
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1 

History and Theoretical Basics 
of Hidden Markov Models 

Guy Leonard Kouemou 
EADS Deutschland GmbH,  

Germany 

1. Introduction 

The following chapter can be understood as one sort of brief introduction to the history and 
basics of the Hidden Markov Models.  
Hidden Markov Models (HMMs) are learnable finite stochastic automates. Nowadays, they 
are considered as a specific form of dynamic Bayesian networks. Dynamic Bayesian 
networks are based on the theory of Bayes (Bayes & Price, 1763). 
A Hidden Markov Model consists of two stochastic processes. The first stochastic process is 
a Markov chain that is characterized by states and transition probabilities. The states of the 
chain are externally not visible, therefore “hidden”. The second stochastic process produces 
emissions observable at each moment, depending on a state-dependent probability 
distribution. It is important to notice that the denomination “hidden” while defining a 
Hidden Markov Model is referred to the states of the Markov chain, not to the parameters of 
the model. 
The history of the HMMs consists of two parts. On the one hand there is the history of 
Markov process and Markov chains, and on the other hand there is the history of algorithms 
needed to develop Hidden Markov Models in order to solve problems in the modern 
applied sciences by using for example a computer or similar electronic devices. 

1.1. Brief history of Markov process and Markov chains 
Andrey Andreyevich Markov (June 14, 1856 – July 20, 1922) was a Russian mathematician. 
He is best known for his work on the theory of stochastic Markov processes. His research 
area later became known as Markov process and Markov chains. 
Andrey Andreyevich Markov introduced the Markov chains in 1906 when he produced the 
first theoretical results for stochastic processes by using the term “chain” for the first time. In 
1913 he calculated letter sequences of the Russian language.  
A generalization to countable infinite state spaces was given by Kolmogorov (1931). Markov 
chains are related to Brownian motion and the ergodic hypothesis, two topics in physics 
which were important in the early years of the twentieth century. But Markov appears to 
have pursued this out of a mathematical motivation, namely the extension of the law of 
large numbers to dependent events. 
Out of this approach grew a general statistical instrument, the so-called stochastic Markov 
process. 
In mathematics generally, probability theory and statistics particularly, a Markov process 
can be considered as a time-varying random phenomenon for which Markov properties are 
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achieved. In a common description, a stochastic process with the Markov property, or 
memorylessness, is one for which conditions on the present state of the system, its future 
and past are independent (Markov1908),(Wikipedia1,2,3). 
Markov processes arise in probability and statistics in one of two ways. A stochastic process, 
defined via a separate argument, may be shown (mathematically) to have the Markov 
property and as a consequence to have the properties that can be deduced from this for all 
Markov processes. Of more practical importance is the use of the assumption that the 
Markov property holds for a certain random process in order to construct a stochastic model 
for that process. In modelling terms, assuming that the Markov property holds is one of a 
limited number of simple ways of introducing statistical dependence into a model for a 
stochastic process in such a way that allows the strength of dependence at different lags to 
decline as the lag increases. 
Often, the term Markov chain is used to mean a Markov process which has a discrete (finite 
or countable) state-space. Usually a Markov chain would be defined for a discrete set of 
times (i.e. a discrete-time Markov Chain) although some authors use the same terminology 
where "time" can take continuous values.  

1.2 Brief history of algorithms need to develop Hidden Markov Models 

With the strong development of computer sciences in the 1940's, after research results of 
scientist like John von Neuman, Turing, Conrad Zuse, the scientists all over the world tried to 
find algorithms solutions in order to solve many problems in real live by using deterministic 
automate as well as stochastic automate. Near the classical filter theory dominated by the 
linear filter theory, the non-linear and stochastic filter theory became more and more 
important. At the end of the 1950's and the 1960's we can notice in this category the 
domination of the "Luenberger-Observer", the "Wiener-Filter", the „Kalman-Filter" or the 
"Extended Kalman-Filter" as well as its derivatives (Foellinger1992), (Kalman1960).   
At the same period in the middle of the 20th century, Claude Shannon (1916 – 2001), an 
American mathematician and electronic engineer, introduced in his paper "A mathematical 
theory of communication'', first published in two parts in the July and October 1948 editions 
of the Bell System Technical Journal, a very important historical step, that boosted the need 
of implementation and integration of the deterministic as well as stochastic automate in 
computer and electrical devices.  
Further important elements in the History of Algorithm Development are also needed in 
order to create, apply or understand Hidden Markov Models: 
The expectation-maximization (EM) algorithm: The recent history of the expectation-
maximization algorithm is related with history of the Maximum-likelihood at the beginning 
of the 20th century (Kouemou 2010, Wikipedia). R. A. Fisher strongly used to recommend, 
analyze and make the Maximum-likelihood popular between 1912 and 1922, although it had 
been used earlier by Gauss, Laplace, Thiele, and F. Y. Edgeworth. Several years later the EM 
algorithm was explained and given its name in a paper 1977 by Arthur Dempster, Nan 
Laird, and Donald Rubin in the Journal of the Royal Statistical Society. They pointed out 
that the method had been "proposed many times in special circumstances" by other authors, 
but the 1977 paper generalized the method and developed the theory behind it. An 
expectation-maximization (EM) algorithm is used in statistics for finding maximum 
likelihood estimates of parameters in probabilistic models, where the model depends on 
unobserved latent variables. EM alternates between performing an expectation (E) step, 
which computes an expectation of the likelihood by including the latent variables as if they 
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were observed, and maximization (M) step, which computes the maximum likelihood 
estimates of the parameters by maximizing the expected likelihood found on the E step. The 
parameters found on the M step are then used to begin another E step, and the process is 
repeated. EM is frequently used for data clustering in machine learning and computer 
vision. In natural language processing, two prominent instances of the algorithm are the 
Baum-Welch algorithm (also known as "forward-backward") and the inside-outside 
algorithm for unsupervised induction of probabilistic context-free grammars. Mathematical 
and algorithmic basics of Expectation Maximization algorithm, specifically for HMM-
Applications, will be introduced in the following parts of this chapter.  
The Baum-Welch algorithm: The Baum–Welch algorithm is a particular case of a 
generalized expectation-maximization (GEM) algorithm (Kouemou 2010, Wikipedia). The 
Baum–Welch algorithm is used to find the unknown parameters of a hidden Markov model 
(HMM). It makes use of the forward-backward algorithm and is named for Leonard E. 
Baum and Lloyd R. Welch. One of the introducing papers for the Baum-Welch algorithm 
was presented 1970 "A maximization technique occurring in the statistical analysis of 
probabilistic functions of Markov chains", (Baum1970). Mathematical and algorithmic basics 
of the Baum-Welch algorithm specifically for HMM-Applications will be introduced in the 
following parts of this chapter. 
The Viterbi Algorithm: The Viterbi algorithm was conceived by Andrew Viterbi in 1967 as 
a decoding algorithm for convolution codes over noisy digital communication links. It is a 
dynamic programming algorithm (Kouemou 2010, Wikipedia). For finding the most likely 
sequence of hidden states, called the Viterbi path that results in a sequence of observed 
events. During the last years, this algorithm has found universal application in decoding the 
convolution codes, used for example in CDMA and GSM digital cellular, dial-up modems, 
satellite, deep-space communications, and 802.11 wireless LANs. It is now also commonly 
used in speech recognition applications, keyword spotting, computational linguistics, and 
bioinformatics. For example, in certain speech-to-text recognition devices, the acoustic signal 
is treated as the observed sequence of events, and a string of text is considered to be the 
"hidden cause" of the acoustic signal. The Viterbi algorithm finds the most likely string of 
text given the acoustic signal (Wikipedia, David Forney's). Mathematical and algorithmic 
basics of the Viterbi-Algorithm for HMM-Applications will be introduced in the following 
parts of this chapter. 
The chapter consists of the next following parts:  
• Part 2: Mathematical basics of Hidden Markov Models 
• Part 3: Basics of HMM in stochastic modelling 
• Part4: Types of Hidden Markov Models 
• Part5: Basics of HMM in signal processing applications 
• Part6: Conclusion and References 

2. Mathematical basics of Hidden Markov Models 

Definition of Hidden Markov Models 

A Hidden Markov Model (cf. Figure 1) is a finite learnable stochastic automate.  
It can be summarized as a kind of double stochastic process with the two following aspects: 
• The first stochastic process is a finite set of states, where each of them is generally 

associated with a multidimensional probability distribution. The transitions between 

www.intechopen.com



 Hidden Markov Models, Theory and Applications 

 

6 

the different states are statistically organized by a set of probabilities called transition 
probabilities. 

• In the second stochastic process, in any state an event can be observed. Since we will 
just analyze what we observe without seeing at which states it occurred, the states are 
"hidden" to the observer, therefore the name "Hidden Markov Model".   

Each Hidden Markov Model is defined by states, state probabilities, transition probabilities, 
emission probabilities and initial probabilities.  
In order to define an HMM completely, the following five Elements have to be defined: 
1. The N states of the Model, defined by 

 { }1 ,..., NS S S=  (1)  

2. The M observation symbols per state { }1 ,..., MV v v= . If the observations are 
continuous then M is infinite. 

3. The State transition probability distribution { }ijA a= , where ija  is the probability that 
the state at time 1t + is jS , is given when the state at time t  is iS . The structure of this 
stochastic matrix defines the connection structure of the model. If a coefficient ija  is 
zero, it will remain zero even through the training process, so there will never be a 
transition from state iS  to 

 jS . { }1 | , 1 ,ij t ta p q j q i i j N+= = = ≤ ≤  (2) 

Where tq  denotes the current state. The transition probabilities should satisfy the 

normal stochastic constraints, 0, 1 ,ija i j N≥ ≤ ≤  and
1

1, 1
N

ij
j

a i N
=

= ≤ ≤∑ . 

4. The Observation symbol probability distribution in each state, { }( )jB b k=  where ( )jb k  
is the probability that symbol kv  is emitted in state jS . 

 { }( ) | , 1 , 1j t k tb k p o v q j j N k M= = = ≤ ≤ ≤ ≤  (3) 

where kv  denotes the thk  observation symbol in the alphabet, and to  the current 
parameter vector. 
The following stochastic constraints must be satisfied: 

( ) 0, 1 , 1jb k j N k M≥ ≤ ≤ ≤ ≤  and  
1

( ) 1, 1
M

j
k

b k j N
=

= ≤ ≤∑  

If the observations are continuous, then we will have to use a continuous probability 
density function, instead of a set of discrete probabilities. In this case we specify the 
parameters of the probability density function. Usually the probability density is 
approximated by a weighted sum of M Gaussian distributions N, 

 
1

( ) ( , , )
M

j t jm jm jm t
m

b o c N oμ
=

= Σ∑  (4) 

where jmc weighting coefficients= , jm mean vectorsμ = , and  
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jm Covariance matricesΣ = . jmc  should also satisfy the stochastic assumptions 

0, 1 , 1jmc j N m M≥ ≤ ≤ ≤ ≤   and  

1

1, 1
M

jm
m

c j N
=

= ≤ ≤∑  

5. The HMM is the initial state distribution { }iπ π= , where iπ   is the probability that the 
model is in state iS at the time 0t =  with  

 { }1 1i p q i and i Nπ = = ≤ ≤  (5) 

 

 
Fig. 1. Example of an HMM 

By defining the HMM it is also very important to clarify if the model will be discrete, 
continuing or a mix form (Kouemou 2007). 
The following notation is often used in the literature by several authors (Wikipedia):  

 ( ), ,A Bλ π=  (6) 

to denote a Discrete HMM, that means with discrete probability distributions, while 

 ( ), , , ,jm jm jmA cλ μ π= Σ  (7) 

is often  used to denote a Continuous HMM  that means with exploitations statics are based 
here on continuous densities functions or distributions.   
Application details to these different forms of HMM will be illustrated in the following parts 
of this chapter. 

3. Basics of HMM in stochastic modelling 

This part of the chapter is a sort of compendium from well known literature (Baum1970), 
(Huang1989), (Huang1990), (Kouemou2010), (Rabiner1986), (Rabiner1989), (Viterbi1967), 
(Warakagoda2010), (Wikipedia2010) in order to introduce the problematic of stochastic 
modelling using Hidden Markov Models. 
In this part some important aspects of modelling Hidden Markov Models in order to solve 
real problems, for example using clearly defined statistical rules, will be presented. The 
stochastic modelling of an HMM automate consist of two steps: 
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• The first step is to define the model architecture 
• The second to define the learning and operating algorithm  

3.1 Definition of HMM architecture 

The following diagram shows a generalized automate architecture of an operating HMM iλ  

with the two integrated stochastic processes. 
  

 
Fig. 2. Generalised Architecture of an operating Hidden Markov Model 

Each shape represents a random variable that can adopt any of a number of values. The 
random variable s(t) is the hidden state at time t. 
The random variable o(t) is the observation at the time t. The law of conditional probability of 
the Hidden Markov variable s(t) at the time t, knowing the values of the hidden variables at all 
times depends only on the value of the hidden variable s(t-1) at the time t-1. Every values 
before are not necessary anymore, so that the Markov property as defined before is satisfied.  
By the second stochastic process, the value of the observed variable o(t) depends on the 
value of the hidden variable s(t) also at the time t. 

3.2 Definition of the learning and operating algorithms – Three basic problems of 
HMMs 
The task of the learning algorithm is to find the best set of state transitions and observation 
(sometimes also called emission) probabilities. Therefore, an output sequence or a set of 
these sequences is given. 
In the following part we will first analyze the three well-known basic problems of Hidden 
Markov Models (Huang1990), (Kouemou2000), (Rabiner1989), (Warakagoda(2009): 

1. The Evaluation Problem 

What is the probability that the given observations 1 2, ,..., TO o o o=  are generated by the 
model { }|p O λ  with a given HMM λ ? 

2. The Decoding Problem 

What is the most likely state sequence in the given model λ  that produced the given 
observations 1 2, ,..., TO o o o= ? 

3. The Learning Problem 

How should we adjust the model parameters { }, ,A B π  in order to maximize { }|p O λ , 
whereat a model λ  and a sequence of observations 1 2, ,..., TO o o o=  are given? 
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The evaluation problem can be used for isolated (word) recognition. Decoding problem is 
related to the continuous recognition as well as to the segmentation. Learning problem must 
be solved, if we want to train an HMM for the subsequent use of recognition tasks. 

3.2.1 The evaluation problem and the forward algorithm 

Given a model ( ), ,A Bλ π=  and a sequence of observations 1 2, ,..., TO o o o= , { }|p O λ  needs 
to be found. Although this quantity can be calculated by the use of simple probabilistic 
arguments, it is not very practicable because the calculation involves number of operations 
in the order of TN . But fortunately there is another calculation method with considerably 
low complexity that uses an auxiliary variable 

 { }1 2( ) , ,..., , |t t ti p o o o q iα λ= =  (8) 

( )t iα  is called forward variable, and 1 2, ,..., To o o  is the partial observation sequence.  

Out of this, the recursive relationship 

 
1 1

1

( ) ( ) ( ) , 1 , 1 1
N

t j t t ij
i

j b o i o j N t Tα α+ +
=

= ≤ ≤ ≤ ≤ −∑  (9) 

with 1 1( ) ( ), 1j jj b o j Nα π= ≤ ≤  follows. 

( ), 1T i i Nα ≤ ≤  can be calculated using this recursion. So the required probability is given 

by 

 { }
1

| ( )
N

T
i

p O iλ α
=

=∑  (10) 

This method is commonly known as the forward algorithm.  
The backward variable ( )t iβ  can be defined similar.  

 { }1 2( ) , ,..., | ,t t t t ti p o o o q iβ λ+ += =  (11) 

Given that the current state is i, ( )t iβ  is the probability of the partial observation 
sequence 1 2, ,...,t t To o o+ + . 

( )t iβ can also be calculated efficiently by using a recursive  

 
1 1

1

( ) ( ) ( ), 1 , 1 1
N

t t ij j t
j

i j a b o i N t Tβ β + +
=

= ≤ ≤ ≤ ≤ −∑  (12) 

where ( ) 1, 1T i i Nβ = ≤ ≤  

Further we can see that, 

 { }( ) ( ) , | , 1 , 1t t ti i p O q i i N t Tα β λ= = ≤ ≤ ≤ ≤  (13) 

So there are two ways to calculate { }|p O λ , either using forward or backward variable: 

 { } { }
1 1

| , | ( ) ( )
N N

t t t
i i

p O p O q i i iλ λ α β
= =

= = =∑ ∑  (14) 
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This equation can be very useful, especially in deriving the formulas required for gradient 
based training. 

3.2.2 The decoding problem and the Viterbi algorithm 

Given a sequence of observations 1 2, ,..., TO o o o=  and a model ( ), ,A Bλ π= , we search for 
the most likely state sequence.  
The definition of “likely state sequence” influences the solution of this problem. In one 
approach, we want to find the most likely state tq  and to concatenate all such ' tq 's. But 
because this approach sometimes does not result in a meaningful state sequence, we want to 
use another method, commonly known as Viterbi algorithm. Using the Viterbi algorithm, 
the whole state sequence with maximum likelihood is found.  
An auxiliary variable is defined that gives the highest probability that partial observation 
sequence and state sequence up to t=t can have, given the current state is i. 

 { }
1 2 1

1 2 1 1 2 1
, ...

( ) max , ,..., , , , ,..., |
t

t t t t
q q q

i p q q q q i o o oδ λ
−

− −= =  (15) 

It follows that 

 1 1
1

( ) ( ) max ( ) , 1 , 1 1t j t t ij
i N

j b o i a i N t Tδ δ+ +
≤ ≤

⎡ ⎤= ≤ ≤ ≤ ≤ −⎢ ⎥⎣ ⎦
 (16) 

with 1 1( ) ( ), 1j jj b o j Nδ π= ≤ ≤  

So we start from the calculation of ( ), 1T j j Nδ ≤ ≤  to calculate the most likely state 
sequence. We always keep a pointer to the ”winning state” in the maximum finding 
operation. It results in state *j , where 

1
* arg max ( )T

j N
j jδ

≤ ≤
= . We start from this state and 

back-track the sequence of states as the pointer in each state indicates. So we get the 
required set of states.  
This whole algorithm can be interpreted as a search in a graph whose nodes are formed by 
the states of the HMM in each of the time instant  , 1t t T≤ ≤ . 

3.2.3 The Learning roblem 

How can we adjust the HMM parameters in a way that a given set of observations (the 
training set) is represented by the model in the best way for the intended application? 
Depending on the application, the “quantity” that should be optimized during the learning 
process differs. So there are several optimization criteria for learning. 
In literature, we can find two main optimization criteria: Maximum Likelihood (ML) and 
Maximum Mutual Information (MMI). The solutions for these criteria are described below. 

3.2.3.1 Maximum Likelihood (ML) criterion 

Given the HMM wλ  of the class w, we try to maximize the probability of a given sequence of 
observations wO , belonging to a given class w, corresponding to the parameters of the 
model wλ . Mathematically, this likelihood can be expressed as 

 { }|w
tot wL p O λ=  (17) 
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Dropping the subscript and superscript 'w's because we consider only one class w at a time, 
the ML can be given as 

 { }|totL p O λ=  (18) 

The model ( ), ,A Bλ π=  that maximizes the quantity totL  cannot be solved analytically as 
there is known way for it. Using an iterative procedure, like Baum-Welch or a gradient 
based method, we can locally maximize it by choosing appropriate model parameters. 

3.2.3.1.1 Baum-Welch Algorithm 

The Baum-Welch algorithm is also known as Forward-Backward algorithm (Baum 1966), 
(Baum1970), (Rabiner1989). 
This method can be derived as well known in the literature by using simple “occurrence 
counting” arguments or using calculus to maximize the auxiliary quantity 

 { } { }( , ) | , log , ,
q

Q p q O p O qλ λ λ λ⎡ ⎤= ⎣ ⎦∑  (19) 

over λ . 
Additionally to the forward and backward variables we need to define two more auxiliary 
variables. 
The first one of these variables is 

 { }1( , ) , | ,t t ti j p q i q j Oξ λ+= = =  (20) 

which can also be written as 

 
{ }

{ }
1, , |

( , )
|

t t
t

p q i q j O
i j

p O

λ
ξ

λ
+= =

=  (21) 

We can use forward and backward variables and these result in 

 1 1

1 1
1 1

( ) ( ) ( )
( , )

( ) ( ) ( )

t ij t j t
t N N

t ij t j t
i j

i a j b o
i j

i a j b o

α β
ξ

α β

+ +

+ +
= =

=

∑∑
 (22) 

The second variable is the a posteriori probability, 

 { }( ) | ,t ti p q i Oγ λ= =  (23) 

In forward and backward variables this can be expressed by, 

 

1

( ) ( )
( )

( ) ( )

t t
t N

t t
i

i i
i

i i

α β
γ

α β
=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
∑

 (24) 

So we can see that the relationship between ( )t iγ  and ( , )t i jξ  is given by, 
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1

( ) ( , ), 1 , 1
N

t t
j

i i j i N t Mγ ξ
=

= ≤ ≤ ≤ ≤∑  (25) 

To maximize the quantity { }|p O λ , we can now describe the Baum-Welch learning process.  
We assume a starting model ( ), ,A Bλ π=  and calculate the 'α 's and ' β 's. After this, we 
calculate the 'ξ  's and ' γ 's. The next equations are known as re-estimation formulas and are 
used to update the HMM parameters: 

 1( ), 1i i i Nπ γ= ≤ ≤  (26) 

 

1

1
1

1

( , )

, 1 , 1

( )

T

t
t

ij T

t
t

i j

a i N j N

i

ξ

γ

−

=
−

=

= ≤ ≤ ≤ ≤
∑

∑
 (27) 

 

1

1

( )

( ) , 1 , 1

( )

t k

T

t
t

o
j T

t
t

j

b k j N k M

j

ν

γ

γ

=
=

=

= ≤ ≤ ≤ ≤

∑

∑
 (28) 

These reestimation formulas can easily be modified to deal with the continuous density case 
too. 

3.2.3.1.2 HMM Parameter Optimization  

The optimization of the parameter κ  of a given HMM λ is usually done by using Gradient 
related algorithms like shown in the following equation: 

 
1

1

t

t t

κ

ψκ κ ς
κ −

− ∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦
 (29) 

By defining  

 { }( )log p Oψ λ= −  (30) 

in order to find the maximum likelihood, the equation 
ψ
κ

∂
∂

for any parameter κ of the HMM 

λ has to be solved in order the minimized ψ . 

The calculated ψ  is therefore the expected Maximum Likelihood obtained by maximizing 
tκ .   

By associating ψ to the HMM model parameters introduced above (see equation 14), we 
then obtain 

 { }
1 1

, ( ) ( )
N N

tot t t t
i i

L p O q i i iλ α β
= =

= = =∑ ∑  (31) 
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The differentiation of the last equality in the equations (29) and (30) relative to the parameter 
κ of the HMM gives 

 
1 tot

tot

L

L

ψ
κ κ

∂∂
= −

∂ ∂
 (32) 

The Equation (32) calculates 
ψ
κ

∂
∂

 under the assumption, that totL

κ
∂
∂

 is solvable. But this 

derivative depends on all the actual parameter of the HMM. 
On the one side there are the transition probabilities , 1 ,ij i N jα ≤ ≥  and on the other side 
the observation probabilities { } { }( ), 1,..., , 1,...,jb k j N k M∈ ∈ . For this reason we have to find 
the derivative for the both probabilities sets and therefore their gradient. 

a) Maximum likelihood gradient depending on transition probabilities 

In order to calculate the gradient depending on transition probabilities, the Markov rule is 
usually assumed like following: 

 
1

( )

( )

T
ttot tot

ij t ijt

jL L

j

α
α α α=

∂∂ ∂
=

∂ ∂ ∂∑  (33) 

The simple differentiation 

 ( )
( )
tot

t
t

L
j

j
β

α
∂

=
∂

 (34) 

as well as the time delay differentiation  

 1
( )

( ) ( )t
j t t

ij

j
b i

α
α α

α −
∂

=
∂

 (35) 

gives after parameter substitutions the well known result 

  1
1

1
( ) ( ) ( )

T

t j t t
ij tot t

j b i
L

ψ β α α
α −

=

∂
= −

∂ ∑  (36) 

b) Maximum Likelihood gradient depending on observation probabilities 

In a similar matter as introduced above, the gradient depending on observation probabilities 
using the Markov rule is calculated.   
With  

 
( )

( ) ( ) ( )
ttot tot

j t t j t

jL L

b o j b o

α
α

∂∂ ∂
=

∂ ∂ ∂
 (37) 

and  

 
( ) ( )

( ) ( )
t t

j t j t

j j

b o b o

α α∂
=

∂
 (38) 
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the estimation probability is then calculated and results to 

 
( ) ( )1

( ) ( )
t t

j t tot j t

j j

b o L b o

α βψ∂
= −

∂
. (39) 

In the case of "Continuous Hidden-Markov-Models" or "Semi-Continuous Hidden-Markov-

Models" the densities , ,
jm jm jm

c

ψ ψ ψ
μ

∂ ∂ ∂
∂ ∂ ∂∑

are usually calculated similarly by just further 

propagating the derivative 
( )j tb o

ψ∂
∂

assuming the Markov chain rules. 

3.2.3.2 Maximum Mutual Information (MMI) criterion 

Generally, in order to solve problems using Hidden Markov Models for example for 
engineering pattern recognition applications, there are two general types of stochastic 
optimization processes: on the one side, the Maximum Likelihood optimization process and 
on the other side the Maximum Mutual Information Process. The role of the Maximum 
Likelihood is to optimize the different parameters of a single given HMM class at a time 
independent of the HMM Parameters of the rest classes. This procedure will be repeated for 
every other HMM for each other class.  
In addition to the Maximum Likelihood, differences of the Maximum Mutual Infomation 
Methods are usually used in practice in order to solve the discrimination problematic in 
pattern recognition applications between every class that has to be recognized in a given 
problem. At the end one can obtain a special robust trained HMM-based system, thanks to 
the well known "discriminative training methodics".  
The basics of the Minimum Mutual Information calculations can be introduced by assuming 
a set of HMMs 

 { }{ }, 1,...,Vνλ νΛ = ∈  (40) 

of a given pattern recognition problem. 
The purpose of the optimization criterion will consist here of minimizing the "conditional 
uncertainty" ν of one "complete unit by a given real world problem" given an observation 
sequence sO  of that class.  

 ( ) { }, log ,s sI v O p v OΛ = − Λ  (41) 

This results in an art of minimization of the conditional entropy H, that can be also defined 
as the expectation of the conditional information I:   

 ( ) { },sH V O E v O⎡ ⎤= Λ⎢ ⎥⎣ ⎦
 (42) 

in which V is the set of all classes and O is the set of all observation sequences. 
Therefore, the mutual information between the classes and observations  

 ( ) ( ) ( )S
H V O H V H V O= −  (43) 
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is a maximized constant with ( )H V , hence the name "Maximum Mutual Information" 
criterion (MMI). 
In many literatures this technique is also well known as the "Maximum à Posteriori" method 
(MAP). 

Generally Definition and Basics of the "Maximum à Posteriori" Estimation: 

In Bayesian statistics, a maximum a posteriori probability (MAP) estimate is a mode of the 
posterior distribution. The MAP can be used to obtain a point estimate of an unobserved 
quantity on the basis of empirical data. It is closely related to Fisher's method of maximum 
likelihood (ML), but employs an augmented optimization objective which incorporates a 
prior distribution over the quantity one wants to estimate. MAP estimation can therefore be 
seen as a regularization of ML estimation. 

Generally Description of the "Maximum à Posteriori" Estimation: 

Assume that we want to estimate an unobserved Markov Model λ  on the basis of 
observations o. By defining f as the sampling distribution of the observations o, so 
that ( )f o λ  is the probability of o when the underlying Markov Model is λ . The 
function ( )f oλ λU  can be defined as the likelihood function, so the estimate 

 ˆ ( ) arg max ( )ML o f o
λ

λ λ=  (44) 

is the maximum likelihood estimate of the Markov Model λ . 
Now when we assume that a prior distribution χ over the models λ exists, we can treat 
λ as a random variable as in the classical Bayesian statistics.  
The posterior distribution of λ is therefore:  

 ( )
'

'

' ' '

( ) ( )

( ) ( )

f o
f o

f o

λ

λ χ λ
λ λ

λ χ λ λ
∈Λ

=
∂∫

U  (45) 

where χ  is the density function of λ  and Λ  is the domain of χ as application of the Bayes' 
theorem. 
The method of maximum a posteriori estimation then estimates the Markov Model λ  as the 
mode of the posterior distribution of this random variable: 

 

'

' ' '

( ) ( )ˆ ( ) arg max arg max ( ) ( )
( ) ( )

ML

f o
o f o

f oλ λ

λ

λ χ λ
λ λ χ λ

λ χ λ λ
∈Λ

= =
∂∫

 (46) 

The denominator of the posterior distribution does not depend on λ and therefore plays no 
role in the optimization. The MAP estimate of the Markov Modells λ  coincides with the ML 
estimate when the prior χ  is uniform (that is, a constant function). The MAP estimate is a 
limit of Bayes estimators under a sequence of 0-1 loss functions. 

Application of the "Maximum à Posteriori" for the HMM 

According to these basics of the "Maximum à Posteriori" above, the posteriori probability 

{ },cp Oν Λ  is maximised when the MMI criteria yields using the Bayes theorem to: 

www.intechopen.com



 Hidden Markov Models, Theory and Applications 

 

16 

 

{ } { }
{ }

{ }
{ }Λ

Λ
−=

Λ
Λ

−=Λ−==
c

c

c

c

s

MMIMAP
Op

Op

Op

Op
OvpEE

,

,
log

,
log,log

ω
νν

 
(47)

 

where ω   is any possible class. 
By using similar notation as in (17), the likelihoods can be written as following: 

 { },correct c
totL p Oν λ=  (48) 

 { },others c
totL p O

ω
ω λ=∑  (49) 

where indices "correct" and "others" distinguish between the correct class and all the other 
classes. 
From the both equation above we then obtain expectations of the MMI or MAP as: 

 log
correct
tot

MAP MMI other
tot

L
E E

L
= = −  (50) 

In analogy to the Maximum Likelihood, in order to minimize MMIE , we can assume that 

MMIEψ = , and derive the gradients after 
ψ
κ

∂
∂

 using the well known gradient related 

algorithms, where κ is an arbitrary parameter of the whole set of HMMs, Λ . 
In analogy to the Maximum Likelihood estimation methods above, we then obtain 

 
κκκ

ψ
∂

∂
−

∂
∂

=
∂
∂ correct

tot

correct

tot

others

tot

others

tot

L

L

L

L

11

 

(51) 

 

with ( ) ( )correct
tot t t

i class

L i i
υ
α β

∈

= ∑  and ( ) ( )others
tot t t

i class w

L i i
ω

α β
∈

=∑ ∑ . 

With the same procedure as for the Maximum Likelihood, the transition and observation 
probabilities must also be calculated as illustrated in the next steps by using the general law 
of the Markov chain. 

a) Maximum Mutual Information gradient depending on transition probabilities 

By using the well known Kronecker symbol kvδ , the calculation basics then yields to  

 
( ) ( )

1

( )

( )

correct or others correct or othersT
ttot tot

ij t iji

jL L

j

α
α α α=

∂∂ ∂
=

∂ ∂ ∂∑  (52)  

with  

 

( )

1
1

( ) ( ) ( )
correct T
tot

kv t j t t
ij i

L
j b o i

i class k

δ β α
α −

=

∂
= ∂

∂

∈

∑
 (53) 
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and 

 
( )

1
1

( ) ( ) ( )
others T

tot
t j t t

ij i

L
j b o iβ α

α −
=

∂
=

∂ ∑  (54) 

 

After simplification one obtain 

 1( ) ( )
1

1
( ) ( ) ( )

T
kv

t j t tothers correct
ij itot tot

j b o i
L L

i class k

δψ β α
α −

=

⎡ ⎤∂
= −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∈

∑ . (55) 

b) Maximum Mutual Information gradient depending on observation probabilities 

The calculation of the Maximum Mutual Information gradient depending on observation 
probabilities is similar to the description above according to the Markov chain rules as 
following: 

 
( ) ( ) ( )

( ) ( ) ( )

correct or others correct or others
ttot tot

j t t j t

jL L

b o j b o

α
α

∂∂ ∂
=

∂ ∂ ∂
. (56) 

After differentiation after ( )t jα and simplification using the Kronecker function kvδ , the 
"correct" as well as the "others" variant are extracted usually as following:  

 
( ) ( )

( ) ( )

correct
t ttot

kv
j t j t

j jL

b o b o

j class k

α β
δ

∂
=

∂

∈

 (57) 

 

and 

 ( ) ( )

( ) ( )

others
t ttot

j t j t

j jL

b o b o

α β∂
=

∂
 (58) 

 

After further simplifications one obtain 

 
( ) ( )1

( ) ( )
t tkv

others correct
j t j ttot tot

j j

b o b oL L

j class k

α βδ⎡ ⎤∂Ψ
= −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∈

 (59) 

 

With 
( ) ( )

( )correct t t
t kv correct

tot

j j
j

L

j class k

α β
γ δ=

∈

and 
( ) ( )

( )others t t
t correct

tot

j j
j

L

α β
γ =  

follows: 

 
1

( ) ( )
( ) ( )

others correct
t t

j t j t

j j
b o b o

γ γ∂Ψ ⎡ ⎤= −⎣ ⎦∂
. (60) 
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4. Types of Hidden Markov Models 

Nowadays, depending on problem complexities, signal processing requirements and 
applications, it is indispensable to choose the appropriate type of HMM very early in the 
concept and design phase of modern HMM based systems. In this part different types of 
HMMs will be introduced and some generalized criteria will be shown for how to choose 
the right type in order to solve different kinds of problems (Huang1989), (Kouemou2008), 
(Rabiner1989). 

4.1 Discrete HMM 

Problematic: assuming that we have continuous valued feature vectors we will summarize 
in this section how to use Discrete Hidden Markov Models to solve this problem. 
Generalized Methodology: the following three steps have to be processed:  
1. A set of d-dimensional real valued vectors should be reduced to k d-dimensional 

vectors å vector quantization by codebook (k-means cluster algorithm) 
2. Find the nearest codebook vector for the current feature vector 
3. Use the index of this codebook vector for DHMM emission symbol / input 
The following diagram illustrates the generalized steps needed. 
 

 
Fig. 3. Simplified Generation Procedure of a codebook by "Discrete Hidden Markov Model" 

Details can be read in (Huang1989), (Kouemou2008), (Rabiner1989), (Warakagoda2010). 

4.2 Continuous HMM 

It is assumed that the output pdf can be written as  

 
1

( ) ( | )
K

t jk jk
k

b x c N x θ
=

=∑  (61) 

with 
1

1
K

jk
k

c
=

=∑ , where jkc  is the mixture coefficient and ( | )jkN x θ  is the Gaussian density. 

For each state K multivariate Gaussian densities and K mixture coefficients have to be 
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estimated. This result in the following parameters for each state: covariance matrix, mean 
vector and mixture coefficients vector. 
A continuous Hidden Markov Model is a three-layered stochastic process. The first part is, 
equal to DHMM, the selection of the next state. The second and the third part are similar to 
the selection of emission symbol with DHMM, whereas the second part of CHMM is the 
selection of the mixture density by mixture coefficient. The selection of the output symbol 
(vector) by the Gaussian density is the third and last part. 
The classification and training algorithms have to be modified. There are only minor 
changes in the classification algorithm: the modified probability densities have to be 
substituted. The Baum-Welch/Viterbi trainings algorithms have to be modified by 
additional calculation. 
The disadvantage is a high computational effort. The Gaussian distributions have to be 
evaluated and the high number of parameters probably may result in instabilities. 
 

 
Fig. 4. Illustration of exemplary statistical distributions by continuous "Hidden Markov 
Models" 

Details can be read in (Huang1989), (Kouemou2008), (Rabiner1989), (Warakagoda2010). 

4.3 Semi-continuous HMM 

The semi-continuous HMM can be seen as a compromise between DHMM and CHMM. It is 
assumed that the output pdf can be written as  

 
1

( ) ( | )
K

t jk k
k

b x c P x θ
=

=∑  (62) 

with 
1

1
K

jk
k

c
=

=∑ , where jkc  is the mixture coefficient and ( | )kP x θ  the Gaussian distribution. 

Overall, K multivariate Gaussian distributions and K mixture coefficients have to be 
estimated. In contrast to the CHMM, we the same set of Gaussian mixture densities is used 
for all states. 
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Fig. 5. Simple Illustration of the densities distribution CHMM vs. SCHMM.   

Like the CHMM, the SCHMM is a three-layered stochastic process. After the next state has 
been selected, there will be the selection of the mixture density by the mixture coefficient. 
Third, the output symbol (vector) has to be selected by Gaussian density. The second and 
third step is similar to the selection of emission symbol with DHMM. There have to be some 
modifications of classification and training algorithms, too. For classification algorithm, the 
modified probability densities have to be modified and the Baum-Welch/Viterbi training 
algorithm are modified by additional calculations. 
The disadvantage is a high computational effort. The Gaussian distributions have to be 
evaluated and the high number of parameters probably may result in instabilities. 
Altogether, the modifications are similar to those in the CHMM, but the number of 
parameters is reduces significantly. 
Details can be read in (Huang1989), (Kouemou2008), (Rabiner1989), (Warakagoda2010). 

5. Basics of HMM in modern engineering processing applications 

Nowadays, Hidden Markov Models are used in a lot of well-known systems all over the 
world. In this part of the chapter some general recommendations to be respected by creating 
an HMM for operational applications will first be introduced, followed by practical 
examples in the financial word, bioinformatics and speech recognition. This chapter part 
consists of the following under chapters: 
• 5.1. General recommendations for creating HMMs in the practice 
• 5.2. Application Examples in Financial Mathematics World, Bank and Assurances 
• 5.3. Application Example in Bioinformatics and Genetics 
• 5.4. Speech recognition and further Application Examples  

5.1 General recommendations for creating HMMs in the practice  
5.1.1 Creation of HMM architecture 

The basis for creating an HMM for practical applications is a good understanding of the real 
world problem, e.g. the physical, chemical, biological or social behaviour of the process that 
should be modelled as well as its stochastic components. The first step is to check if the laws 
for Markov chains are fulfilled, that means if it is a Markov process as defined above. 
If these laws are fulfilled, exemplary models can be structured with the help of the 
understanding of the relationships between the states of each Markov Model. Deterministic 
and stochastic characteristics in the process shall be clearly separated. After all of these steps 
are executed, the technical requirements of the system also have to be taken into 
consideration. It is very important to consider the specification of the signal processor in the 
running device. 
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5.1.2 Learning or adapting an HMM to a given real problem 

First of all, different elements of the real problem to be analyzed have to be disaggregated in 
a form of Markov models. A set of Hidden Markov Models has to be defined that represents 
the whole real world problem. There are several points that have to be kept in mind, e.g. 
What should be recognized?, What is the input into the model, what is the output? 
The whole learning process is done in two steps. In the first step learning data have to be 
organized, e.g. by performing measurements and data recording. If measurement is too 
complex or not possible, one can also recommend using simulated data. During the second 
step the learning session is started, that means the Markov parameters as explained in the 
chapters above are adapted. 

5.2 Application examples in financial mathematics world, bank and assurances 

Nowadays, many authors are known from literature for using HMMs and derivative in 
order to solve problems in the world of financial mathematics, banking and assurance 
(Ince2005), (Knab2000), (Knab2003), (Wichern2001). The following example was published 
by B. Knapp et.al. “Model-based clustering with Hidden Markov Model and its application 
to financial time-series data” and presents a method for clustering data which must be 
performed well for the task of generating statistic models for prediction of loan bank 
customer collectives. The generated clusters represent groups of customers with similar 
behaviour. The prediction quality exceeds the previously used k-mean based approach. 
The following diagram gives an overview over the results of their experiment: 
 

 
Fig. 6. Example of a Hidden Markov Model used by Knap et.al. in order to model the three 
phases of a loan banking contract 

5.3 Application example in bioinformatics and genetics 

Other areas where the use of HMMs and derivatives becomes more and more interesting are 
biosciences, bioinformatics and genetics (Asai1993), (Schliep2003), (Won2004), (Yada1994), 
(Yada1996), (Yada1998).  
A. Schliep et al., presented 2003 for example, in the paper “Using hidden Markov models to 
analyze gene expression time course data”, a practical method which aim "to account for the  
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Fig. 7. Exemplary results of Knap et.al: examined “sum of relative saving amount per 
sequence” of the real data of bank customers and a prediction of three different models. 

 

 
Fig. 8. Flow diagram of the Genetic Algorithm Hidden Markov Models (GA-HMM) 
algorithm according to K.J. Won et.al. 

horizontal dependencies along the time axis in time course data" and "to cope with the 
prevalent errors and missing values" while observing, analysing and predicting the 
behaviour of gene data. 
The experiments and evaluations were simulated using the "ghmm-software", a freely 
available tool of the "Max Planck Institute for Molecular Genetics", in Berlin Germany 
(GHMM2010). 
K.J. Won et.al. presented, 2004, in the paper “Training HMM Structure with Genetic 
Algorithm for Biological Sequence Analysis” a training strategy using genetic algorithms for 
HMMs (GA-HMM). The purpose of that algorithm consists of using genetic algorithm and is 
tested on finding HMM structures for the promoter and coding region of the bacterium 
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C.jejuni. It also allows HMMs with different numbers of states to evolve. In order to prevent 
over-fitting, a separate data set is used for comparing the performance of the HMMs to that 
used for the Baum-Welch-Training. K.J. Won et.al. found out that the GA-HMM was capable 
of finding an HMM, comparable to a hand-coded HMM designed for the same task. The 
following figure shows the flow diagram of the published GA-HMM algorithm. 
 

                
Fig. 9. Result during GA-HMM training after K.J. Won et.al.: (a) shows the fitness value of 
fittest individual on each iteration (b) shows average number of states for periodic signal. 
The GA started with a population consisting of 2 states. After 150 generations the HMM 
have a length of 10 states. Although the length does not significantly change thereafter the 
fitness continues to improve indicating that the finer structure is being fine tuned. 

 

 
Fig. 10. Exemplary result of the GA-HMM structure model for a given periodic signal after 
training the C.jejuni sequences (K.J. Won). 

5.4 Speech recognition and further application examples 

Hidden Markov Models are also used in many other areas in modern sciences or 
engineering applications, e.g. in temporal pattern recognition such as speech, handwriting, 
gesture recognition, part-of-speech tagging, musical score following, partial discharges. 
Some authors even used HMM in order to explain or predict the behaviour of persons or 
group of persons in the area of social sciences or politics (Schrodt1998). 
One of the leading application area were the HMMs are still predominant is the area of 
"speech recognition" (Baum1970), (Burke1958), (Charniak1993), (Huang1989), (Huang1990), 
(Lee1989,1), (Lee1989,2), (Lee1990), (Rabiner1989). 
In all applications presented in this chapter, the "confusions matrices" is widely spread in 
order to evaluate the performance of HMM-based-Systems. Each row of the matrix 
represents the instances in a predicted class, while each column represents the instances in 
an actual class. One benefit of a confusion matrix is that it is easy to see if the system is 
confusing two classes (i.e. commonly mislabelling one as another). When a data set is 
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unbalanced, this usually happens when the number of samples in different classes varies 
greatly, the error rate of a classifier is not representative of the true performance of the 
classifier. This can easily be understood by an example: If there are 980 samples from class 1 
and only 20 samples from class 2, the classifier can easily be biased towards class 1. If the 
classifier classifies all the samples as class 1, the accuracy will be 98%. This is not a good 
indication of the classifier's true performance. The classifier has a 100% recognition rate for 
class 1 but a 0% recognition rate for class 2. 
The following diagram shows a simplified confusion-matrix of a specified character 
recognition device for the words "A","B","C","D","E" of the German language using a very 
simple "HMM-Model", trained data from 10 different persons and tested on 20 different 
persons, only for illustration purpose.  
 

"A" 99,5 0 0 0 0 0,5 

"B" 0 95 1,4 1,6 0,5 1,5 

"C" 0 1,7 95,1 1,3 0,7 1,2 

"D" 0 1 1,6 95,7 0,4 1,3 

"P
red

icted
" or "labeled

 as" "E" 0 0,1 0,05 0,05 99,6 0,2 

"A" "B" "C" "D" "E" rejected 
 

"Actual" or "Recognized as" or "Classified as" 

Table: Example of a Confusion Matrix for simple word recognition in the German language. 

Depending on the values of the confusion matrix one call also derive typical performances 
of the HMM-based automate like: the general correct classification rate, the general false 
classification rate, the general confidences or sensitivities of the classifiers. 

6. Conclusion 

In this chapter the history and fundamentals of Hidden Markov Models were shown. The 
important basics and frameworks of mathematical modelling were introduced. 
Furthermore, some examples of HMMs and how they can be applied were introduced and 
discussed focussed on real engineering problems. 
For more detailed analysis a considerable list of literature and state of the art is given. 
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