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1. Introduction

According to the European commission (Road Safety Evolution in EU, 2009), 1.2 million road
accidents took place in the European Union in 2007. These road accidents have resulted
in 1.7 million injuries and more than 40 thousand deaths. It turned out that human errors
were involved in 93% of these accidents. V2V communication is a key element in reducing
road casualties. For the development of future V2V communication systems, the exact
knowledge of the statistics of the underlying fading channel is necessary. Several channel
models for V2V communications can be found in the literature. For example, the two-ring
channel model for V2V communications has been presented in (Pätzold et al., 2008). There, a
reference and a simulation model have been derived starting from the geometrical two-ring
model. In (Zajić et al., 2009), a three-dimensional reference model for wideband MIMO V2V
channels has been proposed. The model takes into account single-bounce and double-bounce
scattering in vehicular environments. The geometrical street model (Chelli & Pätzold, 2008)
captures the propagation effects if the communicating vehicles are moving along a straight
street with local roadside obstructions (buildings, trees, etc.). In (Acosta et al., 2004), a
statistical frequency-selective channel model for small-scale fading is presented for a V2V
communication links.
The majority of channel models that can be found in the literature rely on the stationarity
assumption. However, measurement results for V2V channels in (Paier et al., 2008) have
shown that the stationarity assumption is valid only for very short time intervals. This fact
arises the need for non-stationary channel models. Actually, if the communicating cars are
moving with a relatively high speed, the AoD and the AoA become time-variant resulting
in a non-stationary channel model. The traditional framework invoked in case of stationary
stochastic processes cannot be used to study the statistical properties of non-stationary
channels. In the literature, quite a few time-frequency distributions have been proposed to
study non-stationary deterministic signals (Cohen, 1989). A review of these distributions can
be found in (Cohen, 1989). Many commonly used time-frequency distributions are members of
the Cohen class (O’Neill & Williams, 1999). It has been stated in (Sayeed & Jones, 1995) that the
Cohen class, although introduced for deterministic signals, can be applied on non-stationary
stochastic processes.
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In this chapter, we present a non-stationary MIMO V2V channel model. The AoD and
the AoA are supposed to be time dependent. This assumption makes our channel model
non-stationary. The correlation properties of a non-stationary channel model can be obtained
using a multi-window spectrogram (Paier et al., 2008). For rapidly changing spectral content
however, finding an appropriate time window size is a rather complicated task. The problem
is that a decrease in the time window size improves the time resolution, but reduces
the frequency resolution. To overcome this problem, we make use of the Choi-Williams
distribution proposed in (Choi & Williams, 1989). The extremely non-isotropic propagation
environment is modelled using the T-junction scattering model (Zhiyi et al., 2009). In contrast
to the original multi-cluster T-model, we assume to simplify matters that each cluster consists
of only one scatterer. Under this assumption, the reference and the simulation model are
identical. The main contribution of this chapter is that it presents a non-stationary channel
model with time-variant AoD and AoA. Moreover, analytical expressions for the correlation
properties of the non-stationary channel model are provided, evaluated numerically, and then
illustrated.
The rest of the chapter is organized as follows. In Section 2, the geometrical T-model is
presented. Based on this geometrical model, we derive a reference (simulation) model in
Section 3. In Section 4, the correlation properties of the proposed channel model are studied.
Numerical results of the correlation functions are presented in Section 5. Finally, we draw the
conclusions in Section 6.

2. The Geometrical T-junction Model

A typical propagation scenario for V2V communications at a T-junction is presented in
Fig. 1. Fixed scatterers are located on both sides of the T-junction. In order to derive the
statistical properties of the corresponding MIMO V2V channel, we first need to find a
geometrical model that describes properly the vehicular T-junction propagation environment.
This geometrical model is illustrated in Fig. 2. It takes into account double-bounce scattering
under non-line-of sight conditions. Each building is modelled by one scatterer which makes
our model extremely non-isotropic. The scatterers in the neighborhood of the transmitter MST

are denoted by ST
m (m = 1, 2, . . . , M), whereas the scatterers close to the receiver MSR are

designated by SR
n (n = 1, 2, . . . , N). The total number of scatterers near to the transmitter is

denoted by N, while the total number of scatterers near to the receiver is designated by M.
The transmitter and the receiver are moving towards the intersection point with the velocities
vT and vR, respectively. The direction of motions of the transmitter and the receiver w.r.t. the
x-axis are referred to as φT and φR, respectively. The AoD are time-variant and are denoted
by αT

m(t), while the symbol βR
n (t) stands for the AoA. The AoD and the AoA are independent

since double-bounce scattering is assumed. The transmitter and the receiver are equipped
with an antenna array encompassing MT and MR antenna elements, respectively. The antenna
element spacing at the transmitter side is denoted by δT . Analogously, the antenna element
spacing at the receiver side is referred to as δR. The tilt angle of the transmit antenna array is
denoted by γT, while γR stands for the tilt angle for the receive antenna array. The transmitter
(receiver) is located at a distance hT

1 (hR
1 ) from the left-hand side of the street and at a distance

hT
2 (hR

2 ) from the right-hand side seen in moving direction.
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Fig. 1. Typical propagation scenario for V2V communications at a T-junction.

Fig. 2. The geometrical T-Junction model for V2V communications.

3. The Reference Model

The starting point for the derivation of the reference model for the MIMO V2V channel is
the geometrical T-junction model presented in Fig. 2. For the reference model, we assume
double-bounce scattering from fixed scatterers. We distinguish between the scatterers near to
the transmitter and the scatterers close to the receiver. It can be seen from Fig. 2 that a wave
emitted from the lth transmit antenna element AT

l (l = 1, 2, . . . , MT) travels over the scatterers

ST
m and SR

n before impinging on the kth receive antenna element AR
k (k = 1, 2, . . . , MR). Using

the wave propagation model in (Pätzold et al., 2008), the complex channel gain gkl(�rT,�rR)
describing the link AT

l –AR
k of the underlying MT × MR MIMO V2V channel model can be

expressed in the present case as

gkl(�rT,�rR)=
M,N

∑
m=1,n=1

cmn e j
(

θmn(t)+�kT
m·�rT−�kR

n ·�rR−k0dmn(t)
)

. (1)
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The symbols cmn and θmn(t) stand for the the joint gain and the joint phase shift caused by the

scatterers ST
m and SR

n . The joint channel gain can be written as cmn = 1/
√

MN (Pätzold et al.,
2008). The phase shift θmn(t) is a stochastic process, as the AoD αT

m(t) and the AoA βR
n (t) are

time-variant. This is in contrast to the models proposed in (Pätzold et al., 2008) and (Zhiyi
et al., 2009), where the phase shift is a random variable. The joint phase shift can be expressed
as θmn(t) = (θm(t)+ θ′n(t))mod 2π, where mod stands for the modulo operation. The terms
θm(t) and θ′n(t) are the phase shifts associated with the scatterers ST

m and SR
n , respectively.

The second phase term in (1),�kT
m ·�rT , is caused by the movement of the transmitter. The wave

vector pointing in the propagation direction of the mth transmitted plane wave is denoted

by�kT
m, while�rT stands for the spatial translation vector of the transmitter. The scalar product

�kT
m ·�rT can be expanded as

�kT
m ·�rT = 2π f T

max cos(αT
m(t)− φT)t (2)

where f T
max =vT/λ denotes the maximum Doppler frequency associated with the mobility of

the transmitter. The symbol λ refers to the wavelength. The time-variant AoD αT
m(t) can be

expressed as

αT
m(t)=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−π + g2(t) if − π ≤ αT
m(t) ≤ − π

2

g2(t) if − π
2 < αT

m(t) ≤ 0

g1(t) if 0 < αT
m(t) ≤ π

2

π + g1(t) if π
2 < αT

m(t) ≤ π

(3)

where

g1(t)=arctan

(

hT
1 tan(αT

m(t0))

hT
1 − vT(t − t0) tan(αT

m(t0))

)

(4)

g2(t)=arctan

(

hT
2 tan(αT

m(t0))

hT
2 − vT(t − t0) tan(αT

m(t0))

)

. (5)

We assume that the AoD seen from the transmitter side can be considered as constant for a
given time interval if the angular deviation does not exceed a certain threshold. For instance,
the AoD αT

m(t1) at time instant t1 and the AoD αT
m(t2) at time instant t2 are equal if the angle

difference |αT
m(t1) − αT

m(t2)| ≤ ǫα, with ǫα is a very small positive value. In this way, the AoD
αT

m(t) can be written as

αT
m(t)=αT

m,i−1 if ti−1 ≤ t < ti for i = 1, 2, . . . (6)

The term αT
m,i−1 is a constant that can be obtained from (3) by setting the time t to ti−1. The

length of the intervals [ti−1, ti) and [ti, ti+1) can be quite different for i = 1, 2, . . .. The phase
shift introduced by a scatterer is generally dependent on the direction of the outgoing wave.
Hence, a change in the AoD αT

m(t) results in a new random phase shift. Since the AoD αT
m(t)

is defined piecewise, the phase shift θm(t) is also defined piecewise as follows

θm(t)=θm,i−1 if ti−1 ≤ t < ti for i = 1, 2, . . . (7)

4 Vehicular Technologies: Increasing Connectivity

www.intechopen.com



where θm,0, θm,1, . . . are independent identically distributed (i.i.d.) random variables
uniformly distributed over [0, 2π).

The third phase term in (1), �kR
n ·�rR, is associated with the movement of the receiver. The

symbol�kR
n stands for the wave vector pointing in the propagation direction of the nth received

plane wave, while �rR represents the spatial translation vector of the receiver. The scalar

product�kR
n ·�rR can be expanded as

�kR
n ·�rR = −2π f R

max cos(βR
n (t)− φR)t (8)

where f R
max =vR/λ denotes the maximum Doppler frequency caused by the receiver

movement. Using the geometrical T-junction model shown in Fig. 2, the time-variant AoA
βR

n (t) can be expressed as

βR
n (t)=

⎧

⎪

⎨

⎪

⎩

−π + g3(t) if − π ≤ βR
n (t) ≤ − π

2

g4(t) if − π
2 < βR

n (t) ≤ π
2

π + g3(t) if π
2 < βR

n (t) ≤ π

(9)

where

g3(t)=arctan

(

hR
2 tan(βR

n (t0))− vR(t − t0)

hR
2

)

(10)

g4(t)=arctan

(

hR
1 tan(βR

n (t0))− vR(t − t0)

hR
1

)

. (11)

We assume that the AoA seen from the receiver side can be considered as constant for a given
time interval if the angular deviation does not exceed a certain threshold. For instance, the
AoA βR

n (t′1) at time instant t′1 and the AoA βR
n (t′2) at time instant t′2 are equal if the angle

difference |βR
n (t′1) − βR

n (t′2)| ≤ ǫα. In this way, the AoA βR
n (t) can be written as

βR
n (t)=βR

n,j−1 if t′j−1 ≤ t < t′j for j = 1, 2, . . . (12)

The term βR
n,j−1 is a constant that can be obtained from (9) by setting the time t to t′j−1. The

length of the intervals [t′j−1, t′j) and [t′j, t′j+1) can be quite different for j = 1, 2, . . .. The phase

shift introduced by a scatterer is generally dependent on the direction of the incoming wave.
Hence, a change in the AoA βR

n (t) results in a new random phase shift. Since the AoA βR
n (t)

is defined piecewise, the phase shift θ′n(t) is also defined piecewise as follows

θ′n(t)=θ′n,j−1 if t′j−1 ≤ t < t′j for j = 1, 2, . . . (13)

where θ′n,0, θ′n,1, . . . are i.i.d. random variables uniformly distributed over [0, 2π).

After substituting (2) and (8) in (1), the complex channel gain gkl(t) can be expressed as

gkl(t) =
M,N

∑
m,n=1

aT
m bR

n cTR
mn√

MN
e j

(

2π( f T
m+ f R

n )t+θmn(t)
)

(14)
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where

aT
m = e jπ

δT
λ (MT−2l+1) cos(αT

m(t)−γT) (15)

bR
n = e jπ

δR
λ

(MR−2k+1) cos(βR
n (t)−γR) (16)

cTR
mn = e−j 2π

λ

(

DT
m(t)+Dmn+DR

n (t)
)

(17)

f T
m = f T

max cos(αT
m(t) − φT) (18)

f R
n = f R

max cos(βR
n (t)− φR). (19)

with DT
m(t) denoting the distance from the transmitter to the scatterer ST

m. The term Dmn

represents the distance between the scatterers ST
m and SR

n ,while DR
n (t) corresponds to the

distance from the receiver to the scatterer SR
n , as shown in Fig. 2.

4. Correlation Properties

For wide-sense stationary processes, the temporal ACF depends only on the time difference τ.
However, for non-stationary processes, the temporal ACF does not only depend on the time
difference τ, but also on the time t. Due to its time dependance, the ACF of non-stationary
processes is called local ACF (Cohen, 1989). Several definitions for the local ACF have been
proposed in literature. In this paper, we utilize the definition of the local ACF proposed by
Wigner (Cohen, 1989), which is given by

rgkl
(t, τ) := E{gkl(t + τ/2)g∗kl(t − τ/2)} (20)

where (·)∗ denotes the complex conjugation and E{·} stands for the expectation operator. By
applying the expectation operator on the i.i.d. random variables θm,i (i = 0, 1, . . .) and θ′n,j

(j = 0, 1, . . .) and exploiting their independence, we can express the local ACF as

rgkl
(t, τ) = rT

gkl
(t, τ) · rR

gkl
(t, τ). (21)

where

rT
gkl

(t, τ)=
1

M

M

∑
m=1

e
j2π

(

f T
m

(

t+ τ
2

)(

t+ τ
2

)

− f T
m

(

t− τ
2

)(

t− τ
2

)

)

(22)

rR
gkl

(t, τ)=
1

N

N

∑
n=1

e
j2π

(

f R
n

(

t+ τ
2

)(

t+ τ
2

)

− f R
n

(

t− τ
2

)(

t− τ
2

)

)

. (23)

Note that the local ACF rgkl
(t, τ) is written as a product of the local transmit ACF rT

gkl
(t, τ)

and the local receive ACF rT
gkl

(t, τ) since we assume a limited number of scatterers in the
proposed model. The expression of the local ACF is derived using the Wigner method
(Cohen, 1989). By applying the Fourier transformation on the local ACF in (21), we obtain the
Wigner time-frequency distribution. The former even though a member of the Cohen class
of distributions, suffers from the cross-term problem (Cohen, 1989). To deal with this issue, a
kernel function aiming to reduce the cross-terms need to be introduced. One of the effective
distributions in diminishing the effect of cross-terms is the Choi-Williams distribution (Choi
& Williams, 1989). Choi and Williams devised their kernel function in such a way that a
relatively large weight is given to gkl(u + τ/2)g∗kl(u − τ/2) if u is close to t. In this way, they

6 Vehicular Technologies: Increasing Connectivity
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emphasis the local behaviour of the channel and guarantee that the non-stationarities will not
be smeared in time and frequency. The kernel function for the Choi-Williams distribution is

given by φ(ξ, τ) = e−ξ2τ2/σ. It follows that the generalized local ACF can be expressed as
(Choi & Williams, 1989)

K(t, τ; φ) =
∫ ∞

−∞

∫ ∞

−∞
ej2πξ(u−t)φ(ξ, τ)rgkl

(u, τ) du dξ

=
∫ ∞

−∞

rgkl
(u, τ)√

4πτ2/σ
exp

(

− (u − t)2

4τ2/σ

)

du. (24)

The generalized local ACF presented above can be used for both stationary and non-stationary
processes. Actually, if the process is stationary, the local ACF rgkl

(u, τ) equals rgkl
(τ). Using

(24), it turns out that the generalized local ACF for stationary processes equals the classical
ACF, i.e., K(t, τ; φ) = rgkl

(τ).
For stationary processes, the power spectral density can be obtained from the Fourier
transformation of the temporal ACF. Analogously, for non-stationary processes, the
time-frequency distribution can be obtained from the generalized local ACF by applying the
Fourier transformation. The time-frequency distribution gives an insight into how the power
spectrum varies with time t. The time-frequency distribution W(t, f ; φ) can be written as

W(t, f ; φ)=
∫ ∞

−∞
K(t, τ; φ) e−j2π f τ dτ

=
∫ ∞

−∞

∫ ∞

−∞
A(ξ, τ; φ) e−j2π( f τ−tξ) dτdξ (25)

where A(ξ, τ; φ) is the ambiguity function.
The local space CCF can be expressed as

ρkl,k′l ′ (t, δT , δR)=E{gkl(t)g∗k′ l ′(t)}

=
1

M

M

∑
m=1

e−j2π
δT
λ (l−l ′) cos(αT

m(t)−γT)

· 1

N

N

∑
n=1

e−j2π
δR
λ (k−k′) cos(βR

n (t)−γR)

= ρT
ll ′(t, δT) · ρR

kk′ (t, δR). (26)

In (26), the AoD αT
m(t) and the AoA βR

n (t) are given by (6) and (12), respectively. Note that the
local space CCF is written as a product of the local transmit space correlation function (CF)
ρT

ll ′ (t, δT) and the local receive space CF ρR
kk′ (t, δR).

5. Numerical Results

In this section, the analytical expressions presented in the previous section are evaluated
numerically and then illustrated. The propagation environment encompasses twelve
scatterers around the transmitter. Six scatterers are located on the left side of the transmitter
and the remaining scatterers are on the right side. The distance between two successive
scatterers is set to 20 m. We consider the same number of scatterers around the receiver. The
transmitter and the receiver have a velocity of 70 km/h and a direction of motion determined
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by φT = 0 and φR = −π/2, respectively. The transmitter and the receiver antenna tilt angles
γT and γR are equal to π/2. The street parameters are chosen as hT

1 = hT
2 = 50 m and

hR
1 = hR

2 = 50 m. The parameter ǫα is set to 0.1.
The absolute value of the resulting generalized local ACF K(t, τ; φ) is illustrated in Fig. 3.
From this figure, we can see that the shape of the local ACF changes for different values of t,
which is due to the non-stationarity of the channel model. If the channel model is stationary,
we would observe the same shape of the local ACF at different time instants t. The absolute
value of the time-frequency distribution, |W(t, f ; φ)|, shown in Fig. 4, is obtained from the
generalized local ACF by applying the Fourier transform w.r.t. the time lag τ. It can be seen
from this figure how the Doppler spectrum of the channel varies with time t. For the chosen
propagation scenario, it can be observed from Fig. 4 that the zero Doppler frequency has the
highest power for all time instants t. The power of the non-zero Doppler frequencies decays
for a certain period of time before increasing again. The absolute value of the local transmit
space CF |ρT

12(t, δT)| is presented in Fig. 5. It can be seen from this figure that the amplitude
of this function is more sensitive to the transmit antenna spacing δT than to the time t. The
absolute value of the local receive space CF |ρR

12(t, δR)| is illustrated in Fig. 6. For the chosen
scenario, this function decays faster than the local transmit space CF w.r.t. the antenna spacing.
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Fig. 3. The absolute value of the generalized local ACF |K(t, τ; φ)|.

6. Conclusion

In this chapter, we have presented a non-stationary MIMO V2V channel model. Based
on the geometrical T-junction model, we have derived an expression for the time-variant
channel gain taking into account double-bounce scattering from fixed scatterers. We have
assumed a limited number of scatterers. Under this assumption, the reference model equals
the simulation model. In vehicular environments, the high speed of the communicating
vehicles results in time-variant AoD and AoA. This property is taken into account in our
channel model, which makes the model non-stationary. To study the statistical properties of
the proposed channel model, we utilized the Choi-Williams distribution. We have provided
analytical expressions of the generalized local ACF, the time-frequency distribution, and the
local space CCF. The latter can be written as a product of the local transmit space CF and
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the local receive space CF. Supported by our analysis, we can conclude that the stationarity
assumption is violated for V2V channels, especially if the mobile speed is high and the
observation interval is large. Non-stationary channel models are needed as a tool for designing
future V2V communication systems. In future work, the effect of moving scatterers on the
channel statistics will be studied.
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