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1.  Introduction 

Recent research on biomedical signal processing especially ECG analysis mostly focused on 
the use of Hidden Markov Models (HMM). The general aim of any signal segmentation 
method is to partition a given signal into consecutive regions of interest. In the context of the 
ECG then, the role of segmentation is to determine as accurately as possible the onset and 
offset boundaries, as well as the peak locations, of the various waveform features, such that 
the ECG interval measurements may be computed automatically and the study of waveform 
patterns will be facilitated (Sayadi & Shamsollahi, 2009). Ad hoc algorithms have been 
developed in order to help cardiologists to segment large amounts of ECGs. But these 
algorithms do not provide a precise segmentation, and repetitive corrections have to be 
made. Wavelet parametrisation is known to highlight discontinuities in the signal, and has 
proven to give good results for ECG segmentation (Kawaja et al., 2006; Thomas et al., 2006). 
A statistical model helps to regularize the detection, resulting in a more robust delineation. 
One of the advantages of probabilistic models over traditional methods is that a confidence 
measure for each segmented signal is given by the log likelihood of the observed signal 
given the model (Thomas et al., 2006). 
The main focus of this chapter is to introduce some new and robust HMM associated with 
wavelet transform based methods for ECG analysis. The chapter begins with a review of the 
literature on the use of HMM to analyse ECG signals. We then consider in detail the suitability 
of HMM to provide a faithful statistical description of the ECG. In particular, we examine the 
validity of the various assumptions inherent in the HMM framework in the context of the 
ECG. Following this, we consider a number of specific issues in developing an HMM for ECG 
segmentation, including the choice of model architecture, type of observation models. Then a 
combination of HMM approach with wavelet properties will be explained. 

1.1 Previous works 

The use of hidden semi-Markov models (HSMM) for ECG segmentation has been 
considered previously in (Thoraval et al. 1994), the segmentation process is effected by an 
HSMM, where each state in the model corresponds to a particular aspect of a given ECG 
waveform feature. Specifically, the model architecture makes use of separate onset, middle 
and offset states for each waveform feature. This enhanced state space is motivated by the 
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need to match the stationarity assumption for each HSMM state, with the transitory nature 
of the observations over the time course of a particular ECG waveform. The observation and 
duration densities for the HSMM are modelled by Gaussians (with diagonal covariance 
matrices in the specific case of the observations). The performance of the model is 
demonstrated qualitatively on a sample ECG waveform (Hughes, 2006).  
Wavelets and statistical methods can be used complementarily for ECG delineation, as 

reported previously in (Clavier et al., 1998, 2002), to associate a local and a global 

segmentation. Hidden Markov models (HMM), are applied to the coefficients of an ECG 

wavelet transform. This transform also showed the signal singularities, but it was too 

sensitive to noise. The association of the two methods made it possible to solve cases where 

they would fail if they were used alone. The ECG was segmented in three steps: first, a 

redundant multiresolution analysis was applied to the ECG signal; secondly, the R-wave 

was detected by a threshold on the wavelet coefficients; thirdly, a segmentation algorithm 

based on an HMM representing a beat was applied to isolate the P wave. The observations 

were the wavelet coefficients, whose probability densities were estimated by a non-

parametric model. 

Lepage et al., 2000, have presented a HMM associated with wavelets to improve an 

automatic segmentation of the ECG signal. While HMM describes the dynamical mean 

evolution of cardiac cycle, the use of wavelet analysis in association with the HMM leads to 

take into account local singularities. The parameters of this HMM model (means, variances 

and transition probabilities) are estimated using EM algorithm by modifying the parameter 

estimation by using the stochastic expectation maximisation algorithm (SEM) instead of the 

EM which avoids staying in local minima. Some good results were obtained at several 

scales, showing the good localization properties of wavelet, but the results were not as 

reliable as those obtained with the 10 state HMM method. It is sometimes really difficult to 

choose the coefficient that represents the beginning, the middle or the end of a wave, when 

the changes of state are too close or too numerous.  

Graja &Boucher, 2005, have proposed a new ECG delineation method which uses a hidden 

Markov tree (HMT) model. Using wavelet coefficients to characterize the different ECG 

waves and, then linking these coefficients by a tree structure enabling wave change to be 

detected. The idea is to develop probability models for the wavelet transform of a signal and 

to analyze the dependency of wavelet coefficients through scales. In fact, it is well-known 

that wavelet coefficients have a non-Gaussian distribution. Making the assumption that it 

can be described by a mixture of Gaussian distributions. To pick up the relationships 

between states, they use a HMM on a wavelet tree with a hypothesis of clustering and 

persistence (Crouse et al., 1998).  

Thomas et al., 2006, have used machine learning approach to ECG segmentation consists in 

building a model λ of the signal, and in using the most likely state sequence for a given 

observation sequence in order to find the wave transitions. To be able to segment 

unspecified ECGs with high accuracy, they implemented a multi-HMM approach. This 

method consists in performing a Bayesian clustering of the training base (Li, & Biswas, 

2000). The training base is divided in K classes of ECGs which have similarities and K HMM 

are trained and exploited to provide great generalization capabilities and high accuracy at 

the same time. This HMM clustering algorithm is simply a variation of the K-Means 

algorithm, where the clusters are defined by HMM rather than by centers in the data space 

(Thomas et al., 2007). 
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Online HMM adaptation for ECG analysis has been successfully carried out by Müler et al., 
2006, they have introduced the online HMM adaptation for the patient ECG signal 
adaptation problem. Two adaptive methods were implemented, namely the incremental 
version of the expectation maximization (EM) and segmental k-means algorithms. The 
system is adapted to the ECG of the individual in an unsupervised way. For that, the 
segmentation output is used to reestimate the HMM parameters of each waveform.  
Andreão et al., 2007, have presented an original HMM approach for online beat 
segmentation. The HMM framework is highly suitable for the ECG problem. This approach 
addresses a large panel of topics like : waveforms modelling, multichannel beat 
segmentation and classification, and unsupervised adaptation to the patient’s ECG. The 
segmentation task is carried out by generic HMM of each beat waveform. One important 
feature of this approach is the generic model adaptation strategy to each individual, which 
is non supervised (there is no need of manual labels). The HMM are used to carry out beat 
detection and segmentation. The main contributions are based on the following (Andreão et 
al. 2003, 2004, 2006). Firstly, waveform modelling (and not beat modelling) using generic 
HMM (trained through examples from several individuals). In this way, HMM are trained 
taking into account the morphology diversity of each waveform. Secondly, better waveform 
segmentation precision by adapting a generic model to each individual. The model 
adaptation is done in an unsupervised way, eliminating waveform manual labelling 
(Laguna et al., 1997). 

1.2 Contributions and chapter organization 

In our works, we have developed three original hybrid segmentation algorithms based on : 

Firstly, Modulus Maxima Wavelet Transform (MMWT) that has been successfully combined 

with Hidden Markov Models (HMM) providing reliable beat segmentation results (Krimi et 

al. 2008). In the MMWT, the wavelet transform local extrema is used to characterize 

singularities in the signal. One very successful method described in (Cuiwei et al., 1995), 

uses the ECG wavelet transform modulus maxima properties to characterize the different 

ECG complexes. A rule based system is used to detect QRS waves and differentiate them 

from T waves and noise artifacts. This method has also been extended for T and P wave’s 

detection (Jouck, 2004). 

Secondly, Pitch Synchronous Wavelet Transform (PSWT) and Hidden Semi-Markov Models 

(HSMM) (Krimi et al., 2007). The combination of these two methods has shown to be very 

efficient tool for ECG delineation. As noted in other studies on the HMM, the self transitions 

of the HMM cause an incorrect modelling of segment durations. An extension of the HMM, 

the Hidden Semi Markov model HSMM, largely solves this problem. PSWT, has been 

effectively used in speech, music signals (Evangelista, 1993) and waveform interpolation 

coding scheme (Chong et al., 2000). The (PSWT) is based on a modelling concept, which is 

able to capture period to period signal fluctuation by basis elements means that are comb-

like in the frequency domain. This technique relies primarily on the high peaks positions 

corresponding to the ECG R wave. The principle consists in estimating the periodicity (pitch 

period) with the autocorrelation function and dividing the original signal into pseudo-

periodic segments using the time points obtained from the considered pitch detector 

algorithm; this segmentation leads to the pitch synchronous representation. By applying the 

wavelet transform to this representation and synthesis only the approximation component 

we can obtain the dominating pitched signal's behaviour, so the ECG estimation. 
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Thirdly (in progress), Multiscale Product Wavelet Transform (MPWT) in association with 
Hidden Markov Tree (HMT). The idea of this study is to detect singularity not via local 
maxima of the wavelet coefficients signals but via the product of the wavelet coefficients. 
Rosenfeld and co-workers (Rosenfeld, 1970) suggested forming multiscale point-wise 
products. This is intended to enhance multiscale peaks due to edges, while suppressing 
noise, by exploiting the multiscale correlation due to the presence of the desired signal 
(Besrour & al., 2009). MPWT is based on Mallat's and Hwang's approach (Mallat & Hwang, 
1992) for singularity detection via local maxima of the wavelet coefficients signals. It acted 
as the parameter extraction stage necessary to build the observation sequence of our original 
HMT based segmentation approach.  

2. Background information 

This section provides a brief review of Hidden Markov Models (HMM), Hidden Markov 
Tree (HMT) and Hidden Semi-Markov Models (HSMM). 

2.1 Hidden Markov Models (HMM)  

To model a sequence 1 2, ,..., TW w w w= ; with t Nw ∈\ , a continuous HMM is defined with 

the structure , , ,Q A Bπϑ = where (Milone et al., 2010) :  

i. { }Q Q= is the set of states, where Q is a discrete random state variable taking 

values { }1, 2, ...,
Q

Nq∈  

ii. ijA a= ⎡ ⎤⎣ ⎦ is the matrix of transition probabilities with ( )1
|Pr ,tt

ij Q j Q ia i j Q
−

= == ∀ ∈ , where 

tQ Q∈ is the model state at time { }1,2,...,t T∈ , 0 ,ija i j≥ ∀ and 1ijj
a i= ∀∑  

iii. ( )1
Prj Q jπ π= = =⎡ ⎤⎣ ⎦ is the initial state probability vector. In the case of left to right 

HMM this vector is 1π δ=  

iv. ( ){ }t
kB b w= is the set of observation (or emission) probability 

distributions ( ) ( )Pr |t t t t
kb w W w Q k k Q= = = ∀ ∈  

Assuming a first order Markov process and the statistical independence of the observations, 
the HMM likelihood can be defined using the probability of the observed data given the 
model:  

 ( ) ( ) ( )1, t t t
t

q q q
q q t

L W L W q a b wϑ ϑ −

∀ ∀

=∑ ∑∏�  (1) 

where q∀  stands for over all possible state sequences 1 2
, , ...,

T
q q q q Q= ∈ and 01 1 1a π= = .  

To simplify the notation, we will indicate ( )Pr |
t t

w q as equivalent to ( )|Pr
t tt t

Q qW w= = or in 

a similar way ( ) ( )1 1 1
Pr | Pr |

t t t t t t
q q Q q Q q

− − −≡ = =    
The EM algorithm is the most widely used way to maximize this likelihood (Duda et al., 
2001). The forward–backward algorithm provides an efficient method for the expectation 

step (Baum et al., 1970) . The expected values for the state probabilities in ϑ can be 

calculated with the recursions  
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 ( ) ( ) ( ) ( )1 1Pr ,..., , |t t t t t
j ij

i

j w w q j b w i aα ϑ α −= = ∑�  (2) 

 ( ) ( ) ( ) ( )1 1 1Pr ,..., , |t t T t t t
jk k

k

j w w q j a b w kβ ϑ β+ + += =∑�  (3) 

Initialized with ( ) ( )1 1
i ii b w iα π= ∀ and ( ) 1T k kβ = ∀ . Then, the probability of being in state i at 

time t is  

 ( ) ( ) ( ) ( )
( ) ( )

Pr | ,
t t

t t
t t

i

i i
i q j W

i i

α β
γ ϑ

α β
= =

∑
�  (4) 

And the probability of being in state i at time t-1, and in state j at time t is  

 ( ) ( ) ( ) ( ) ( )
( ) ( )

1

1, Pr , | ,

t t t
ij jt t t
t t

i

i a b w j
i j q i q j W

i i

α β
ξ ϑ

α β

−
− = = =

∑
�  (5) 

The learning rules can be obtained by maximizing the likelihood of the data as a function of 
the model parameters (Huang et al., 1990). Thus, the transition probabilities can be 
estimated with 

 
( )
( )
,t

t
ij t

t

i j
a

i

ξ

γ
=∑
∑

 (6) 

These equations can be easily extended for training from multiple observation sequences 
(Liporace, 1982).  

The corresponding learning rules for the parameters of the observation distributions are 

dependent on the chosen model for ( )t
kb w . 

2.2 Hidden Markov Tree (HMT) 

Let 1 2, ,..., NW w w w⎡ ⎤= ⎣ ⎦ be the concatenation of the wavelet coefficients obtained after 

performing a DWT with J scales, without including w0, the approximation coefficient at the 

coarsest scale. Therefore, 2 1
JN = − . The HMT can be defined with the 

structure , , , ,U Fθ π ε= ℜ  , where (Milone et al., 2010) : 

i. { }U u= with { }1,2,...,u N∈ , is the set of nodes in the tree. 

ii. uu
ℜ = ℜ∪ is the set of states in all the nodes of the tree, denoting with { }u uRℜ = the set 

of discrete random state variables in the node u, and uR taking values { }1,2,...,ur M∈  

iii. ,u mnε ε⎡ ⎤= ⎣ ⎦ with ( )( ) ( ), Pr ,| ,u mn u uu uR m R n m nρ ρε = = = ∀ ∈ℜ ∀ ∈ℜ is the array whose 

elements hold the conditional probability of node u, being in state m, given that the 

state in its parent node ( )uρ is n and satisfy , 1u mnm
ε =∑  
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iv. ρπ π⎡ ⎤= ⎣ ⎦ with ( )1 1Pr R p pρπ = = ∀ ∈ℜ  the probabilities fort he root node being on state p. 

v. ( ){ },u m uF f w= are the observation probability distributions, with 

( ) ( ), Pr |u m u u u uf w W w R m= = =  the probability of observing the wavelet coefficient 

uw with the state m (in the node u). 

Additionally, the following notation will be used :  

• ( ) ( ) ( ){ }1
, ...,

u
N

C u c u c u= is the set of children of the node u. 

• uΤ is the subtree observed from the node u (including all its descendants). 

• \u vΤ is the subtree from node u but excluding node v and all its descendants.  

As in the sequence q for HMM, we will use the notation 1 2[ , ,..., ]Nr r r r= to refer a particular 

combination of hidden states in the HMT nodes. 
Assuming that the following three basic properties in the HMT are true : 

1. { }( ) ( ){ }( )
1 2( ) ( ) ( )Pr | / Pr | , , ,...,

Nu
u v u c u c u c uur m r v u r m r r r rρ= ≠ = =  

the Markovian dependencies for trees 

2. ( ) ( )Pr | Pr |uu
W r w r=∏ the statistical independence of the observed data given the 

hidden states 

3. ( ) ( )Pr | Pr |uuu uw r w r=∏ the statistical independence of the observed coefficient in node 

u to the states in the other nodes of the tree and using the standard definition 

( ) ( ), Pr , |L w r w rθ θ�  the HMT likelihood is 

 ( ) ( ) ( )( ), , ,u u u u u u
r r u

L w L w r r r f r wθ θ ρε
∀ ∀

=∑ ∑∏�  (7) 

where r∀ means that we include all the possible combinations of hidden states in the tree 

nodes and
11 1 (1), rr rρε π=   

For the computation of the expected values in the EM algorithm, the upward–downward 
recursions are used, in a similar way than the forward–backward ones in HMM. For this 
algorithm the following quantities are defined (Ronen et al., 1995) : 

 ( ) ( )1\Pr , |u u un T r nα θ=�  (8) 

 ( ) ( )Pr | ,u u un T r nβ θ=�  (9) 

 ( ) ( )( ), ( )Pr | ,u u u un T r nρ ρβ θ=�  (10) 

In the upward step the β quantities are computed as  

 ( ) ( ) ( )
( )

, ,u u n u u u mn
v C u

n f w mβ β ε
∈

= ∏  (11) 

Initialized with ( ) ( ),u u n un f w uβ = ∀ in the finest scale. Then, ( )( ),u u nρβ is computed and the 

iterative process follows in the previous level, in an upward inductive tree traversal. 
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When the upward step reaches the root node, the downward step computes 

 ( ) ( ), ( )

( ),

( ) ( )

( )

uu nm u

u
u um

m m
n

m

ρρ

ρ

ε β α
α

β
=∑  (12) 

Starting from ( ) ( )1 1Pr | mm r mα θ π= = = . The other two useful quantities are the probability 

of being in state m of node u 

 ( ) ( ) ( ) ( )
Pr | ,

( ) ( )
u u

u u
u un

m m
m r m w

n n

α β
γ θ

α β
= =

∑
�  (13) 

And the probability of being in state m at node u, and the state n at its parent node ( )uρ  

 ( ) , ( ) ( ) ( ),

( )

( ) ( ) ( ) / ( )
( , ) Pr , | ,

( ) ( )

u u mn u u u u

u u u

u un

m n n n
m n r m r n w

n n

ρ ρ ρ
ρ

β ε α β β
ξ θ

α β
= = =

∑
�  (14) 

If we consider the maximization for multiple observations { }1 2
, , ...,

L
W w w w= , with Nw∈\ , 

the conditional probabilities ,u mnε can be estimated from
,

( )

( , )

( )

l

ul

u mn l

ul

m n

nρ

ξ
ε

γ
=
∑
∑

  and using a normal 

distribution for the observation probability distributions 

 
( )2,

, 2
,

1 1
( ) exp

22

u

u

u

u u r

u r u
u r

w
f w

μ

πσ σ

⎛ ⎞−⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (15) 

We have (Crouse, et al., 1998) 

 ,

( )
( )

( )

l l
u ul

u m u l
ul

w m
w

m

γ
μ

γ
=∑
∑

 (16) 

 
( )2,2

,

( )

( )

l l
u u m ul

u m l
ul

w m

m

μ γ
σ

γ

−
=
∑

∑
 (17) 

2.3 Hidden Semi-Markov Models (HSMM) 

A HSMM consists of a pair of discrete-time stochastic processes { }
t

S and{ }
t

X . Similar to 

HMM, the observed process{ }
t

X is related to the unobserved semi-Markovian state 

process{ }
t

S by the so-called conditional distributions (Bulla et al., 2010). 

Let ( )1

1
: , ...,

T T
X X X= denote the observed sequence of length T. The same convention is used 

for the state sequence
t

S , andθ denotes the set of model parameters. The state process is a 

finite-state semi-Markov chain, which is constructed as follows. A homogeneous Markov 

chain with J states, labelled 1,…,J models the transitions between different states. 

The stochastic process{ }
t

S is specified by the initial probabilities ( )
1

:
j

P S jπ == with : 

www.intechopen.com



 Hidden Markov Models, Theory and Applications 

 

158 

1jj
π =∑ and the transition probabilities ijp . For states { }1,...,, Ji j∈ with j i≠ , these are given 

by 

 ( )1 1: | ,ij t t tp P S j S i S i+ += = ≠ =  (18) 

Satisfying 1ijj
p =∑ and 0iip = . The diagonal elements of the transition probability matrix 

(TPM) of a HSMM are required to be zero, since we separately model the run length 
distribution and do not consider the case of absorbing states. This distribution, also referred 
to as sojourn time distribution, is associated with each state. It models the duration the 

process{ }
t

S remains in the state j and is defined by 

 ( ) ( )1 2 1: | ,..., | ,j t u t u t t tP S j S S j Sd u j j S j+ + + + += =≠ = = ≠  (19) 

The combination of a Markov chain, modelling state changes, and runlength distributions, 

determining the sojourn times in the states, define{ }
t

S and illustrate the main difference 

between the HMM and the HSMM. The semi-Markovian state process{ }
t

S of a HSMM does 

not have the Markov property at each time t, but is Markovian at the times of state changes 

only. 

The observed process{ }
t

X at time t is related to the state process{ }
t

S by the conditional 

distributions ( )j tb x , which are either probability functions in the case of discrete conditional 

distributions or probability densities in the case of continuous conditional distributions : 

 ( ) ( )
( )

|

|
j

t t t t
t

t t t t

P X S

X S

x j for discrete X
b x

f x j for continuous X
=

= =⎧⎪
⎨

= =⎪⎩
 (20) 

For the observation component, the so-called conditional independence property is fulfilled: 

 ( ) ( )1 1 1 1
1 1 1 1| ,..., , , |t t T T

t t T T t t t t t tP X S sX x x S j S s P X x S j− −
+ +== = = = = = =  (21) 

That is, the output process at time t depends only on the value of St . 

3. Proposed ECG segmentation techniques 

3.1 Modulus maxima wavelet transforms and hidden Markov models based method 

This technique is based on the combination of two mathematical techniques namely the 
Wavelet Transform (WT) and Hidden Markov Models (HMM). In this method, we first 
localize edges in the ECG by wavelet coefficients, then, features extracted from the edges 
serve as input for the HMM. This new approach was tested and evaluated on the manually 
annotated database QT database (Laguna & al., 1997), which is regarded as a very important 
benchmark for ECG analysis. We obtained a sensitivity Se= 99,40% for QRS detection and a 
sensitivity Se= 94,65% for T wave detection. 

3.1.1 Modulus maxima wavelet transforms 

The modulus maximum describe any point u0, s0 such that the 
0

( )sW f u is locally maximum 

at u = u0. This implies that (Chen, 2006) 
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 0

0

( )
0

S
u u

W f u

u
=

∂
=

∂
 (22) 

When the WT is at fine scale, singularities are detected by finding the abscissa where the 
wavelet modulus maxima converge (Mallat & Hwang, 1992). The zero-crossings of the WT, 
which is also at fine scale, correspond to the maxima or minima of the smoothed uniphase 
signal (Mallat, 1991). 

 *1
( ) ( ) ( )s

t u
W f u f t dt

ss

+∞

−∞

−
= Ψ∫  (23) 

The singularities in the arrhythmia waveform can be conveniently detected by employing 
wavelet transform (WT). WT of a function f is a convolution product of the time series with 

the scaled and translated kernel Ψ , and is given by (Strang & Nguyen, 1996) : 

 
0

0
,

1
( ) ( ) ( )s u

u u
W f f x dx

s s

+∞

−∞

−
= Ψ∫  (24) 

 0

0

( )
, ( )

h u
s uW f sα   0s +→  (25) 

Where s is the scale parameter and u0 is the translation parameter. The ability of WT to 
reveal even the weaker singularities within the time series by adjusting s makes it an 
indispensable tool for singularity analysis. 
The continuous WT described in Equation (24) is an extremely redundant and a 
computationally expensive representation. The wavelet transform modulus maxima 
(WTMM) method (Hwang, 1994) changes the continuous sum over space into a discrete sum 

by taking the local maxima of 
0, ( )s uW f considered as a function of u . An important feature 

of these maxima lines is that, each time the analyzed signal has a local Hölder exponent 

0( )h u less than the analyzing wavelet, there is at least one maxima line pointing toward 0u  

along which Equation (25) holds (Arneodo, 1995, Joshi, 2006).  

3.1.2 Selecting edge localization 

First, In the WTMM (Mallat, 1999), the WT local extrema is used to characterize singularities 
in the signal. One very successful method described in (Cuiwei et al., 1995), uses the ECG 
wavelet transform modulus maxima properties to characterize the different ECG complexes. 
A rule based system is used to detect QRS waves and differentiate them from T waves and 
noise artifacts. This method has also been extended for T and P wave’s detection (Jouck, 
2004). In the ECG substantial information is carried in the peaks, so if we want to use a 
segment model, it would be preferable to model a segment around the ECG peaks. The 
rising and falling edges in a signal can be easily identified by the WT coefficients.  
A positive modulus maximum corresponds to a rising edge and a modulus maxima 
corresponds to a falling edge. The modulus maximum alone do not provide sufficient 
information to determine the edge onset and offset. When the analyzing wavelet is the 
derivative of a smoothing function ( )uθ , the wavelet transform can be interpreted as the 

derivative of the original signal ( )f u smoothed by ( )uθ .  
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As the zero crossings of ( ),Wf u s correspond to zero crossings of ( )df u du  - the derivative 

of ( )f u - a rising or falling edge onset and offset can be derived from the zero crossings 

in ( ),Wf u s .So, by determining the modulus maxima locations and the zero crossing near the 

modulus maxima, the onset and offset as well as the point of inflection of an edge can be 

determined. The area between the ECG onset and offset is characterized by constant sign 

wavelet coefficients - either all positive or all negative. The scale selection u , determines the 

resolution details of ( )f u that are visible in the ( ),Wf u s , and thus also the edges resolutions 

that can be detected. When only coarse scales are selected, only coarse details of ( )f u are 

detectable. When only fine scales are selected, the fast varying details of ( )f u are visible. As 

fine scales give a better time-resolution, it would be preferable to use fine scales to more 

precisely determine the edge onset and offset. 

However, ECG signals are often subject to high frequency noise, and at small scales this 

noise distorts the wavelet transform. So, we want to select scales such that the ECG peaks 

oscillations are visible in the wavelet transform, but not so small that the noise in the signal 

becomes too dominant in the wavelet transform. From empirical tests, it became apparent 

that selecting only one scale to detect edges did not suffice. The edges resolutions make up 

the ECG peaks are too broad to be captured by one scale WT. Therefore it is necessary to use 

multiple scales to detect edges. Unfortunately, it is not guaranteed, that if the wavelet 

coefficients at one scale have constant sign in one area, that the wavelet coefficients in that 

area on another scale also have constant sign. In order to deal with this, the area in which an 

edge of ( )f u is localized is determined as follows :  

We selected two scales that respond well to the edges time-frequency resolution that make 

up the ECG peaks. The finest of the two scales has the best time resolution to determine the 

edges onset and offset, but the high frequency noise in the ECG is also visible at this scale. In 

the wavelet coefficients on the more coarse scale, noise is less dominant, but some time 

resolution is lost. Therefore the wavelet transform at both scales is combined to detect edges. 

An edge is only detected, when in a certain signal ( ,..., )t t df u u + area, wavelet coefficients on 

both scales ( ,..., , )t t dWf u u s+ have the same sign. 

3.1.3 ECG edges localisation as HMM front end 
The edges in the ECG are localized and features extracted from the edges serve as input for the 
HMM. The Viterbi algorithm for the HMM (Koski, 1996) can be interpreted as a search in the 
model state-time space. In the optimal solution search, states are assigned to observations to 
maximize the likelihood function. In other words, segments are modelled around observations 
that have a high probability to belong to a certain state when a Gaussian mixture model is 
used to model the observation probabilities (the wavelet coefficients). It is known that 
important information about the signal is carried in the wavelet transform modulus maxima. 
This information can improve discrimination between the ECG characteristics. The problem is 
that in the Viterbi algorithm the whole signal is searched, and that in some search areas no 
modulus maxima are present. For this reason it is hard to model the modulus maxima 
information into the probability calculations for the HMM observations.  
This problem can be solved if only parts of the signal where modulus maxima are present 
are processed. In the edge wavelet transform at least one modulus maxima must be present. 
The segment is modelled from one zero crossing in the one scale wavelet coefficients the 
next zero crossing. Somewhere between the zero crossings we must have an inflection point, 
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where the wavelet coefficients change direction (from rising to falling or vice versa), 
otherwise all wavelet coefficients in the segment would have to be zero. So, when a segment 
has been localized, further information from the wavelet coefficients in the segment can be 
extracted. This information is then used as an observation for the HMM. In contrast to the 
previous Markov models implementation, the observations no longer correspond to an ECG 
time sample, but an ECG segment time. 

3.1.4 Experiments and results 

In order to evaluate our performance method for ECG delineation, we use a standard QT 

database (Laguna & al., 1997). This is a manually annotated database, consisting of 105 

records, two leads each. The records contain both automatic and manual annotations. The 

automatic annotations are available for the whole signal; the manual annotations are made 

for 30 to 100 beats for each record. In the tests performed, only the manual annotations are 

used as a reference. Not all records are used in the evaluation, some records have no T peak 

annotation or normal beat annotations, these records have been excluded. To asses the 

detection performance of the different waves we calculated the sensitivity Se and the 

positive predictivity P+ of several events. In the QT database, when a QRSpeak is annotated, 

the rest of the beat is also annotated (at least the QRSon and QRSoff and the Tpeak and Tend). 

Therefore, the P+ can only be calculated for other events then the QRSpeak. In an annotated 

beat, each absent manual annotation in the automatic detection neighbourhood can be 

considered as a false positive. Therefore, the wave detection rates are calculated as follows : 

a true positive is calculated for the QRS complex and the T wave, when at the annotated 

QRSpeak or Tpeak the HMM of our method is in the QRS or T state respectively. When this is 

not the case, a false negative is recorded. For our method there are several states that relate 

to the QRS complex and T wave. The states related to the QRS complex are the 

states{ }, , ,Q R S RST ,those related to the T wave are the states{ }1 2, ,T T RST . The { }RST  state 

models a weak transition from the QRS complex to the T wave, therefore both the QRS 

complex and the T wave are associated with this state. As argued above, the P+ can not be 

computed for QRS detection, but this can be computed for the QRS complex onset QRSon, 

and the T wave offset Toff. For these events the Se and P+ are calculated, as well as the mean 

(m) and the standard deviation (s) of the time differences between the cardiologist and 

automatic annotations. Furthermore, for the beats annotated by the cardiologist in the QT 

database, the QT time mean and standard deviation of these beats is measured manQTt. The 

mean and standard deviation of the time difference between the manual and automatic QT 

times is measures as εQTt. These differ from the errors of QRSon and Toff, as they are 

calculated over all manual annotations and all automatic annotations. The proposed method 

is only trained on the whole concatenated test set and not on individual records. The results 

are shown in Table 1.  
In this method only parts of the ECG signal that are detected by the edge localization 

method can be classified. As a consequence, when an edge is not detected when it should be, 

this part of the signal is always misclassified. Furthermore, the edge detection algorithm 

determines the edges onset and offset. The results of the Toff error mean show a positive bias 

(45ms). This means that most edges related to the T-wave are truncated too late in 

comparison to the cardiologist’s annotations. Edges are truncated, when at the finest scale, 

the wavelet coefficients change sign. This is a very simple and straight forward approach, 
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Parameter QRS QRSon T Toff manQTt εQTt 

Se (%) 99,40 95,34 94,65 86,16 - - 

P+ (%) - 90,75 - 83,56 - - 

m(ms) - -5,80 - 45 422,10 38 

s (ms) - 31,10 - 77,30 72,20 74,3 

# annotations 3473 3473 3512 3512 - - 

Table 1. WTMM and HMM based method detection results 

but unfortunately, often this does not concur with the cardiologists annotations. A possible 
solution to this is to truncate an edge sooner. For instance by using an even finer wavelet 
scale, or by truncating an edge when the wavelet coefficients cross at a certain threshold 
value, instead of zero. It should be noted, that these measures might increase Toff delineation 
precision (m and s) and the Toff sensitivity Se , but they would have little impact on detection 
rates (T sensitivity). Our HMM topology is able to model a great variety of ECG 
morphologies. Still, there are many different topologies possible, which may improve 
performance. This is an elementary problem in hidden Markov modelling; the topology and 
some of the model parameters are determined by experimentation and thus most likely to 
be suboptimal. The HMM model used has more states than annotated events present in the 
database. This is because some ECG waveforms are segmented more precise then in the 
manual annotations. As a result, it is hard to calculate the right parameters for the states 
related to the segments that are not annotated explicitly in the database. The obvious 
solution is to annotate the database more precisely, but this is a time consuming and 
expensive job. The resulting parameters can still not be proved to be optimal, and another 
HMM topology might be required, which would issue another database annotation. For this 
reason some of the states share parameters, these are the parameters that can be easily 
extracted from the database. The segment features that have been chosen as observations for 
the proposed HMM have shown to be discriminative between states.  

3.2 Pitch synchronous wavelet transform and hidden semi-Markov models based 
method 

In this technique we develop a new approach to ECG analysis, combining Pitch 
Synchronous Wavelet Transform (PSWT) and Hidden Semi-Markov Model (HSMM) for 
tracking the typical ECG cycle. The combination of these two techniques was examined in a 
way that the PSWT of an ECG signal was an input for the HSMM. This approach was tested 
and evaluated on the manually annotated QT database.  Experimental results show the 
accuracy of the proposed technique for all corrupted ECG tested reaching a sensitivity 
Se=99,95% for QRS detection and Se=97,79% for T detection. 

3.2.1 Pitch synchronous wavelet transform 

The Pitch Synchronous Wavelet Transform (PSWT) is developed as an extension of the 
wavelet transform that is suitable for pseudo periodic signals like speech signals; 
electroencephalogram (EEG) signals; seismic signals and so more. Electrocardiogram (ECG) 
signals, i.e. heartbeat signals, exhibit pseudo-periodic behaviour. Nearby pulses are very 
similar in shape, but of course various evolutionary changes in the behaviour are medically 
significant (Goodwin, 1997). 
PSWT is a periodic and pseudo periodic signals decomposition approach. It is based on a 
pitch synchronous technique which leads to convert the signal into a whole of vectors 
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having variable length and to apply thereafter to the sequence obtained a traditional 
wavelet transform. This shows its capacity on one hand to analyze according to a periodic 
approach and on several scales the signals with periodic behaviour and on the other hand to 
take account of signal variabilities period per period (Evangelista, 1995) 

A pseudo-periodic signal x[n] is first converted into a sequence [ ] { [ ]}
q

v k v k= of variable length 

vector [ ]
q

v k , each containing the sample of one period signal. The indexes 0, ..., [ ] 1q p k= − and k 

are respectively the inter-period and the period count index and [ ]p k is a sequence of 

integer local pitch periods extracted from x[n]. Based on this representation the sequences of 

components are, then, analysed by means of an array of wavelet transform. Given a set of 

decomposition levels 1, 2, ...,l L= , the pitch synchronous wavelet expansion of the signal x[n] 

is defined by the following sum : 

 1

[ ] [ ] [ ]
L

l L

l

x n w n r n
=

= +∑
 

(26)
 

Where the scaling residue (estimation) [ ]Lr n represents the average behaviour of [ ]x n while 

the partial (details) [ ]Lw n represents the fluctuations at scale 2L local periods. In the 

transform domain the scaling residue and the partial are represented by the expressions : 

 1

[ ] [ ] [ ]
L

l L

l

x n w n r n
=

= +∑
 

(27)
 

 
, , , ,

,

[ ] [ ]l l m q l m q

m q

w n S nξ= ∑
 

(28)
 

Where , , [ ]l m q nξ , , , [ ]L m q nϑ  (m,q integers adapted to the periodicity of the signal [ ]x n ), 

, ,L m qσ and , ,l m qS represent a finite scale pitch synchronous wavelet, L level scaling sequences 

and the expansion coefficients, respectively (Elloumi et al., 2004).  

3.2.2 Pitch synchronous wavelet transform as HSMM front end 

The PSWT coefficients can be employed as a front end to a Markov Model as individual 

samples (the normal HMM) or as a segment of samples (the HSMM or Segmental Markov 

Model). In the sample based model, a state transition is made at each time step, and the 

occurrence probability of a given state is calculated from one observation tO - that 

represents the wavelet coefficients from one time-sample ( , )uW t s - In the segment based 

model, a state transition is made only after a certain number of time steps, d, and the 

probability for a state is calculated from multiple observations ...t t dO O + - that represent 

multiple pitch synchronous wavelet coefficients, ( ... , )uW t t d a+ - In the HSMM, the 

probability of the segment observations ( ),...,t t dP O O + , is calculated as the product of the 

individual observations that make up the segment, as if they where independent identically 

distributed observations. 

3.2.3 Experiments and results 

The results of our method trained on individual records of the test database are 

considerably high. There are only a small number of records who fail good detection. 
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Record sel36, has the worst detection rate. This record has a rhythm of one or two normal 

beats followed by PVC (Premature Ventricular Contraction). As a result, the durations of the 

QRS complexes that are recorded are divided into two clusters : One for the normal QRS 

complexes that have a relatively short duration, and one for the PVC’s that have a long 

duration. From the sensibility Se and the positive predictivity P+ values, we can gather that 

there are slightly more false positives than false negatives. This may be a disadvantage for 

applications in which we need to be sure that only QRS complexes are detected. It may be 

possible to change this relation by changing parameters in our future work analysis. This 

extensive model which models the ECG waveforms more accurate might improve detection 

rates. The results shown in Table 2 are considerably high. There are only a small number of 

records who fail good detection, Se=99,95% and P+=97,39% for QRSon and Se=95,68% and 

P+=96,57% for Toff. 
 

Parameter QRS QRSon T Toff manQTt εQTt 

Se (%) 99,95 99,95 97,79 95,68 - - 

P+ (%) - 97,39 - 96,57 - - 

m(ms) - 9,95 - 0,76 408,8 -9,7 

s (ms) - 7,2 - 22,7 52,1 14,1 

# annotations 2093 2093 2131 2131 - - 

Table 2. PSWT and HSMM based method detection results 

3.3 Multiscale product wavelet transform and hidden Markov tree based method  
3.3.1 Multiscale product wavelet transform 

The WT is a multi-scale analysis which has been shown to be very well suited for speech 
processing as Glottal Closure Instant (GCI) detection, pitch estimation, speech enhancement 
and recognition and so on. Moreover, a speech signal can be analysed at specific scales 
corresponding to the range of human speech (Berman & Baras 1993, Kadambe, 1992). (Witkin, 
1981) provided the foundation for scale space theory by generalizing Rosenfeld’s work 
(Rosenfeld, 1970), in which smoothing filters at dyadic scales were used. Based essentially on 
forming multiscale products of smoothed gradient estimates, this approach attempts to 
enhance the peaks of the gradients caused by true edges, while suppressing false peaks due to 
noise. The wavelet transform acts as an edge detector, and the detail coefficients should be 
equivalent to the estimated gradients. This method was first used in image processing (Xu et 
al., 1994) rely on the variations in the WT decomposition level. They use multiplication of WT 
of the image at adjacent scales to distinguish important edges from noise. Continuous WT 
produces modulus maxima at signal singularities allowing their localisation. However, one-
scale analysis is not accurate. So, decision algorithm using multiple scales is proposed by 
different works to circumvent this problem (Bouzid & Ellouze, 2007, 2009). 
So if the wavelet is chosen to have one vanishing moment, modulus maxima appear at 
discontinuities of the signal and represent the maxima of the first derivative of the smoothed 
signal. The MP (Sadler & Swami, 1999) consists of making the product of wavelet transform 
coefficients of the function f(n) at some successive dyadic scales as follows 

 
2

( ) ( )j

j

p n w f n=∏  (29) 
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Where
2

( )jw f n is the wavelet transform of the function ( )f n at scale 2j. 
This expression is distinctly a non linear function. The product p(n) reveals peaks at signal 
edges, and has relatively small values elsewhere. Singularities produce cross-scale peaks in 
wavelet transform coefficients, these peaks are reinforced by the product p(n). Although 
particular smoothing levels may not be optimal, the non linear combination tends to 
reinforce the peaks while suppressing spurious peaks. The signal peaks will align across 
scales for the first few scales, but not for all scales because increasing the amount of 
smoothing will spread the response and cause singularities separated in time to interact. 
Thus, choosing too large scales will result in misaligned peaks in p(n). An odd number of 
terms in p(n) preserves the sign of the edge (Bouzid et al., 2006). 
Motivated by the efficiency of the multiscale product in improving the edge detection, this 
method is applied on ECG signal and then can outperform the wavelet transform precision 
in weak singularity detection (Besrour et al., 2009). 

4. Conclusion and future work 

In this chapter, we have proposed some new techniques for ECG characterisation based on 
modulus maxima wavelet transform, pitch synchronous wavelet transform and in the future 
work multiscale product wavelet transform as respectively front ends of hidden Markov 
models, hidden semi-Markov models and hidden Markov tree. These innovative methods 
were then applied to the conventional QT database, according to the first method we have a 
Se= 99,40% for QRS detection and a Se= 94,65% for T wave detection. The second method 
have reached a Se=99,95% for QRS detection and a Se=97,79% for T detection. 
The combination of these techniques has shown to be very efficient tool for ECG delineation; 
the good time-frequency resolution of the wavelet transform can successfully overcome 
some of the inherent problems of the ECG signal, such as noise and baseline drift. The HMM 
Markov chain can successfully capture the structural ECG properties, such as the cyclic ECG 
characteristics occurrences. These methods have a more intuitive approach to ECG 
delineation : focusing on relevant ECG parts, that are easily distinguishable, instead of ECG 
individual samples. It can be concluded, that the results of our methods can compete with 
other published work, and is a good candidate for further development. 
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