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1. Introduction  

Fourier Transform (FT) is widely applied in digital mobile cellular radio systems. The 

implementation requires low power consumption and smaller chip size. The primary factor 

of the FT applications is its chip complexity. The complexity is typically expressed in terms 

of number of adders, the number of multiplier, data storage and control complexity rather 

than the speed of operation. 

The current divide and conquer technique in fast Fourier transform (FFT) reduces the 

number of operations in conventional discrete Fourier transform (DFT) by utilizing the 

advantage of complex twiddle factors instead of matrix multiplications (Oppenheim, 

1990). The computation of DFT is decomposed into nested smaller DFTs which are 

computed separately and combined to give the final results. FFT reduces the number of 

multiplier which account of much of the chip area and power consumption in digital 

hardware design. 

However, a pipeline FFT processor is characterized by real time continuous processing of an 

input data sequence. It is difficult to initiate the FFT operation until all of the N sampled 

data are taken. Another complexity issue is the arithmetic unit, especially multipliers, that 

requires larger area than a digital register. To meet real-time processing in FFT with size of 

N, the multiplicative complexity of N logr N is required (r is generally the radix). It 

contributes the complexity of the processor and power consumption. 

Another consideration of FFT is the data storage or memory for buffering the data and 

intermediate results of the real time computations. The butterfly at the first stage has to take 

the input data elements separated by N/r from the sequence. The required memory 

becomes another major chip area issue especially for large Fourier transform. 

The facts expressed above need to be improved so that the amounts of power consumption, 

chip area and complexity are suitable especially for handheld transceiver. Since the power 

consumption is directly related to the number of complex multiplications, an algorithm to 

reduce or replace these multiplications is important. 

In (Shattil and Nassar, 2002), a simple computation of Fourier transform using a square-

wave is introduced. A mathematical derivation shows that it is possible to replace the 
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complex multiplication in Fourier transforom by additions. However, the performance 

evaluation of the method in (Shattil and Nassar, 2002) is not available to make sure the 

effectiveness of the method. 

In this paper, we propose double square-waves (DS) that completely replace complex 

multiplications by sampling and additions for Fourier and inverse Fourier transforms called 

DSFT. The proposed method only requires sampler, multiplier and filter to remove the 

harmonic components of square-wave. Our results confirm that DS-FT is applicable to any 

system that requires Fourier transforms such as orthogonal frequency division multiplexing 

(OFDM) (Nee and Prasad, 2000), multicarrier code division multiple access (MC-CDMA), 

FFT-based carrier interferometry spreading (Anwar and Yamamoto, 2006) and other 

techniques that requires FFT. 

2. Important 

This chapter presents a simple computation method for Fourier Transform (FT) and its 

inverse (IFT) by employing multiple square waves (MSW), whose complex multiplications 

are replaced by simple additions. Since the square wave is superposition of harmonic 

sinusoids, a simple mathematical derivation shows that fast Fourier transform (FFT) and its 

inverse can be performed by MSW with low computational complexity. MSW replaces the 

complex twiddle factor multiplications in FFT/IFFT by simple adding operation. The main 

parts of this chapter is adapted from (Takahashi et. al., 2007). 

The orthogonality of FFT/IFFT is still kept, by which the bit-error-rate (BER) performance is 

satisfactory. Compared to the standard single square wave (SSW), our results confirm that 

excellent BER performance is achievable without error floor. Furthermore, the proposed 

multiple square wave for Fourier transform (MSW-FT) is free from restriction in its size (e.g. 

power of two, etc.) and is useful for signal processing of multi-carrier system, such as 

orthogonal frequency division multiplexing (OFDM), and multi-carrier code division 

multiple access (MC-CDMA), WiMAX, single carrier frequency division multiple access 

(SC-FDMA) and other frequency domain processing such as frequency domain turbo 

equalization. The proposed MSW-FT and MSW-IFT are less complex than FFT or IFFT, 

which is suitable to digital communication systems, where the power consumption 

constraint is considered. 

3. System model 

We consider an OFDM system as the model to evaluate the effectiveness of the proposed 
DS-FT. Fig. 1 describes the transceiver structure of OFDM system where its FFT is replaced 
by DS-FT. Inverse DS-FT, called DS-IFT, is located at the transmitter while DS-FT is located 
at the receiver. The N incoming data symbols are converted from serial to parallel. Then  
(L – 1)N zeros are added to the center of the parallel data to obtain the oversampled signal, 
where L is the oversampling factor. The LN data symbols (with zero padding) are converted 
to time-domain signals using DS-IFT. After filtering, guard interval (GI) is inserted. The 
OFDM signals are then transmitted to the channel. 
At the receiver, first GI is removed, then the signals are converted to frequency domain 

signals by DS-FT. From the frequency-domain signals, padded zeros are removed. Finally, 

we obtain the data.  
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Fig. 1. System Model of OFDM WLAN where its FFT is replaced by DS-FT 

4. Proposed double square-waves for Fourier transform 

4.1 Square-wave model 

The frequency-domain signal X(fn) converted from timedomain symbol xk by discrete 

Fourier transform (DFT) is expressed by 
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where fn is an n-th frequency component, K is the number of time-domain samples and t0 is 

the interval of time-domain samples. The exponential function ( , )nf tΨ  is expressed by 

Euler’s theorem as  
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From (1) and (2), at least K×K complex multiplications are required. In addition, a lot of 

phases should be restored when performing the multiplications or additions. To replace a 

large number of multiplications, we propose to use square-waves which consist of only 2 

levels of amplitude as a substitute for exponential function in DFT. 

The single square-wave function for n-th frequency can be expressed as a sum of harmonic 
sinusoids as (Kreyzig, 1993) 
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Fig. 2. Double Square-waves consists of π/4  and π/12  single square-waves 
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Here, (3) can be rewrittten as  
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4.2 Order of truncation 

Due to the hardware limitation, truncation is required in performing sin 2π fnt in (4). This 

subsection discusses errors caused by the truncation of (4). We construct a sinusoid by some 

square-waves and measure the average error that shows how the signal is similar with the 

perfect sinusoid signal. The order of number of square-waves is 1, 2, 3, · · · , 12. The result is 

plotted in Fig. 3.  
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Fig. 3. Average squared-error of square-waves based sinusoid compared to a perfect 
sinusoid-waves 

It is shown when we have a single square-wave, the average error is about 0.073 while it is 
0.032 with a double squarewaves. The difference between a single square-wave and double 
square-waves, d1–2, is about 0.041. That means double square-waves improve about 0.041 of 
average error. Increasing the number of square-waves more than 3 does not significantly 
reduce the average error, i.e. d1–2 > d2–3 > d3–4 >.   
On the other hand, using square-waves more than 3 will increase the computational 
complexity in hardware. We conclude that double square-waves is enough to keep lower 
error and hardware complexity. 
 

4.3 Double square-wave transform 

As a consequence of result in Subsection 4.2, it is reasonable to assume 

 1 1
sin(5·2 ) sin(7·2 ) 0

5 7
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such that we obtain 
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From (6), it is shown that the sinusoid can be composed by combining two square-waves of 

different amplitudes and different periods. We call it as double square-wave (DS) signal and 

it is noted as xds(2π fnt).  

Because additions require less computational complexity than subtractions, we modify the 

phase of second wave by π to prevent the subtraction. Then double square-wave function  

xds(2π fnt) is expressed by 

 1
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The number of samples is 96. 

Now, we can obtain the function ( , )ds ft nf t−Ψ  for DS-FT and ( , )ds ift nf t−Ψ  for DS-IFT as 

substitution of exponential function ( , )nf tΨ  in (2) as  

 ( , ) (2 ) · (2 ),
2

ds ft n ds n ds nf t x f t j x f t
ππ π−Ψ = + − ,   (8) 

 ( , ) (2 ) · (2 ).
2

ds ift n ds n ds nf t x f t j x f t
ππ π−Ψ = + + .   (9) 

Finally, we can express the frequency-domain signal X(fn) as 
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and the time-domain signal x(fn) as 
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4.4 Computational complexity 

The square-wave generator is simpler than the sinusoid generator because it uses digital logic. 

It doesn’t need the complex analog multiplier and can be replaced by a simple hardware. 

An inverter can be used to multiply the data by −1, while multiplication of +1 is possible by 

copying the signal. Compared to the conventional single square-wave method, our 

proposed method needs an addtional multiplication by 1/3. However, multiplication by a 

constant is not too complex in a hardware. Therefore, multiplication by double square-

waves is easier in hardware implementation than multiplying by a sinusoid. 

5. Performance evaluation 

This section evaluates signal resolution and BER performances using the proposed DS-FT 

compared to that of single square-wave Fourier transform (SS-FT) (Shattil and Nassar, 2002) 

(Bates et. al., 1970). 

5.1 Signal resolution 

Figures 4(a) and (b) show the signal resolution of a sinc function. The sinc waveform is 

represented by the dashed line that has been sampled in 96 samples with normalized 

amplitude. The sinc waveform by SS-FT is shown in Fig. 4(a), while that by DS-FT is shown 

in Fig. 4(b). It is shown that the resolution of SS-FT can not reach the maximum while the 

left and right parts of signals are too high. The sinc waveform represented by the proposed 

DS-FT has better quality than that of SS-FT.  

5.2 BER performances evaluation 

In this subsection, to confirm the effectiveness of the proposed method, we evaluate the BER 
performances of an OFDM system where its FFT and IFFT are replaced by DSFT and  
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Fig. 4. Sinc waveform using (a) single square-wave and (b) double squarewaves 
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Fig. 5. BER performances of WLAN using FFT, SS-FT and the proposed DS-FT method 

DS-IFT. Evaluation of DS-FT using signal resolution is not enough. Thus, evaluation of the 
BER is important to make sure the effectiveness of sampling and orthogonality guarantee. 
The parameters used for BER performance evaluation are shown in Table I which expected 
to be the condition of IEEE802.11a/g Wireless LAN system. 
The modulation is QPSK for OFDM system with number of subcarrier is 52, as in Wireless 
LAN system. We use oversampling factor of 6 to observe efficiently the signal resolution. GI 
length is 25% of the symbol length. The overall simulation is performed in additive white 
Gaussian noise (AWGN) channel without error correction coding.  
The BER performancess are plotted in Fig. 5. The dashed line is a theoretical BER 
performance of QPSK symbol for reference. The BER of OFDM with FFT has degradation by 
about 1 dB as a consequence of guard interval (GI) insertion with length of 1/4 or 25% of the 
length of OFDM symbol. SS-FT has residual bit error at 1.5 × 10−3. Increasing the number of 
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oversampling does not change the BER performance of SS-FT. The reason is that the 
orthogonality can not be kept by the SS-FT. 
The proposed DS-FT does not have residual bit error (up to 10−7) though it has BER 
degradation by about 2dB at BER level of 10−3. Increasing the oversampling factor will 
increase the BER performance. But the oversampling factor enhancement should consider a 
practical reason related to the additional complexity.  
 

Parameters Value(s) 

Modulation QPSK 

Number of Subcarriers 52 

FFT size 64 

GI Length 16 (25%) 

Oversampling factor (L) 6 

Channel AWGN 

Table 1. Simulation Parameters 

6. Conclusion 

In this paper, we propose DS-FT and evaluate it in the OFDM system. The DS-FT comprises 
double square-waves to simplify the Fourier transform computation with better signal 
resolution and BER performance compared to the Fourier transform using single square-
wave. The double square-waves can be easily generated by two weighted single square 
waves with different periods. DS-FT contributes lower computational complexity of Fourier 
transform by replacing the complex multiplication with sampling, addition and filtering 
(only at the transmitter). Therefore, power consumption (related to the number of 
multiplication) and chip area (related to the memory) can be reduced by DS-FT with 
allowable performance degradation. 
In our future work, we will consider the filter at the output of DS-FT to obtain a better signal 
resolution by completely removing the harmonic frequency components.  
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