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1. Introduction

Hidden Markov models (HMM) have been successfully applied in molecular biology,
especially in several areas of computational biology. For example, it is used to model protein
families, to construct multiple sequence alignments, to determine protein domains in a query
sequence or to predict the topology of transmembrane beta-barrels proteins (Bateman et al.,
2004; Durbin et al., 1998; Krogh et al., 1994; Pang et al., 2010).

Proteins are macromolecules responsible for performing many important tasks in living
organisms. The function of proteins strongly depends on their shapes. For example, carrier
proteins should recognize the molecules they carry such as hemoglobins should recognize
oxygen atoms, anti-bodies their antigens,... Protein misfolding may cause malfunctions such
as Parkinson and Alzheimer diseases. Therefore, it is necessary to know the structure of a
protein to understand its functions and the disturbances caused by the inappropriate behavior
derived from misfolding. Precisely this knowledge makes it possible to develop drugs and
vaccines and synthetize proteins which, for example, disable the regions of virus activity,
preventing them from acting on the cells.
The exploration of protein structures, in its initial phase, consisted in simplifying
three-dimensional (3D) structures into secondary structures, including the well-known
repetitive and regular zone - the α-helix (30% of protein residues) and the β-sheet (20%). The
remaining elements (50% of residues) constitute a category called loops, often considered as
structurally variable, and decomposed into some subcategories such as turns (see Frishman
& Argos, 1995, for example). Although the prediction of secondary structure types can be
achieved with a success rate of 80%, the description of the secondary structures of a protein
does not provide per se an accurate enough description to allow the characterization of the
complete structure of proteins.
Moreover, protein structures are determined experimentally mostly by X-ray crystallography
and nuclear magnetic resonance (NMR) techniques. Both require sophisticated laboratories,
are time and cost expensive and cannot be applied to all proteins. On the other hand,
the methods consisting in protein sequencing are easier and less expensive than methods
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implying structure determination. The recent genome sequencing projects (Siva, 2008;
Waterston et al., 2002) have provided sequence information for a large number of proteins.
Consequentely, Swiss-Prot database release 57.6 (Boeckmann et al., 2003), a curated protein
sequence database provided by the Universal Protein Knowledgebase (UniProt) consortium,
contains sequences of more than 13,069,501 distinct proteins (Consortium, 2010), whereas the
Protein Data Bank (PDB) (Henrick et al., 2998) contains 70,000 distinct protein structures.
Thus, there is an increasing gap between the number of available protein sequences and
experimentally derived protein structures, which makes it even more important to improve
the methods for 3D structure protein prediction.
Thus, an important challenge in structural bioinformatics is to obtain an accurate 3D structural
knowledge about proteins in order to obtain a detailed functional characterization and a better
understanding. With the increase of available 3D structures of proteins, many studies (Baeten
et al., 2010; Brevern et al., 2000; Bystroff et al., 2000; Kolodny et al., 2002; Micheletti et al., 2000;
Pandini et al., 2010; Unger et al., 1989), have focused on the identification of a detailed and
systematic decomposition of structures into a finite set of generic protein fragments. Despite
the fact that some libraries provide an accurate approximation of protein conformation, their
identification teaches us little about the way protein structures are organized. They do not
consider the rules that govern the assembly process of the local fragments to produce a
protein structure. An obvious mean of overcoming such limitations is to consider that the
series of representative fragments describing protein structures are in fact not independent
but governed by a Markovian process. In this chapter, the first part presents the development
of a HMM approach to analyze 3D protein architecture. We present the use of a HMM
to identify a library of representative fragments, called Structural Letters (SLs) and their
transition process, resulting in a structural alphabet, called HMM-SA, decomposing protein
3D conformations. The aim of this part is to assess how much HMM is able to yield
insights into the modular framework of proteins, i.e. to encode protein backbones into
uni-dimensional (1D) sequentially dependent SLs. The HMM-SA is a very performant tool
to simplify 3D conformation of proteins and such a simplification can constitute a very
relevant way to analyze protein architecture. Different applications of HMM-SA for structure
analysis are listed, such as loop modelling, protein structure comparison, analysis of protein
deformation during protein interactions, analysis of protein contacts, detection and prediction
of exceptional structural patterns.
The second part of the chapter presents a contribution to the important challenge of protein
structure prediction by predicting through another HMM the presence/absence of functional
patterns identified thanks to HMM-SA. The method can be decomposed into two steps: in
a first time, a simple link between amino-acids (AAs) and SLs is learned through boolean
functions, then, a HMM is used to take into account the results of the first step as long
as the dependencies between successive SLs. The first step is independent on the studied
pattern whereas a new HMM is automatically built for each new pattern. The method will be
illustrated on three examples.

2. HMM-SA obtention

2.1 Datasets and description of three dimensional conformations

The data extraction of HMM-SA is performed from a collection of 1,429 non-redundant
protein structures (Berstein et al., 1977) extracted from the PDB. The selected proteins have
a crystallographic resolution lower than 2.5 Å and less than 30% sequence identity with one
another (Hobohm et al., 1992). Because the structure of the model is based on local dependence
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between successive residues in each protein, all non-contiguous protein chains (i.e. those
containing fragments that spanned gaps) were eliminated from the dataset. The polypeptide
chains were scanned in overlapping windows that encompassed four successive α-carbons
(Cα), thereby producing a succession of short-backbone chain fragments. As in some previous
studies (Pavone et al., 1996; Rackovsky, 1993; Rooman et al., 1990; Smith et al., 1997), we used
four-residue lengths, which contain enough information to find basic structural elements:
four-residue turns for α-helices, bridges for β-sheets and undefined loop structures. Moreover,
a four-residue segment is small enough to keep the number of SL categories reasonable.
Increasing the number of residues per segment would introduce larger variability and would
lead to a larger number of categories.
The collection of 1,429 proteins represents a total of 332,493 four-residue fragments. Protein
structures are described using the distances between Cα, see Figure 1a, as series of overlapping
fragments of four-residue length (Camproux et al., 1999a). Let Cα1 , Cα2 , . . . , Cαn be the n
carbon atoms of the backbone structure of the protein. From these data, we build a sequence
X0, X1, . . . , Xn−4 such as Xi = (X1

i , X2
i , X3

i , X4
i ) ∈ R

4 with:

X1
i = ||

−−−−−−→
Cαi+1Cαi+3 ||; X2

i = ||
−−−−−−→
Cαi+1Cαi+4 ||; X3

i = ||
−−−−−−→
Cαi+2Cαi+4 ||;

X4
i =

−−−−−−→
Cαi+1Cαi+2 ∧

−−−−−−→
Cαi+2Cαi+3

||
−−−−−−→
Cαi+1Cαi+2 ∧

−−−−−−→
Cαi+2Cαi+3 ||

×
−−−−−−→
Cαi+3Cαi+4 .

The three values X1
i , X2

i , X3
i correspond to distances between the non consecutive

(Cα1 , Cα2 , Cα3 , Cα4) and X4
i the oriented projection of the last α-carbon Cα4 onto the plane

formed by the three first ones, as shown in Figure 1a. The three distances between consecutive
Cα are not considered in this approach because fewly variable.
The first and third distances (X1

i , X3
i ) describe the opening of the beginning and end of a

four-residue fragment and X2
i describes the global length of this fragment. X4

i is proportionnal
to the determinant of the three vectors defined by the successive Cα pairs normalized by the
norm or modulus of the first two vectors. This descriptor is proportional to the distance of
the four Cα to the plane P built by the first three Cα. The sign of X4

i indicates the topological
orientation of the fragment relative to P : trigonometric, i.e. the fourth α-carbon Cα4 is located
above P (for a positive value of X4

i ) and inverse trigonometric, i.e. the fourth α-carbon Cα4 is
located below P (for a negative value of X4

i ). X4
i not only gives the direction of the fragment

fold but also provides direct interpretable information about the volume of the fragment. A
flat fragment, i.e. with no volume, corresponds to a value of X4

i close to 0.

2.2 HMM modelling

In the first work, the idea was to consider the model of Figure 2 where all Xi are generated
independently from each other conditionally to one out of the K hidden states Si ∈ S =
{1, 2, . . . , K} such as:

L(Xi|Si = r) ∼ N (µr, Σr) ∀r ∈ S (1)

with N (µr, Σr) four-dimensional multi-normal density with parameters (µr, Σr) describing
the average descriptors, the variability of each descriptor and the covariance between
descriptors as estimated on the associated fragments. We additionally consider two types
of model to identify a structural alphabet corresponding to K SLs: (i) a simple process without
memory or (ii) a HMM process with memory of order 1.
Model without Memory, denoted MM(order 0), assuming independence of the K SLs, is
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Fig. 1. Encoding of 3D conformation of proteins using HMM-SA with 27 SLs. (a)
Representation of the four descriptors (X1

i , . . . , X4
i ), used to describe the 3D conformation of

four successive Cα fragments. (b) Geometry of the final 27 SLs, ranked by corresponding
secondary structures. (c) 3D representation of the B chain of protein 1gpw colored according
to its SL encoding. (d) Final 1D SL encoding of the B chain of protein 1gpw.

identified by training simple finite mixture of four-dimensional multi-normal densities.
Model assuming that the sequence (Si) is distributed according to a homogeneous Markov
chain with starting distribution ν and transition matrix τ is defined by:

P(S1 = r) = ν(r) and P(Si+1 = s|Si = r) = τ(r, s) ∀r, s ∈ S . (2)

It hence results in a model with (14K + K2 − 1) parameters.

2.3 Model selection: Statistical criteria to determine the optimal number of SLs

The classical model selection approach is based on the parsimony principle: we want to select
the model that better fits the data with the smallest possible complexity. This typically leads
to penalized likelihood criteria like the Bayesian Information Criterion (BIC, Schwartz, 1978)
which balances the log-likelihood of the model and a penalization term related to the number
of parameters of the model and the sample size. In the first work, structural alphabets of
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Fig. 2. Graph of dependencies in the simplest model with n = 7 Cα hence resulting in a total
of n − 3 = 4 SLs.

different sizes K, denoted SA−K were learned on two independent learning sets of proteins
by progressively increasing K, and using the two types of model detailed in section 2.2 (with
or without memory) and compared using BIC.

2.4 Encoding proteins

One ultimate goal is to reconstruct the unobserved (hidden) SL sequence of the polypeptidic
chains, given the corresponding four-dimensional vectors of descriptors, and to provide a
classification of successive fragments in K SLs. For a given 3D conformation and a selected
model (fixed number K of SLs), the corresponding best SL sequence among all the possible
paths in Sn = {1, 2, . . . , K}n can be reconstructed by a dynamic programming algorithm based
on Markovian process.
Once a model has been selected and its parameters estimated, we classically use the Viterbi’s
algorithm (Rabiner, 1989) in order to obtain the Maximum A Posteriori (MAP) encoding:

ŝMAP = arg max
s

ℓ(θ̂|X = x, S = s). (3)

We used this approach to optimally describe each structure as a serie of SLs. This process of
compression of 3D protein conformation into 1D SL sequence is illustrated in Figure 1c,d, on
the structure of chain B of the amidotransferase (pdb ID: 1gpw_B). This protein is coloured
after HMM-SA encoding, according to its corresponding series of SLs.
Assessing the discretization of protein structures
For a given SL, the average Root-Mean-Square deviation (RMSd) between Cα coordinates,
that is an Euclidean distance of the fragments to their centroid best superimposed, is used to
measure the structural variability of each SL. For two given fragments, the RMSd between Cα

coordinates of superimposed fragments is used to measure their structural proximity.
To reconstruct the protein 3D structures from their description as a series of SLs, and to
keep some possible comparisons, we use the building procedure employed by Kolodny et al.
(2002). Briefly, the fragments are assembled using an iterative concatenation procedure to
adjust 3D conformation.

3. HMM-SA as a general concept to simplify 3D protein structure analysis ?

3.1 Results of HMM-SA identification

HMM-SA is weakly dependent on the learning set
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Structural alphabet of increasing sizes using either HMM or MM are learned and compared
on the basis of their goodness of fit. The influence of the Markovian process is large. For
MM, no BIC optimum is reached until alphabet sizes of 70 whereas, for HMM, a larger
optimum is reached for 27 hidden states, which means a better fit of the data using HMM.
Interestingly, the Markov classification takes advantage of information implicitly contained
in the succession of observations to greatly reduce the number of SLs, while keeping a more
homogeneous repartition of fragments into the different SLs (the least frequent SL represents
1.5% of fragments).
Similar results are obtained using two independent learning sets of 250 proteins with
similar BIC curves evolution. It follows that, at the optimum, structural alphabet is very
weakly dependent on the learning set, which in turn suggests that the learned model can
be considered as representative of all protein structures. The optimal structural alphabet,
HMM-SA, obtained by using statistical criterion BIC, corresponds to 27 SLs and their
transition matrix. Main characteristics of HMM-SA (Camproux et al., 2004) are briefly
summarized below.
Geometrical and logical description of HMM-SA
The 27 identified SLs are denoted as (case sensitive) structural letters: namely a, A, B, ..., Y, Z.
The set of SLs, sorted by increasing stretches is presented in Figure 1b and their transitions
constitute the structural alphabet, HMM-SA. The local fit approximation is low, as quantified
by the average Cα RMSd to the centroid associated with each SL (0.23 ± 0.14 Å). Concerning
description of logic of protein architecture, 66% of the 729 possible transitions between SLs
have frequencies of less than 1%. The existence of pathways between SLs is observed, obeying
some precise and unidirectional rules. These results are detailed in Camproux et al. (1999b;
2004).
Actually, SLs associated with close shapes have been distinguished by different logical rules.
SLs A, a, V, W appear almost exclusively in α-helices (more than 92% of associated fragments
assigned to α-helices) while five SLs L, N, M, T, X are mostly located in extended structures
(from 47% to 78% of associated fragments assigned to strands). Interestingly, the other 18 SLs
are involved in loops description, which is particularly interesting given the variability of loop
structures and their implication in numerous important processes.
The stochastic HMM approach allows (i) the characterization of different short structural 3D
SLs (ii) the description of the heterogeneity of their corresponding short fragments and (iii)
the study of their global organization by quantifying their connections. The transition matrix
only shows a limited number of transitions between SLs, indicating that the connections by
which the SLs form the protein structures are well organized.
Moreover, the learning process attempts to optimize the likelihood associated with the entire
trajectories of the proteins, resulting in propagation of such long range conditioning to the
short range constraints that are learned. Our model fits well the previous knowledge related
to protein architecture organisation and seems able to grab some subtle details of protein
organisation, such as helix sub-level organisation schemes. For instance, the two closest SLs
A, a in terms of geometry, close to canonical α-helix, are distinguished by different prefered
transitions. Taking into account the dependence between the states results in a description
of local protein structures of low complexity. Although we use short fragments, the learning
process on entire protein conformations captures the logic of the assembly on a larger scale.
HMM-SA shows very reasonable performance in terms of reconstruction of the whole protein
structure accuracy, (RMSd value less than 1 Å), compared to other recent fragment libraries
optimized in a purpose of reconstruction (Kolodny et al., 2002; Micheletti et al., 2000).
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Subsequently, HMM-SA provides some kind of compression from the 3D protein coordinate
space into the 1D structural alphabet space (see Figure 1 c,d). From such 1D encoding and
the associated logical rules, it is possible to tackle the exploration of 3D protein conformations
using 1D techniques, as performed in classical sequence analysis. This widens the perspective
of being able to work with a 1D representation of 3D structures much beyond the simple
search of exact words, through the use of the classical 1D AA alignment methods. We have
explored different directions in which this facility could be of interest.

3.2 Different sucessful applications of HMM-SA

Different applications of HMM-SA have been explored, such as:

• study of conformations of side chains in protein structures (Gautier et al.,
2004). It establishes a set of tools for analyzing lateral chain conformations of
proteins in the server Ressource Parisienne en Bioinformatique Structurale (RPBS,
http://bioserv.rpbs.jussieu.fr/cgi-bin/SCit);

• improvement of protein fold recognition from AA content compared to classical methods
by adding Markovian information (Deschavanne et al., 2009);

The detection and analysis of structural similarities of proteins can provide important
insights into their functional mechanisms or relationship and offer the basis of
classifications of the protein folds. The global 3D alignment of two proteins is NP-hard
(Lathrop, 1994). Therefore, approximate methods have been proposed to achieve fast
similarity searching, based on the direct consideration of protein α-carbon coordinates
(Gibrat et al., 1996; Holm & Sander, 1993; Shindyalov & Bourne, 1998). Using HMM, the
lod-score matrix of similarity between SLs allows the quantification of the similarity of
protein fragments encoded as different series of SLs. It is possible to use it with classical
methods developed for the AA sequence similarity search and thus to reduce 3D searches
as a 1D sequence alignment problem (Guyon et al., 2004);

• analyzing protein contacts (Martin et al., 2008b). This study showed that the description
of protein contacts (intra and inter-molecular) by the local structure residues (described by
HMM-SA) involved in these contacts is more sensitive than that provided by type of AAs
involved in contacts;

• analyzing the deformation of proteins during interaction (Martin et al., 2008a): HMM-SA
has also been used to analyze the regions of protein/protein interactions before and after
contact (Martin et al., 2008b). This study identified regions undergoing deformation, and
the identification of common structural motifs from the strain involved in the interaction
of two proteins;

• deciphering the shape and deformation of secondary structures (Baussand et al., in press).
The conformation of secondary structures can be further analyzed and detailed thanks to
HMM-SA which allows a better local description of protein surface, core and interface in
terms of secondary structure shape and deformation. Induced-fit modification tendencies
should be valuable information to identify and characterize regions under strong structural
constraints for functional reasons;

• in addition, HMM-SA was shown to be a powerful tool for the analysis of protein loops,
the most variable and flexible regions in proteins (Camproux et al., 2001; Regad et al., 2006).
They are, however, often known to play an important role in protein function and stability

• performing fast 3D similarity search (RPBS, http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search).
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(Fetrow, 1995; Fernandez-Fuentes et al., 2004). The HMM-SA was optimised in terms of
3D local description of proteins and resulted in precise and detailed description of 3D
conformations into 27 SLs: 18 SLs being focused on loop description. Indeed, the encoding
of loop structures allowed the establishment of a systematic methodology to extract all the
structural motifs of seven residues in all the loops, especially long loops. Analysis of these
patterns and their environment has enabled a quantification of structural redundancy in
loops. An analysis of their distribution in the short and long loops has shown that the short
and long loops share a number of structural motifs (Regad et al., 2008);

• concerning the information of AA sequence, all the SLs of HMM-SA have some significant
AA sequence specificity compared to the profiles of a collection of protein fragments
(Camproux & Tuffery, 2005). This dependence can be used to generate direct candidate
folds from AA sequence in a two-steps scheme of prediction. First, the goal is to predict
local SL series from AA sequence. For short fragments, available 3D conformation can be
found in the PDB (using Guyon et al., 2004); for longer ones (SL-fragments not available in
the PDB), local SLs or SL-words could be assembled to generate 3D structures, following
the same principles as Maupetit et al. (2009);

• concerning the 3D reconstruction, a recent paper (Maupetit et al., 2009) has shown the
performance of HMM-SA for peptides (short SL-fragments). Rational peptide design and
large-scale prediction of peptide structures from AA sequences remain a challenge for
chemical biologists. This paper proposed a de novo modelling of 3D conformations for
peptides between 9 and 25 amino acids in aqueous solution. Using HMM-SA, PEP-FOLD
assembles the predicted SL fragment profiles by a greedy procedure driven by a modified
version of the OPEP coarse-grained force field;

• in addition, the HMM methodology of building structural alphabet has been proven to
identify a specific structural alphabet for porin proteins (i.e. transmembrane proteins).
This alphabet has helped to describe how fine these proteins are, specifically in terms of
beta strands composition (Martin et al., 2008c).

Actually, HMM-SA is a very interesting tool to study protein structures and hence function.
In particular, it is interesting to identify conserved SL-patterns having particularities such as
being associated to a specific function or to turns, for example. Then, the natural continuation
of such identifications is to provide a method being able to detect those patterns directly from
AA sequence. Thus, it makes it possible to annotate AA sequences with annotations identified
from 3D structure without knowing the conformation of the considered sequence.
The last section focuses on the prediction of patterns identified as specific to a function for
example.

4. Using HMM to detect interesting HMM-SA patterns

As previously introduced, sequencing technologies are constantly providing new AA
sequences with often few functional knowledge. Hence, being able to retrieve information
about new protein sequences is a critical problem.
In this context, automatic tools allowing to provide such information are of big interest. The
most common way to perform such a search is to identify patterns specific from a given
function for example and to design a prediction method. Information taken into account can
consist in different levels: only sequence (Ansari & Raghave, 2010; Sigrist et al., 2010), sequence
and structure (Halperin et al., 2008; Pugalenthi et al., 2008), only structure (Manikandan et al.,
2008; Polacco & Babbitt, 2006) or use of more general classifications: GO (Espadaler et al.,
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2006), SCOP (Tendulkar et al., 2010) ... In this section, the objective is to design a prediction
method only based on AA sequence in order to provide information for only sequenced
proteins.
However, sequence-based methods are likely to be limited with regards to structure-based
ones as structure is known to be better conserved than sequence (Chothia et al., 2003).
Hence, the proposed method will use HMM-SA as a structure-based middle step to identify
interesting structural patterns. As loops are very often implied in interactions (Ansari &
Helms, 2005; Saraste et al., 1990), stress is laid on patterns of interest found in loops. Those
patterns will be defined here as four SL words encoding seven AA residues. This length has
been chosen to obtain satisfying representativities (Regad et al., 2006). However, the prediction
method is independent on the pattern length and could be applied to any identified pattern.

4.1 Looking for interesting patterns

In bioinformatics, it is common to look for a pattern of interest in a potentially large set of
rather short sequences (upstream gene regions, proteins, exons, etc.). In DNA sequences,
it has been observed that functional sites have unusual frequencies: very frequent or
rare. Some methods used this observation to extract functional sites by defining them as
over- or under-represented sites. Their identification is usually achieved by considering a
homogeneous m-order Markov model of the sequence, allowing the computation of p-values
(probability that the expected occurrence of a word is larger than its observed occurrence).
Stationarity of the model is often assumed for practical reasons but this approximation can
result in some artifacts especially when a large set of small sequences are considered. No
specific development has taken into account the counting of occurrences in a large set of
short independent sequences as loop trajectories in HMM-SA space. A study aiming at
addressing this problem by deriving efficient approaches and algorithms to perform these
computations for both low and high complexity patterns in the framework of homogeneous
or heterogeneous Markov models has been developped in Nuel et al. (2010). More precisely,
this article proposed an exact method, enabling to take into account both non stationarity and
fragmentary structure of sequences, applied it on simulated and real sets of sequences and
actually illustrated that pattern statistics can be very sensitive to the stationary assumption.
Subsequently, a detailed analysis of statistically exceptional motifs, identified by HMM-SA,
with regards to SCOP superfamilies, groups of proteins with similar structure and function,
shed a new light on candidate patterns. Indeed, this study confirmed the link of those
potentially interesting patterns with functional motifs in loops and provide a systematic way
of identifying such patterns (Regad et al., in revision).
Then, once a pattern has been confirmed as interesting, it is of big interest to be able to predict
its presence and thus, the presence of the identified function, directly from a protein AA
sequence, even if the 3D structure is unknown. It is important to notice that among identified
patterns only the ones showing AA sequence specificities will be likely to be predicted directly
from AA sequences. The proposed prediction method is divided into two steps: the first one
aims at assigning to each four-AA sequence a SL profile, this will not be deeply describe as
outside the scope of this chapter. The second step makes use of a HMM model to combine the
profiles provided by step 1 and compute a final probability of finding the considered motif at
each position in the sequence.
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4.2 The initial data

We use the AA sequences and corresponding SL encoding of 16,995 loops extracted from
the PDB with at most 25% of sequence identity. This limited sequence identity rate aims at
avoiding any bias in the learning step. The length of loops ranges from 1 to 1,261 SL (hence
from 4 to 1,264 AA) with an average of 116 and a standard deviation of 129. They are extracted
from 7,778 different proteins.

4.3 First step outline: from four amino-acids to one structural letter profile

The first step input is a 4-AA sequence fragment. In a practical point of view, each overlapping
4-AA words of the considered AA sequence will successively become input. The goal is to
find what should be the SL encoding for this fragment. However, as there is no exact bijection
between AA and SL sequences, it would be unappropriate to give only one possible SL for
each 4-AA fragment. Hence, a SL profile will be the first step output. It consists in a score
quantifying the probability of finding each SL at the considered location. This score is based
on votes provided by 351 rules: there is one rule for each SL couple (27 × 26/2).

Fig. 3. Example of classifier used to discriminate between two letters A and B: if there is (G in
second position) AND (no P in fourth position) OR (a G in fourth position) then the sequence is
affected to A else to B.

It is really appropriate to illustrate those rules through a tree-like representation. Indeed, each
rule is a combination of binary questions about the presence or absence of a given AA for
a given position (between 1 and 4) in the considered 4-AA fragment. For instance, Figure 3
gives an example. Contrary to classical decision trees, this tree has to be read from leaves to
root: by sequentially answering to each leaf question (there is or there is not such and such an
AA at such and such a position) and combining the answers through the AND/OR operators
contained in nodes, a global yes/no answer is obtained allowing to affect the AA sequence
to one of the two SLs compared through this classifier. Hence, the 351 rules will provide
votes concerning the 4-AA fragment which constitute a kind of profile for the true encoding
of this sequence into one structural letter. The optimization of the rules is performed through
genetic programming (Koza, 1992; Langdon & Poli, 2002) by scoring the rules through their
parsimony and the entropy gain they achieve.

4.4 Second step: specific pattern modelling and application to prediction

Due to the complexity of the prediction problem (impossibility to build an easy bijection
between AAs and SLs), the first step cannot be sufficient to answer the problem. Indeed,
some SLs are easy to discriminate through their AA sequence. For example, SLs B and M are
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Fig. 4. Global unfolding of Step 1 and two examples of classifiers. A 4-AA long fragment
(argg) is given as input of the 351 classifiers, each one voting for one out of the two SLs it
compares (ex.: B vs C and D vs P). Finally, a vector of 351 votes is obtained.

very well discriminated through their classifier: one out of the two subgroups obtained after
applying the classifier contains 3.2% of the B SL and 98.0% of the M. On the other hand, SLs
a and M are particularly difficult to distinguish through their AA sequence: one out of the
two subgroups obtained after applying the corresponding classifier contains all the SLs a and
80.6% of SLs M, which is a very poor classification. Hence, further information has to be taken
into account to be able to make decisions about a four-SL word. In this context, a particularly
interesting knowledge is about dependencies between SLs. It is the goal of the second step.
The aim of this step is to decide, given the results of the first step for four consecutive
SLs and through a scoring function, if the conformation adopted by the considered seven
residue fragment is likely to be encoded into a given four SL word identified to be linked to a
functional pattern.
As emphasized earlier, a real dependency exists between successive SLs, especially because of
overlaps. Hence, this dependency can be favourably used to build a model. A HMM has been
chosen to model the link between first step outputs and a given four SL word. This HMM is
described in Figure 5. In this model, hidden states are the true SLs while observed states are
outputs of step 1 for the corresponding AA sequence. Arrows between Si and Si+1 symbolizes
the dependency between successive letters called transition probabilities in HMM context and
arrows between Si and Oi represent the link between true SLs and step 1 outputs, namely the
output probabilities.
Thanks to this model, the objective of the second step is to compute the probability of the four
true SLs being the target functional pattern given the step 1 outputs for four successive (and
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Fig. 5. Structure of the HMM used to model the relationship between first step outputs and
true SLs for a seven residue fragment: (S1, S2, S3, S4) are the true SLs and
Oi = (o1

i , o2
i , . . . , o351

i ) is the vector of votes obtained from step 1 for the four AA fragment
encoded by Si.

overlapping) four-AA fragments. Hence, we have to compute

P(S1:4|O1:4) = P(S1, S2, S3, S4|O1, O2, O3, O4). (4)

High values of this probability will indicate a strong assumption that the considered fragment
is likely to be encoded into the identified pattern and then to have the target function.
According to the chosen model,

P(S1:4|O1:4) = P(S1|O1)
4

∏
i=2

P(Si|Si−1)P(Si|Oi).

Now, P(Si|Oi) has to be computed. Assuming that the results of the 351 different trees are
independent,

P(Si|Oi) = P(Si|o
1
i , o2

i , . . . , o351
i ) =

351

∏
j=1

P(Si|o
j
i).

This assumption is wrong for some comparisons (especially comparisons implying a common
SL which is well predicted) but most of pairs of comparisons can be considered as independent
(results not shown).
Then, by Bayes theorem, and by denoting by S̄i the absence of Si, that is to say there is any of
the 26 other SLs,

P(Si|o
j
i) =

P(o
j
i |Si)P(Si)

P(o
j
i |Si)P(Si) + P(o

j
i |Si)P(Si)

.

Finally, P(Si), P(o
j
i |Si) and P(Si|Si−1) are estimated on the dataset.

4.5 Applications

4.5.1 Prediction of an ATP-binding site specific motif

Previous studies (as described at the beginning of this section) have shown that fragments
encoded into the four SLs YUOD (see Figure 6(a)) are very often associated to ATP/GTP
binding sites. Indeed, in our database, 95% of fragments encoded into YUOD are associated
to this functional annotation in SwissProt database. Hence, being able to predict the encoding
into YUOD is really useful to predict this function for a new AA sequence.
The superimposition of several fragments encoded into YUOD is shown in Figure 6.
Moreover, this structural word has a high sequence specificity as shown in Figure 4, especially
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positions 1, 6 and 7. Thus, this structural word, involved in protein function (binding to
ATP/GTP), is a very good candidate for our approach.

Fig. 6. (a) Representation of several fragments encoded into YUOD. (b) Logo of the AA
sequences encoded into YUOD.

In our dataset, YUOD can be found 183 times in 181 proteins (two proteins contain two
occurrences). The model is applied on the whole proteins to study the ability of the computed
probability (Eq. 4) to discriminate between YUOD and YUOD (not YUOD). The ROC
curve associated to the logarithm of this probability is shown in Figure 7. It displays the
sensitivity (ability to retrieve YUOD) and specificity (ability to recognize YUOD) according
to the probability threshold chosen to split the words into YUOD and YUOD. The AUC
(area under curve) associated to this ROC curve is 0.9866. Hence, the computed probability
is really efficient to identify YUOD among all other words. Indeed, such a discrimination
quality is particularly valuable because of the ratio between the two classes: YUOD only
represents 0.52% of studied words. Then, according to the application requirements, several
thresholds can be defined providing different balances between sensitivity and specificity.
Some interesting threshold values and their corresponding parameters are enclosed in Table 1.
Very high values of specificity have been chosen, indeed the YUOD class is really large and
then only 1% of false positive (YUOD predicted as YUOD) can be a large number when
applied to big proteins or to several proteins.

Fig. 7. ROC curve (AUC = 0.9866) associated with the probability of having YUOD for a
given seven AA fragment (Se=sensitivity, Sp=specificity).
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Threshold -4829 -4805 -4732
Specificity 90.02 95.07 99.00
Sensitivity 97.81 93.44 69.95

Table 1. Sensitivity and specificity obtained for the identification of YUOD according to the
chosen log(probability) threshold.

An example of YUOD detection is given in Figure 8. It concerns the chain A of the Circadian
clock protein kinase kaiC (pdb ID: 2gbl_A). It originally contains two true YUOD occurrences
and four have been predicted through our model. Two out of the four positives (numbers 1
and 2) are exactly located at co-crystallized ATP binding sites (A and B). Moreover, among
the two false positives, number 3 adopts a 3D conformation which is really close to the one
observed at ATP binding sites. This example demonstrates the difficulty of evaluating a
prediction method for annotations. The evaluation of true positive and false negative can
be really precise when dealing with manually annotated and reviewed databases such as
Swiss-Prot but false positives may be true positive that have not yet been experimentally
verified. It is impossible to make a decision in this case.

Fig. 8. 3D representation of 2gbl_A co-crystallized with two ATP molecules (indicated by
lettered circles). The fragments identified as YUOD are indicated with numbered arrows.

4.5.2 Prediction of a SAH/SAM-binding site specific motif

S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are molecules associated
to some methylation processes and are particularly studied in the context of antiviral drugs
research. It is then interesting to be able to predict their binding to proteins. The four-SL
word RUDO has been identified to be most of time associated to SAH/SAM in Swiss-Prot.
Moreover, it has a certain sequence specificity (results not shown).
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In our dataset, RUDO is found 39 times in 39 different proteins. The AUC associated to the
ROC curve corresponding to the log(probability) computed by our method is 0.9606. The
specificity and sensitivity obtained with different thresholds for the log(probability) are given
in Table 2. Thus, results are satisfying and allow us to recover more than two thirds of the
RUDO motifs without wrongly assigning more than 1% of the other words.

Threshold -4903 -4806 -4712
Specificity 90.00 95.00 99.00
Sensitivity 87.18 84.62 69.23

Table 2. Sensitivity and specificity obtained for the identification of RUDO according to the
chosen log(probability) threshold.

An illustration can be found in Figure 9. It concerns isoloquiritigenin 2’-O-methyltransferase
(pdb ID: 1fp1) which was here co-crystallized with a SAH molecules. Four words were
predicted as RUDO with a threshold of -4712 whereas only one has been encoded as RUDO.
However, looking of the 3D conformation, it appears that all four identified fragments are
really closed to the ligand. Thus, the method using the HMM-SA as a tool to discover patterns,
is not limited to the fragments being strictly encoded into the identified fragments but is also
able to discover fragments with close encodings and thus structures, as only sequence is finally
taken into account. Hence, fragments which are likely to adopt a RUDO-like conformation
can be as well identified by the method.

Fig. 9. 3D representation of 1fp1 (light grey cartoons) co-crystallized with a SAH molecule
(indicated by a circle). The fragments identified as RUDO are black-coloured.

4.5.3 Prediction of a specific β-turn

The prediction of turns is also of special interest in protein study (Fuchs & Alix, 2005). The
four-SL word HBDS can be linked to β-turns: the corresponding fragment conformations are
shown in Figure 10. This is a frequent word, in our database, it was found 1,633 times in 1,363
different proteins (there are one to six occurrences in those proteins). The AUC associated to
the prediction of HBDS is 0.9359. Table 3 indicates the specificities and sensitivities associated
to different log(probability) values. The results are a bit less efficient than previous ones (due
to a lower sequence specificity) but enable to locate 85% of those turns with a specificity of
90% (knowing this specificity is likely to be underestimated because of close fragments which
have not been strictly encoded into HBDS).
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Fig. 10. 3D representation of several fragments encoded into HBDS.

Threshold -4013 -3844 -3777
Specificity 90.17 95.11 98.88
Sensitivity 84.71 71.07 28.93

Table 3. Sensitivity and specificity obtained for the identification of HBDS according to the
chosen log(probability) threshold.

4.6 Prediction method outcome

The automatic annotation of simply sequenced proteins is a very important task in the present
context of high-throughput sequencing programs. The method proposed in this section
is based on the identification of motifs of interest directly on structures using HMM-SA.
The input data of the described method are only AA sequences and as a consequence, only
patterns having sequence specificities will be likely to be handled with this method. But for
this kind of motifs, the method is really powerful. One method (Maupetit et al., 2009) has
already been proposed to predict the 3D structure of small peptides through HMM-SA but
the motif-oriented aspect of the method proposed here makes it much more precise and time
efficient.
As much information as possible is extracted from data. The dependence between AA
sequences and 3D structures is learned in the first step through the use of HMM-SA. Then,
the second step takes advantage of two different sources of information by building a HMM.
Firstly, the strength of dependence between AAs and SLs is quantified and used through
observation probabilities: some observations will be really trusted (when a strong link has
been found in the first step) whereas others will be considered with care as less reliable.
Secondly, the dependence between successive SLs (some SLs favourably follow other ones)
is also taken into consideration by the computation of transition probabilities. Finally, a really
complete model is obtained by the addition of both steps.
Moreover, as HMM-SA is only an intermediate between sequence and function (or any other
interesting pattern), the method, as shown in some illustrations, is able to identify fragments
as close to the target word even if this fragment would not be encoded into the exact SL target
word. Hence, relying on sequences is a good way to overcome some cases of flexibility: in
the crystallization conditions, the fragment has not been found in the strict conformation
associated to the target word, but its AA sequence specifities can be recognized by the
prediction method. Eventually, HMM-SA encoding and the proposed prediction method are
interestingly complementing each other in the prediction of patterns of interest.
Furthermore, the important adaptability of the prediction method is of large interest. Indeed,
in this paper we focused on pattern which had been identified directly through HMM-SA
but it is completely possible to identify 3D motifs as interesting for any other reason, to
encode it into HMM-SA and to build the model on the obtained word. Let us recall here
that the size of considered fragments is not limited. Earlier, only seven-residue fragments
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have been considered but any length would be possible. Furthermore, as illustrated through
the three examples, the size of the learning dataset can be really variable (from 35 to 1633
occurrences of the pattern) as the model is always the same. The only variable parameter is the
log(probability) threshold. However, preliminary studies seem to indicate that this threshold
depends on the strength of the sequence specificity of the structure. Hence, further work could
be able to set this threshold directly from the quantification of this dependence.

5. Conclusion

Interest and limits of the HMM to study 3D protein organisation
In contrast to supervised learning strategies (Levitt and Chothia, 1976; Kabsch and Sander,
1983; Richards and Kundrot, 1988; Prestrelski et al., 1992; Hutchinson and Thornton, 1993;
Zhu, 1995), the SLs emerged from the HMM without any prior knowledge of secondary
structural classification. In that sense, the HMM is able to classify conformations that
template studies must describe as undefined or random structures and also to subdivide
conformation classes previously defined as a single class, resulting in a finer description of
the 3D conformations. For instance, the HMM approach allows different levels of variability
within each SL. Classical methods have recently been used to extract and classify local
protein backbone elements but these methods did not take into account any local dependence
between SLs: all these studies used only the structural characteristics to identify structural
3D letters and reconstructed a posteriori the organization of these 3D conformations. One
major contribution of HMM is that this model implicitly takes into account the sequential
connections between the SLs. It is striking that structurally close SLs can have different roles
in the construction of 3D structures.
HMM-SA learning has shown to be stable over different protein sets. Our model fits
well the previous knowledge related to protein architecture organisation. Using such
a model, the structure of proteins can be reconstructed with an average accuracy close
to 1.1 Å root-mean-square deviation and for a low complexity of 3D reconstruction (see
Camproux et al., 2004, for details). This stochastic HMM approach allows the characterization
of different SLs with different fragment heterogeneity by taking into account their global
organization and quantifying their connections. It results in a fine and pertinent description
of the 3D structures and a very performant tool to simplify 3D conformation of proteins.
Different successful applications of HMM-SA for 3D analysis have been performed.
This ability has allowed to design several methods of protein studies, such as the prediction
of interesting patterns detailed in this chapter. This method has shown to be really efficient
for patterns having a certain AA sequence specificity. Further work should allow to predict
the efficiency and the threshold to be used directly from a quantification of this dependency.
Moreover, this prediction method has the main advantage to be really adaptive, to different
pattern lengths or to different alphabets for example. In this study, HMM-SA has been used
because of its very interesting abilities of precise description especially for loops, but the same
methodology could be applied on other types of alphabets. Finally, the method is bounded
by the function specificity of the pattern. Indeed, a function might be associated to different
patterns. Thus, our method is able to predict one type of realization of a given function at
a time. Of course, it is completely possible to learn several patterns linked to a function
and to give a global prediction for all of them. But for the moment, this limit prevents us
to compare with prediction methods for specific function (such as Ansari & Raghave, 2010)
encoded through different patterns. This should be quickly possible by the identification of
new patterns which is in progress.
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6. Further HMM improvements

Concerning the HMM-SA identification, a number of improvements can be brought into the
HMM modeling by taking into account deterministic dependency and local descriptors, the
criterion of model selection and posterior probabilities of different structural letters in the
encoding.
In the previous work, the idea was to consider the model of Figure 2 where all Xi are generated
independently from each other conditionally to a hidden state Si ∈ S = {1, 2, . . . , K} as
detailed in Section 2.2. One problem of this approach is that it does not take into account the
correlation between Xi and Xi+1. We alternatively suggest to consider the model where the
distribution of Xi+1 depends on Si+1 (like in the previous model) and from Xi. For example,
if we assume that X1

i+1 = X3
i and that (X2

i+1, X3
i+1, X4

i+1) has a Gaussian distribution whose
parameters only depend on Si+1, the resulting model both improves the existing one and
reduces its number of parameters.
A critical point of the HMM-SA approach is also related to the model selection: how many
structural letters should we use in order to get the best structural alphabet ? For this problem
however, our objective is not only to select the most parsimonious model providing the best
fitting but also to provide a reliable classification of the fragments in order to allocate a given
fragment to a specific structural letter with the least possible uncertainty. For that purpose,
it might be interesting to replace the used BIC criterion by classification orientated criteria
like the ICL (Biernacki et al., 2000; McLachlan & Peel, 2008) or the Discriminative Information
Criterion from Biem (2003). The idea of these approaches is to introduce in the penalization
a term related to the entropy of the classification which purpose is to avoid to select a model
where two structural letters are too close to each other.
Another important issue is related to the encoding of 3D structures into sequences of structural
letters. For that purpose, it is both natural and classical to use the Viterbi’s algorithm in
order to obtain the MAP encoding. However, it often exists many alternative suboptimal
configurations that might be of interest. In order to check this, it might be interesting to
compute the posterior distribution P(S = s|X = x, θ̂) using the Forward/Backward quantities
and hence to point out regions where the structural alphabet encoding has a low confidence.
One may then either exclude this low reliability regions or take into account the uncertainty
of the encoding by sampling several encoding for these regions.
It also might be of great interest to introduce in the HMM-SA model a descriptor of the
structure flexibility in its learning process. Initially, a unique 3D structure was supposed to
correspond to one protein sequence (Mirsky, 1936). The constant and rapid increase in the
number of experimentally solved protein structures has shown the flexibility of 3D structure
proteins to adapt to different conditions and partners. Thus, this property is at the heart of the
fundamental functions of proteins. This flexibility is being quantified by parameters such as
the B-factor. The inclusion of this information in the construction of a new alphabet could be
used to define classes of structures particularly flexible and to better model the complexity of
proteins. For instance, knowledge and prediction of these flexible regions could significantly
improve docking protocols, including the choice of starting structures.
Actually, if the HMM-SA original model only considered the 3D structure of the protein, the
additional work presented in this chapter has shown that the original AA sequences also bear
useful physicochemical information that can improve the prediction. It is hence very tempting
to combine these two approaches together by introducing the AA sequence into the HMM-SA
model from the beginning like suggested in Figure 11.
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Fig. 11. Graph of dependencies in the model combining both the 3D structure and the
primary sequences. The model is drawn for n = 7 Cα hence resulting in a total of n − 3 = 4
SLs.
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