbon nanotubes (CNTs) by Iijima in 1991[1], carbon 

nanotubes  have been an attractive materials for fundamental research studies and become 

one of the most important materials in the 21st century technology. Several applications 

were proposed for carbon nanotubes many of which are concerned with conductive or high 

strength composites [2,3], in which the inclusion of carbon nanotubes in a ceramic matrix is 

expected to produce composites possessing high stiffness and improved mechanical 

properties compared to the single phase ceramic material [4] and already been used as nano 

probes, gas storage containers, nanoelectronic devices, sensors, composite reinforcements, 

and integrated interconnection due to their extraordinary properties [5-8]. Currently, there 

has been widespread interest in the fabrication of one-dimensional nano scale materials by 

filling or coating CNT with various kinds of materials including metals (such as zirconium 

oxide, hafnium oxide, aluminum oxide, and conductive materials such as gold, copper, and 

platinum), non-metals, carbides, and oxides which possess distinctive chemical [9-13], 

mechanical, and physical properties [14-16].  

Zirconia (ZrO2), especially in the powder form, is very attractive material applied in a wide 

variety of technological fields such as catalysts, oxygen sensors, fuel cells, optical devices, 

and electronic devices [17-20]. Several preparation methods have also been reported on the 

synthesis of ZrO2; including chemical vapor deposition, spray pyrolysis, ion sputtering, sol-

gel, and chemical precipitation [21-24]. This mainly results from its excellent properties 

including thermal, chemical, and mechanical stability as well as unique optical and 

dielectric properties.  

Carbon nanotubes are widely used in composite materials because CNTs have excellent 

electrical and thermal properties [25-28], because, a change in structure and properties by 

diameter, bonding structure, rope structure of carbon nanotube. In contrast, the polymers 

typically ~ 0.2W/mK has low thermal conductivity. But the rapid development of the 

electronics industry to emit more heat and small electronic components can be used in 

polymer materials of high thermal conductivity is required. Temperature rises 10 ºC has 

been reported lost half-life of electronic devices. Therefore, effectively it is important to 

release heat quickly from electronic components. To develop heat emission high polymer, if 
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we use the high thermal conductivity of carbon nanotube, thermal conductivity of the 

polymer can be improved. 

Poly (ether ether ketone) (PEEK) is a semi-cystalline thermoplastic polymer with superior 
mechanical properties, thermal stability and chemical inertness for a wide range of commercial 
and industrial application. To further extent its engineering uses, it is of great relevance to 
improve the mechanical performance of PEEK by reinforcing it with nanofillers [29]. 
However, few efforts have been made to investigate the thermal properties of the ceramic-

based CNT nanocomposites. Hence, studying the thermal conductivity of ceramic-based 

nanocomposites comprising CNT is important. So, in this study, we tried to improve the 

mechanical properties without harming the thermal conductivity of MWCNT in the PEEK 

matrix, ZrO2 coated MWCNT has been used. Zirconium dioxide (ZrO2) coated MWCNT has 

been prepared by two methods and compared with pristine MWCNT and virgin PEEK 

composites in terms of thermal properties were compared. 

2. Experimental 

2.1 Materials 
The PEEK [unreinforced Poly (ether ether ketone)] (450G) has been purchased from DICT, 

Korea. This material is high performance thermoplastic and having melting point around 

343 ºC. The multi-welled carbon nanotube (MWCNT) prepared by chemical vapor 

deposition was purchased from ACN Tech. Co., Korea and purity is more than 95%. 

ZrOCl2.8H2O was employed as the precursor for the synthesis of ZrO2 coating from Sigma-

Aldrich, USA. Ethanol was purchased from Duksan Pure Chemicals Co. Ltd, Korea. 

2.2 Processing of composites 
2.2.1 Making of MWCNT/ZrO2 composites 
Solid ZrOCl2.8H2O was first dissolved in 100 ml of distilled water to produce 0.2 mol/L 

solution under magnetic stirring. Then 30 mg of MWCNT without any pretreatment were 

added into the aqueous solution. After 30 min ultrasonic vibration, a black suspensions with 

MWCNT homogeneously dispersed were obtained. The stable aqueous suspension was 

then long drawn reflux condensed in a thermostatic water bath at the temperature of 100 ºC, 

ensuring the isothermal hydrolyzing of ZrOCl2. Figure 1 shows the diagram of the 

hydrolysis process for the nanocomposites. During this hydrolytic process, the suspension 

was ultrasonicated for 10 min every 24 h to get a good dispersion of MWCNT in the 

aqueous solution. After approximately 72 h, the black suspension turned to gray. The 

advantage of hydrolization method is that shapes of formed nanotubes can be controlled by 

controlling those of isothermal hydrolization time. Some researchers [30] have already 

shown that if the hydrolyzation time increased with the reaction time, the thickness of the 

coating will be increased. So, we can control the shape of the nanotubes by controlling the 

reaction time. For comparison, a conventional chemical precipitation method was also used 

to prepare MWCNT/ZrO2 nanocomposites. By ultrasonic vibration, 30 mg of MWCNT were 

homogeneously dispersed into 0.2 mol/L of ZrOCl2.8H2O aqueous solution to acquire the 

same stable black suspension. Under vigorous stirring, an appropriate amount of NH4OH 

was added drop by drop into the above 100 mL suspension. After that the whole mixture 

was further magnetically stirred for 60 min, a stable well-proportioned MWCNT/ZrO2 

nanocomposites suspension were obtained. 
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Fig. 1. A diagram of hydrolysis method and chemical precipitation methods for prepared 
nanocomposites 

2.2.2 Making of PEEK/MWCNT composites and PEEK/ZrO2 coated MWCNT composites 
Brabender Plasticoder (Brabender Co.) has been used for preparation of PEEK/MWCNT 
composites and PEEK/ZrO2 coated MWCNT composites. The mixing of sample carried out 
at 350 ºC, 60 rpm for 5 min. Sample of four kinds was prepared. The sample having the code 
name, such as A, B, C and D for virgin EVA composites, PEEK/pristine MWCNT 
nanocomposites, PEEK/ZrO2 coated MWCNT by isothermal process and PEEK/ZrO2 
coated MWCNT by chemical process, respectively and has been shown in Table 1. 
 

Sample Code 

A B C D Composition 

All are in wt% 

EVA 100 100 100 100 

Pristine MWCNT - 3 - - 

ZrO2 coated MWCNT by isothermal 
process 

- - 3 - 

ZrO2 coated MWCNT by chemical process - - - 3 

Table 1. Compound formulations 

2.3 XRD study 
X-ray diffraction (XRD) experiment was carried out in D8 Advance, Bruker AXS (Germany) 
diffractometer with Cu-K┙ (wavelength of 0.14051 nm) and a monochromator on the 
diffracted beam. Experiment was performed at 40 kV of accelerating potential, 40 mA 
current, and a scanning rate of 5ºmin-1. 

2.4 Dynamic mechanical analysis (DMA) 
The dynamic mechanical properties of the samples were determined by using DMA Q800 
(TA Instrument, Inc., USA) in tension mode. Rectangular film specimens were used for the 
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study. Samples were heated from room temperature to 280 ºC at a heating rate of 10 ºC/min 
in air atmosphere within impressed a frequency of 1 Hz. 

2.5 Thermal conductivity measurement 
DSC measurements were carried out using a TA Instruments Q-20 DSC instrument. The 
samples (≤ 10 mg), sealed under aluminum pans were scanned in the temperature range of 
30 to 400 ºC. The heating rate is 10 ºC min-1 under the nitrogen atmosphere with a flow rate 
of 40 ml/min. 
Heat flow measurement and heat capacity calculation by used DSC after thermal 
conductivity was calculated. First, equation (1) has been used to calculate the heat capacity 
(Cp) of the composites. 

 Cp= (q/t)/ (dt/t) = q /dt  (1) 

where q is the heat flow difference between no sample and with sample, dt is the heating 
rate. Heat capacity (Cp) was calculated at the three temperatures (Tg, Tm, Tc) indicated by 
DSC and from the equation (2) thermal conductivity (λ) of the composites was calculated. 

 λ= (8LC²)/ (Cpmd²p)  (2) 

where L is sample thickness, C is apparent heat capacity (thick sample), Cp is the heat capacity, 
m is weight of the thick sample, d is sample diameter, p is oscillation period, 80 s [31].  

2.6 TGA study 
The equipment (Model TGA Q50), manufactured by TA Instrument, was used to test the 
samples. For TGA measurements, specimens were cut from the vulcanized samples as small 
pieces (5-10 mg). The specimens were heated from 30 to 650 ºC at a constant increase in 
temperature (10 ºC/min), in nitrogen atmosphere and the weight loss determined as a 
function of temperature. 

2.7 AFM study 
The atomic force microscopy was carried out using a Multimode SPM operated in AFM mode 
and manufactured by XE-100 (PSIA, Korea) at frequency 3 Hz and in non-contact mode. 

2.8 Scanning electron microscopy (SEM) 
The tensile fracture surface of the samples are scanned in a scanning electron microscope 
(JSM-6380LV of JEOL Co.; Acceleration voltage: 20kV) to study the dispersion of the 
MWCNTs in PEEK matrix. Samples are sputtered with gold-palladium prior to testing. 

3. Results and discussion 

XRD study is performed on the samples using WAXD machines. The change of composites 
crystallinity is measured on a Bruker AXS X-ray diffractrometer (Germany). WAXD is used 
to observe the effect of pristine and ZrO2 coated MWNTs content on the microstructure of 
pristine PEEK. Figure 2 describes the WAXD patterns for pristine PEEK and PEEK/MWNTs 
nanocomposites. Within a given range of scattering angles, four characteristic diffraction 
peaks appear at 2θ value of 18.82, 20.89, 22.84 and 28.92º respectively, which correspond to 
(100), (111), (200) and (211) reflections, respectively, the matrix orthorhombic unit cell [32].  
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This experiment confirms once again that the rate of crystallization of the matrix is 
influenced by the MWCNT types. A remarkable change from promotion to retardation is 
detected as the presence of wrapped MWCNTs. In contrast, no shift in the position of the 
Bragg reflections is observed, pointing out that all these composites present the same 
crystalline structure than pure PEEK. Samples incorporating pristine MWCNTs exhibit 
larger crystals than pure PEEK, whereas those with wrapped MWCNTs present similar or 
slightly lower crystal sizes. This behavior is also consistent with the results obtained from 
DSC analysis. This may be due to the better interaction between the MWCNTs and matrix 
surfaces resulting in improved adhesion between them at the interface which in turn favors 
the crystal growth mechanism. In the extreme case of the PEEK with ZrO2 coated MWCNT 
composite, such effect is very clear.  
It is also noteworthy that inter-planar distance corresponding to every peak position 
increases in the case of modified PEEK with MWCNTs, which again support the nucleating 
ability of nanotube into PEEK systems and support the results obtained from DSC study. 
 

 

Fig. 2. XRD result of sample (A) PEEK. (B) PEEK/pristine MWCNT, (C) PEEK/ZrO2 coated 
MWCNT by isothermal process, (D) PEEK/ZrO2 coated MWCNT by chemical process 

One of the major goals of employing ZrO2 coated MWCNTs is to attain composites with 
enhanced mechanical properties, which ultimately determine the application of the material 
strength. The thermo-mechanical behavior of these composites was studied using dynamic 
mechanical analysis (DMA). Figure 3 shows, as an example, the dynamic mechanical spectra 
(storage modulus E’, loss modulus E’’ and tanδ) as a function of temperature, at the 
frequency of 1 Hz, for PEEK and PEEK/MWCNT composites. It is evident that the storage 
modulus of the composites increases progressively with the addition of wrapped MWCNTs 
at temperatures below the glass transition, pointing out the stiffening effect of these 
MWCNTs. Therefore, the remarkable modulus enhancement observed in the PEEK/ZrO2 
wrapped MWCNTs composites should be attributed to a more effective load transfer from 
the matrix to the fillers likely resulting from the improved dispersing ability of the wrapped 
MWCNTs, combined with a stronger interfacial adhesion PEEK–MWCNT.  
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(a) 

 
(b) 

 

(c) 

Fig. 3. (a) Storage modulus, (b) loss modulus and (c) Tanδ result of sample (A) PEEK. (B) 

PEEK/pristine MWCNT, (C) PEEK/ZrO2 coated MWCNT by isothermal process, (D) 

PEEK/ZrO2 coated MWCNT by chemical process 

On the other hand, our experimental data reveals a substantial drop in the storage modulus 

of all the samples between 160 and 180 ºC, interval which corresponds to the glass transition 

of the materials. In this range, differences between E’ of each composite and the matrix 

decrease considerably, and become insignificant at higher temperatures. The main reason is 
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the strong reduction of the load transfer efficiency in these composites as going through the 

glass transition. 

The evolution of tanδ (ratio of the loss to storage modulus) as a function of temperature for 
PEEK and PEEK/ZrO2 wrapped MWCNTs composites is shown in Fig. 3c. Several 
relaxation peaks can be observed: the maximum at lower temperatures (┚-relaxation) is 
associated with local motions of the ketone groups [33], and the most intense peak (a 
relaxation) corresponds to the Tg. The incorporation of wrapped MWCNTs results in a small 
reduction of tanδ magnitude (a measure of the damping within the system) over the whole 
temperature range. With ZrO2 coated MWCNTs, all relaxation peaks broaden and shift to 
the higher temperature side. This indicates that wrapped MWCNTs efficiently restrict the 
mobility of the PEEK chains, thereby increasing the stiffness of the matrix, which is reflected 
in higher transition temperatures [34].  
DSC is performed on PEEK/MWCNT samples using a DSC 300 F3 (NETZSCH, Germany). 
Heat flow is monitored over the range of 30 to 400 °C with temperature modulation (+/- 0.8 °C 
every 60 sec) superimposed on a 10 °C/min heating and cooling rate under purge gas 
(nitrogen at 40 ml/min). The heating scan thermograms of PEEK and PEEK/ZrO2-MWNT 
nanocomposites are shown in Figure 4(a). The pristine PEEK samples produce a main 
melting peak at 340 °C. However, the addition of MWNTs the shoulder posterior to the 
main melting peak and an increase end point of the peak.  
The addition of ZrO2 coated MWCNTs also results in small variations of the melting 
temperature (Tm) of the PEEK matrix (Figure 4a), showing similar trends to those observed 
from the cooling thermograms (Figure 4b). In the case of composites including 3 wt.% ZrO2 
coated MWCNTs dispersed in matrix, Tm increases ~5 ºC, whereas for those incorporating  
3 wt.%  pristine MWCNT, it increases around ~2 ºC than pristine PEEK. It is also important 
to notice that a small change in the specific heat associated to the glass transition of the 
matrix in the composites can be visualized in the heating thermograms. The incorporation of 
ZrO2 coated MWCNTs dispersed in the matrix shift this transition towards higher 
temperatures this phenomenon has been proved by DMA measurements. 
The thermal conductivity of PEEK composites has been measured from the DSC study and 
is depicted in Table 2. The thermal conductivity of the composites has been measured in 
three different temperature zones, namely Tg, Tc and Tm. It has been that thermal 
conductivity also rises progressively with increasing temperature, as shown in Table 2, 
being the increment in comparison to the pure matrix (0.22 W/mK). Also, it can be seen that 
composites loaded with ZrO2 coated MWCNTs present higher values, indicating that the 
thermal conductivity is also sensitive to the attributes of the filler, presence of defects and 
content in metal impurities. ZrO2 coated MWCNTs samples display slightly lower thermal 
conductivity than pristine MWCNTs composite, since the wrapping hinders the direct 
contact among the tubes. Taking into account the exceptionally high thermal conductivity of 
chemically treated ZrO2 coated MWCNTs (0.43 W/mK), the improvements in thermal 
conductivity observed in these composites are more than isothermally treated ZrO2 coated 
MWCNTs those expected according to the rule of mixtures. The main reason for this 
behavior is the coating of the Zr on the MWCNTs. While coating the chemical process is so 
first that all the MWCNTs are not wrapped by the Zr rather than isothermal process which 
is slow and steady process. We have already discussed about this in our previous literature 
[35]. Also, this discrepancy could be attributed to the small thermal conductance of the 
nanotube-polymer interface and the high interfacial thermal resistance between MWCNTs 
[36], which limit considerably the heat transfer. Also, it will be quite obvious that thermal 
conductivity will be higher for the pristine MWCNTs rather than coated MWCNTs. 
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(a) 

 
(b) 

Fig. 4. (a) Endotherm and (b) exotherm result of the composites (A) PEEK. (B) 

PEEK/pristine MWCNT, (C) PEEK/ZrO2 coated MWCNT by isothermal process, (D) 

PEEK/ZrO2 coated MWCNT by chemical process 

Thermogravimetric analysis (TGA Q500, TA Instruments) is carried out to study the thermal 

stability of each PEEK/MWCNTs nanocomposite from room temperature to 800 ºC at a 

heating rate of 10 ºC/min under purge gas (nitrogen at 40 ml/min). Figure 5 shows the TGA 

thermograms of PEEK with ZrO2 coated MWCNTs composites. The thermo-degradation of 

PEEK and PEEK nanocomposites takes place in one step. The onset degradation 

temperature of PEEK is around 580 °C but with the addition of pristine MWCNTs and ZrO2 

coated MWCNTs the onset degradation temperature increases. This step of the thermal 

degradation also takes place at a higher temperature side in the presence of MWCNTs. This 
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Sample code 
Properties 

A B C D 

Tg (oC) 143.66 147.05 154.17 157.55 

Tm (oC) 338.14 339.84 338.48 338.48 

Tc (oC) 294.10 294.44 294.44 293.08 

Tg 0.0640 0.0630 0.0614 0.0606 

Tm 0.0081 0.0103 0.0074 0.0081 Cp (J/g oC) 

Tc 0.0037 0.0184 0.0148 0.0155 

Tg 0.22 0.23 0.22 0.22 

Tm 0.23 0.39 0.30 0.37 

Thermal 
conductivity 

(W/mK) Tc 0.27 0.45 0.39 0.43 

Table 2. Heat capacity and thermal conductivity of the composites (A) PEEK. (B) 
PEEK/pristine MWCNT, (C) PEEK/ZrO2 coated MWCNT by isothermal process, (D) 
PEEK/ZrO2 coated MWCNT by chemical process 

region is highly dependent on the types of MWCNTs because the mass loss becomes higher 
with ZrO2/MWCNT by isothermal hydrolyzing. On the other hand, Figure 5 also suggests 
that the MWCNT has a good affinity to the PEEK region in the PEEK/MWCNT 
nanocomposites, indicating that the MWCNT is dominantly dispersed in the PEEK matrix. 
As the MWCNT region being increases, thermal properties of the PEEK/MWCNT 
nanocomposites have been enhanced because the MWCNT possesses good thermal 
properties. This behavior could be explained by the presence of the char formed from PEEK 
matrix during the degradation step, which is further stabilized through π– π electronic 
interactions with the coated nanotubes [37]. 
 

 

Fig. 5. TGA result of the composites (A) PEEK. (B) PEEK/pristine MWCNT, (C) PEEK/ZrO2 
coated MWCNT by isothermal process, (D) PEEK/ZrO2 coated MWCNT by chemical 
process 
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In the present study AFM is also used to study the microstructure of 
fluoroelastomer/MWCNT samples. From the figure it can be observed that the 
topographical image of PEEK and PEEK/MWCNTs composite are not as clear as has been 
observed in other nanotube/polymer composites. However, it is generally known that it is 
not easy to separate the magnetic contrast from other background forces in MFM 
topography images. But polymer/nanotube composites are two phase materials with two 
distinct magnetic properties. The nanotubes are paramagnetic or diamagnetic depending 
upon their orientation whereas the polymer matrix is paramagnetic. Interpretation of an 
observed image usually relies on the understanding of micromagnetism. 
  

 

Fig. 6. AFM images of sample (A) PEEK. (B) PEEK/pristine MWCNT, (C) PEEK/ZrO2 
coated MWCNT by isothermal process, (D) PEEK/ZrO2 coated MWCNT by chemical 
process 

The homogeneous dispersion of the MWCNTs in the polymer matrix is one of the most 
important features for reinforcing the composites, since any heterogeneity or aggregation 
could result in structural defects, which would have detrimental effects on the mechanical 
properties. A Field Emission Scanning Electron Microscopy (FE-SEM) is performed to 
observe the morphology of the cryo fractured surfaces (fractured by mechanical force) of 
PEEK/MWCNT nanocomposites. Figure 7a, is can be observed the furrow like structure of 
the virgin PEEK matrix. In Figure 7b, MWCNTs (which appear as bright spots) are quite 
agglomerated, forming a highly entangled interconnected structure. In contrast, for all the 
ZrO2 coated MWCNT composites analyzed, the nanofillers are found to be randomly and 
well-dispersed within the matrix by the shear force from melt-blending (Figure 7c and 7d). 
No MWCNT agglomerations or entanglements were observed in the whole examined areas; 
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the energy of the shear force process breaks up the aggregates, leading to a fine dispersion 
of the coated MWCNTs, which results in a large MWCNT-matrix effective contact area. 
Moreover, no open ring holes or voids were found around the MWCNTs, hinting at the 
existence of good filler-matrix interfacial adhesion.  
 

 

Fig. 7. FESEM images of composite (A) PEEK. (B) PEEK/pristine MWCNT, (C) PEEK/ZrO2 
coated MWCNT by isothermal process, (D) PEEK/ZrO2 coated MWCNT by chemical 
process 

4. Conclusion 

The structure, morphology and thermal properties of high performance semicrystalline 
PEEK/MWCNT composites incorporating two differently coated  MWCNTs have been 
characterized. X-ray diffraction patterns of the ZrO2 coated MWCNTs dispersed in the 
polysulfones revealed an effective debundling and disentanglement of the MWCNTs. TGA 
thermograms demonstrated a remarkable increase in the degradation temperatures of the 
composites by the incorporation of the ZrO2 coated MWCNT. Also, it has been found that 
thermal conductivity of the chemical treated ZrO2 coated MWCNT is more good than 
isothermal treated ZrO2 coated MWCNT. Scanning electron microscopy observations 
showed that the wrapped MWCNTs were homogenously dispersed in the thermoplastic 
matrix using a conventional melt-extrusion process. 
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