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1. Introduction 

Transmission electron microscopy is the only technique by which freely suspended 
graphene can be scrutinised for nano-scale topography and chemistry occurring in 
micromechanically exfoliated graphene or having been introduced by production methods, 
e.g., by growth on Ni-subtsrates, or as a result of functionalistaion, e.g., upon 
hydrogenation. Investigations on this scale require atomic resolution, which can be catered 
for by electron microscopy; indeed several impressive studies have been conducted. In this 
chapter we summarise reports on scanning transmission electron microscopy and 
spectroscopy investigations, conducted with aberration corrected probes, especially recent 
results of atomic resolution high angle dark field microscopy, by which chemical 
information about atoms in graphene that are heavier then carbon can be obtained. By 
combining this with ultra-high spatially resolved electron energy loss spectroscopy to reveal 
the nature of elements, particularly those with lower atomic number (e.g., boron and 
hydrogen), which do not show up in high angle dark field images, one obtains an invaluable 
and powerful tool for graphene reserach; added to this is the information about the 
electronic bandstructure that can be obtained on a highly spatially resolved scale through 
monitoring the plasmon behaviour of graphene.  
Paragraph 2 briefly describes the scanning transmission electron microscopy (STEM) 
technique employed for imaging and chemical analysis, and how free-standing membranes 
of graphene, required for these measurements, are obtained. Paragraph 3 deals with high 
resolution imaging of the atomic structure and configuration of intrinsic defects and 
paragraph 4 with stabilisation issues of single and bi-layer membranes: rippling effects in 
the graphene lattice are revealed. In free-standing CVD-grown graphene the membranes are 
an intricate patchwork of mono- and bi-layers, the latter being AB stacked or rotated at 
various angles to each other. In paragraph 5 atomic resolution HAADF and ultra-high 
spatially resolved electron energy loss spectroscopy are used to identify atomic sites and 
chemical nature of metal impurity atoms Au, Ni and Fe, as well as of B, intentionally 
introduced into graphene as electronic dopant via ion implantation. It is highly desirable to 
be able to reveal the presence and distribution of hydrogen in order to assess the success of 
H-dosing for the purpose of bandgap tailoring; we investigate the applicability of energy 
loss spectrum imaging for this purpose. Paragraph 6 scrutinises plasmon characteristics of 
graphene. Plasmon behaviour is sensitive to electron densities and electronic structure of 
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solids; the graphitic σ-plasmon undergoes typical changes in few-layer structures and 
provides an unambiguous fingerprint for single layer graphene, whilst the graphitic π-
plasmon can give valuable information about changes in the π-electron system upon doping 
and dosing. In combination with DFT calculations we test the scope of plasmon 
spectroscopy in assessing, especially, H-induced graphene morphologies. 

2. Microscopy methods and TEM sample preparation techniques  

2.1 Microscopy methods 

Electron microscopy studies of graphene so far have been conducted in a transmission 
electron microscope (TEM), using a stationary electron beam. Here we use an aberration 
corrected (AC) transmission electron microscope (STEM) (Goodhew & Bleloch, 2003) with a 
cold field emission gun and added, analytical facilities. In a STEM a focussed electron probe 
is scanned in a pixelated raster over a pre-defined sample area. The benefits of this 
microscope are the very bright (100 pA) and very fine (≤0.1 nm diameter) probe, which, due 
to the small depth of focus (8nm) provides an image- (pixel-) resolution of better then 0.1 
nm, allowing atomic-scale imaging to be carried out in bright field (BF) and, very 
importantly, in high angle annular dark field (HAADF) mode. A further benefit is the 
variable operating voltage from 100 down to 60 kV, ensuring measurements below the 
displacement threshold of C (at ~80 keV).  
In BF mode electrons from the central diffraction disk are collected over an angular range of 0-
6 mrad. Diffraction disks (rather then spots) are formed because of the high beam convergence 
angle (~24 mrad). The occurrence of atomic lattice images at high resolution arises from 
coherence (phase) effects in overlapping diffraction disks. In HAADF mode electrons scattered 
to high angles are collected in an annular detector with an angular range of 70-210 mrad. These 
electrons have undergone incoherent elastic scattering (Rutherford scattering), the strength (or 
probability) of which is approximately proportional to the square of the atomic number of the 
scattering element (Z-contrast), and therefore this imaging method can be used for chemical 
identification (Pennycook & Boatner, 1988). At high magnifications, due to the fine probe and 
employing sub-Å scan point separation, individual atoms can be ‘lined-out’, giving rise to 
atomic resolution HAADF images. Such images can be interpreted rather straight forwardly 
and much more easily than BF phase contrast images.  
Chemical/elemental analysis using electron energy loss spectroscopy (EELS) (Brydson, 
2003; Egerton, 1986) can be conducted with high sensitivity at the same spatial resolution as 
obtained in images. Inelastic scattering events can be detected with collection angles of up to 
19 mrad over an energy range of 0-2000 eV, covering energy losses from valence band to K-
shell core loss excitations of elements spanning the periodic table from H to noble metals 
(using an ‘Enfina’ energy loss spectrometer). The combination of the ~0.3 eV energy 
resolution and energy dispersions of up to 0.01 eV/channel provides access to absorption 
events in the 1 eV loss regime, thus enabling electronic bandstructure studies. Energy loss 
spectra can be obtained as individual spectra in single locations on the sample or as 
collective data sets along predefined lines (line scans) or in predefined image areas 
(spectrum images (Hunt & Williams, 1991)). The small probe size enables EELS to be carried 
out even on single atoms (Browning & Pennycook 1994). Image acquisition and processing 
as well as EELS measurements and evaluation were conducted with the Gatan Digital 
Micrograph software and its various ‘plug-ins’; data analysis using special programs is 
described in the respective paragraphs. 
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Fig. 1. a) Schematics of the STEM, b) enlarged detail of detector configuration with 
schematic HAADF image inset (top panel) and schematics of origin of phase contrast on the 
BF detector with inset showing lattice images in overfocus and underfocus (bottom panel). 

The Daresbury SuperSTEMs (the UK’s first aberration corrected STEMs) were used for 
STEM imaging and analysis. TEM results, which are also presented in this chapter, were 
obtained with a Tecnai F30. 

2.2 TEM sample preparation 

There are several methods to acquire suspended graphene layers, initially such layers were 
obtained by micro-mechanical cleaving and exfoliation (Booth et al, 2008). After repeated 
cleaving of graphite by using adhesive tape, thin flakes are transferred to an oxidised Si 
wafer on which few-layer graphene flakes can be identified by their colour using a light 
microscope. Selected flakes are then made to adhere to a TEM sample grid; this is facilitated 
by using, e.g., sticky grids (Quantifoil), and employing the surface tension of a drop of 
evaporating IPA, dripped onto the graphene flakes. 
 

IPA

Carbon Film

SiO2

IPA

Carbon Film

SiO2  
 

Another frequently used method employs embedding of graphene flakes in PMMA or CAB 
(Cellulose Acetate Butyrate) for protection, and subsequent lift off the substrate (e.g., by 
etching the substrate), and floating the PMMA (or CBA) containing the graphene flakes off. 
The details of this procedure can vary; the steps outlined in the sketch below entail for 
example applying a sticky tape (blue) with a window (step 2) to make a ‘frame’ for easier 
handling of the PMMA/graphene film during the transfer to the TEM grid. This sticky tape 
is later removed by scribing the PMMA around the target area (step 5) 
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Figure 2a) shows an optical micrograph of graphene flakes obtained by micromechanical 
cleaving and deposition across a crack (induced by cleaving) in an oxidised Si wafer. The 
darkish blue graphene areas are identified as single or bi-layers. The graphene is freely 
suspended, where it lies across the gap and hence could be directly imaged in a TEM using 
the Si as sample support. Figures 2b-d are TEM BF images of the suspended flake at 
increasing magnification. Figure 2c shows that the graphene surface has significant 
contamination; 2d) shows the atomic lattice in an uncontaminated patch. Figure 2e) is a 
HAADF STEM image at low magnification with contamination, most likely hydrocarbon 
deposits, presenting them selves as whitish contrast. These deposits are interrupted by dark 
patches, representing uncontaminated parts of single layers. In the following paragraph it is 
the atomic scale topography of uncontaminated patches that we will concern ourselves with. 
Figures 2e&f are views at increased magnification. Figure 2g), although noisy, as it 
represents scattering of one single atomic layer, shows the graphene lattice. Much of the 
work in the following paragraphs will focus on HAADF studies, which we have carried out 
in the SuperSTEM; a number of papers have dealt with transmission electron microscopy 
(TEM) of graphene (Meyer et. al., 2007a; Meyer et. al., 2008a;  Meyer et. al., 2008b) however 
HAADF studies have not been amongst these. 

3. Atomic scale topography: defects and ad-atoms 

3.1 Defects  

In the case of graphene with the electron beam focussed onto the sheet, the rare occasions 
occurs, where electron microscopy lattice images can be seen as a direct depiction of the ball-
and-stick model of an atomic lattice structure. These images are directly interpretable: bright 
contrast corresponds to atoms and dark contrast to the gaps in between. Effects of atomic 
structure extending in direction of the electron beam, resulting in de-channelling of the beam 
on atomic columns and hence inducing contrast changes etc, cannot occur in mono-layer 
structures. Moreover, the atomic arrangements of atomic-scale defects can be straight 
forwardly deduced. HAADF can furthermore reveal the atomic nature of species at single-
atom level through the approximate Z2-dependence of the scattering probability. It is thus 
feasible for detection of atom species on/in graphene of Z equal to and larger then carbon. 
Graphene has provided the basis for elegant theoretical calculations and predictions of defect 
structures alongside their effects on the physical, chemical and electronic properties (Duplock, 
Scheffer & Lindan, 2004; Crespi, Scheffler & Rubio, 1997; Charlier, 2002). Structural 
observations on suspended graphene, on the other hand, are still relatively scarce, and, as 
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Fig. 2. a) optical micrograph of graphene flake deposited across a gap in an oxidised Si-
wafer, b), c) and d) BF TEM images and e), f) and g) HAADF STEM images of the flake at 
increasing magnification. 

noted earlier, HAADF studies are non-existent. Here we reveal directly atomic scale 
topological features of free standing graphene. 
Electron beam energies of 100 keV, used for some of the following studies are just around 
the displacement threshold for atoms in carbon structures. Hence it is difficult to judge, 
whether defects occurring during the first image scan are radiation induced, or whether 
they were already present. However, changes in the films occurring over multiple scans 
were carefully monitored (and captured in movies), and on the basis of this it appears that 
discernible changes took place only after ~2 minutes of repeated scanning, and that the 
defect numbers during the first few scans are very small and stay constant, with the defects 
well separated (although some movement / reconstruction was observed even between 
initial scans). It is of interest to follow in-situ defect formation in the STEM, captured in 
sequential scans, each scan lasting no longer then 10 s. Figure 3 shows the 1st, 17th, 18th and 
19th image of a 20-images series of STEM high resolution BF images. Only in the later scans, 
after ~2 min irradiation, does e-beam defect formation become a distinctive feature. At that 
stage a large number of single point defects- seen here are vacancies- suddenly appears (fig. 
3c, red circle). These aggregate to form larger clusters (fig. 3d, red circle) and, eventually, 
holes. We emphasise we are dealing with BF-phase contrast images; these are not as directly 
interpretable as their HAADF counterparts. Nevertheless, since the images here were taken 
at ~1nm overfocus, the centre of the 6-rings, and also vacancies, will appear darker then the 
atoms, similar to dark field images. The delay in the apparent setoff of the beam damage 
may indicate that a small number of defects are already present in graphene sheets, and 
almost all of these are single vacancies. However, this contradicts STM studies of graphene 
obtained by micro-cleavage, in which the authors were unable to detect one single vacancy 
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a) b) c) d) 
 

Fig. 3. Snapshots of a BF image series demonstrating development of radiation induced 
defects in the STEM. The darks spots are vacancy related defects. a) frame 1, b) frame 17 c) 
frame 18, d) frame 19; the scan time per frame was ~10 s.  

(Stolyarova, 2007). Alternatively, the electron beam can radicalize molecules absorbed on 
the surface, which react with carbon leading to broken bonds. 
Figure 4a) depicts a single-layer area imaged in HAADF.  Although the lattice is visible in 
the raw HAADF images, it is feasible to reduce the noise by applying either a deconvolution 
routine based on maximum entropy image reconstruction (HREM Research Inc., 2009) or a 
low pass Fourier filtering method. The former sharpens features by deconvolving the 
images with a simulated electron probe function having a Gaussian or Lorentzian profile (or 
a combination of both), thus constituting a software Cs corrector, the latter improves 
visibility of spatial frequencies by applying a mask to the Fourier transformed (FFT) image, 
which includes the spatial frequencies right up to the lowest order a-plane diffraction spots, 
as well as the a-plane ([100], [010] and [-110]) reflections themselves (inset top left), and  then  
obtaining the inverse Fourier transform (IFFT).  
 

a) b) c)a) b) c)
 

Fig. 4. a) raw HAADF image of single graphene sheet with FFT as inset, b) same HAADF 
image after deconvolution; the FFT in the inset is clearer as a result of noise reduction, c) 
IFFT of area in (a) having applied the band pass filter in the inset. 

Noise reduction using deconvolution is shown in fig.4b. The low pass filter (fig.4c) achieves 
noise reduction by cutting out high frequencies; it preserves the information of all direct 
space distances larger then the a-lattice plane spacing and additionally superimposes a 
‘directional’ component as frequencies between diffraction spots are masked out, thus 
enhancing the graphene lattice. In the following this latter filter is used. In order to 
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investigate possible artefacts introduced into the IFFT, i.e., into the end image, by the mask 
edges and the background noise, we subtracted a filtered Fourier transformed vacuum 
image from the filtered graphene Fourier space image, before we applied the inverse 
transform. However, this showed insignificant change in the case of this particular filter.  
The vast majority of defects are vacancies. The HAADF lattice images in figures 5a and 5b 
are filtered in the described fashion, showing enlarged lattice structure surrounding a 
mono- and a di-vacancy with overlaid model structure (Gass et al., 2008). These are easy to 
discern, whereas Stone-Wales defects (Terrones & Terrones, 1996), constituting a 
reconfigured, rotated bond have not been identified so far. 
 

 
 (a) 

 
 (b) 

Fig. 5. a) and b): enlarged areas in HAADF images after low pass filtering showing a single 
vacancy and a di-vacancy with overlaid ball and stick models 

There is a wealth of literature dealing with defects in HPO graphite [e.g. Hahn & Kang, 
1999; Bourelle, Konno & Inagaki, 1999, Telling & Heggie 2007; Krasheninnikov et. al. 2001]. 
Isolated point defects on the surface of graphite are exlusively reported in connection with 
irradiation damage or ion bombardment, this might indicate that even the defects seen in 
the very first scan occur due to electron bombardment.  
However, we also observe a second type of defect, related to the termination of a row of 
hexagons, and hence representing the 2-D or mono-layer equivalent of a dislocation (Gass et 
al., 2008). There are two species of unit c-axis edge dislocation in graphitic materials 
[Jenkins, 1969], depending on whether their glide plane cuts between atoms closely spaced 
in this direction or between atoms separated by a full bond length (defined as ‘shuffle’ and 
‘glide’ plane respectively [Ewels, 2002]).  After bond reconstruction, these two dislocation 
cores consist of either a pentagon-heptagon pair (5-7 defect, ‘glide plane’ dislocation core), 
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Fig. 6. a) HAADF image of dissociated shuffle-glide dipole (purple) with lattice ‘planes’ 
indicated in blue, b)  model of an undissociated dipole (purple), formed by only one 
vacancy (leftmost panel), and subsequent separation into glide and shuffle defect via glide 
of the shuffle segment along the plane indicated by the dashed grey line (rightmost 
panel), c) formation of a shuffle defect by bond reconstruction at the edge of a graphene 
sheet; glide inwards along the grey arrow might be achieved by shear stress, leading as in 
(b) to the termination of a row of atoms, d) HAADF image of a single defect, which could 
have formed according to (c), e), f) and g) IFFTs obtained by masking the respective 
diffraction spots in the FFTs of (d), revealing termination of two different rows of atoms at 
the defect. 

or a pentagon-heptagon pair with a 2-fold coordinated ad-atom carbon in the central bond 
(‘shuffle’ plane dislocation core; see figure 6b, e.g., 3rd schematic). These two dislocations 
were shown to migrate with radically different activation barriers, namely, 7.64eV for the 
glide core, 2.22eV for the shuffle core [Ewels, 2002].  This difference was explained in 
terms of the mechanism of motion.  Motion occurs through a 90° rotation of a C-C bond 
along one side of the heptagon.  For the glide dislocation core this requires breaking two 
C-C bonds, whereas in the shuffle dislocation core the same effect can be achieved 
through breaking and formation of just one bond.  Thus the additional atom at the core of 
the shuffle dislocation is able to catalyse the motion of the dislocation [Ewels, 2002].  The 
glide dislocation core is essentially immobile. A single vacancy can be considered a 
dislocation dipole, with the two dislocations of opposite sign facing each other on 
neighbouring glide planes, as shown in fig. 6b (1st schematic).  The 2nd and 3rd schematic 
in fig. 6b show dissociation of the dipole along the glide plane. The 3rd schematic depicts 
indeed the situation in the HAADF image of such a dissociated shuffle-glide dipole in fig. 
6a. 
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Another possible route to create a shuffle core is through reconstruction of the edge of a 
graphene layer, which exhibits a distortion, as shown in fig. 6c (see row of sheared 
hexagons). Here an 8-atom ring defect bridges a corner. Under shear stress along the grey 
arrow, the defect could glide into the layer. This requires neither formation of a dipole nor 
vacancies, and each glide step, i.e., moving the defect by one hexagon along the grey line, 
only requires reconstruction of one bond. The HAADF image in figure 6d shows a single 
shuffle dislocation core with a clearly visible under-coordinated carbon atom in the defect 
core. We have demonstrated in fig. 3 that vacancies move easily under electron beam 
irradiation, so the e-beam facilitates glide. The presence of residual stresses (e.g., originating 
from micromechanical cleaving and exfoliation of the graphene) might be an additional 
source for glide of 8-atom ring defects formed at graphene edges. 

3.2 Adatoms  

Lattice resolution HAADF images of uncontaminated patches in single layer graphene 
films show contrast variations in the benzene rings. This can be observed in the previous 
figures. The area in figure 7a) is part of a clean patch and has been Fourier filtered, using a 
low pass filter (like this in figure 4). It becomes clear that the graphene lattice is not of 
uniform contrast; some of the bridges between atoms are significantly brighter. The ball 
and stick model, overlaid in the top right indicates the bright regions as ad-atoms. To the 
left of the overlaid model there is a vacancy (marked ‘V’). We suggest that the regions of 
enhanced brightness found in fair numbers are due to C-adatoms, forming bridges above 
the in-plane C-C bonds. We derive this from a quantitative evaluation of the HAADF 
contrast (Bangert et al., 2009b). Examples of the quantification are shown in fig 7b, which 
includes intensity profiles (blue curves) that had been taken in raw, i.e., unfiltered 
HAADF images; the scan lines are marked in 7a) to indicate the corresponding scan 
locations in the filtered image. The red curves in the two panels are intensity scans across 
a vacuum image. They show the counts arising from camera shot noise and electron 
background when the beam is not on the specimen. The base line in the graphene is 
higher then in the vacuum image due to scattering from a single atomic layer; the high 
frequency variations in the intensity in the curves are of statistical nature, but it has to be 
noted that a lower frequency pattern with troughs and peaks modulates the noise around 
the base line intensity in the blue curves; this pattern reflects the periodicity of the atom 
array, as the 1-Å probe causes higher intensities on then between atoms. Distinctively 
above the graphene layer intensity are ‘spikes’ (orange arrows) of just below twice the 
intensity. These correlate with positions of the brighter ‘bridges’, indicated by 
corresponding orange arrows in the low pass filtered image. The HAADF contrast scales 
near linearly with the material thickness, i.e., with the number of atomic layers traversed 
by the e-beam. It scales, however, approximately with the square of the atomic number: 
measured ratios of HAADF signals from C-atoms in graphene and single atoms of Si or 
Cu contaminants, the nature of which was confirmed by EELS, revealed a power 
dependence of slightly less then 2. The HAADF intensity on the ad-atoms increases by a 
factor of just less then 2, whereas it should increase by 2½ or 3 times if these atoms were N 
or O; such an increase would lie outside the statistical error interval. In addition, highly 
localised core loss spectra (not shown) encompassing the range from C to O showed no 
sign of N and O. 
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Fig. 7. a)  Enlarged region from the filtered HAADF image in figure 4c with ball-and-stick 
model overlaid in the top right corner and a vacancy V indicated. Shown also are lines along 
which the intensity profiles displayed in b), blue curves, were taken. Intensity line-profiles 
from vacuum images are in red. Spikes of ~2x the graphene intensity are indicated with 
orange arrows. Enhanced intensity in the corresponding locations is emphasised and 
arrowed in (a).  All intensity profiles were taken on raw, unprocessed images. 

Carbon ad-atoms on graphene have previously been suggested (Meyer et. al. 2008b; Nordlund, 
Keinonen & Mattila, 1996). However, from HAADF contrast it cannot be excluded that H-
atoms, too, are bound to C-adatoms or, indeed, directly to graphene C-atoms. Their Z-contrast 
would be lost in the noise. 

4. Nano-scale topography: ripples in monolayers and turbostratic 
arrangements in bi-layers 

4.1 Ripples  

The stability of extended two-dimensional (2D) structures has been the subject of a long-
standing theoretical debate, with previous suggestions that 2D films embedded in three-
dimensional 3D space are crinkled. It was then countered that crinkles can be suppressed by 
anharmonic coupling between bending and stretching modes, such that a 2D membrane can 
exist but will nevertheless exhibit height fluctuations (Nelson, Piran & Weinberg, 2004; Gass 
et. al. 2008; Meyer et. al. 2007a&b;). The mechanical behavior of graphene can have 
profound impact on its extraordinary electronic properties. Recent observations suggest that 
suspended graphene is not perfectly flat, but rather exhibits microscopic corrugations 
(ripples) which can be not only dynamic (that is, through flexural phonons) but also static 
(Gass et. al., 2008; Booth et. al. 2008; Meyer et. al. 2007b). In those observations, large-scale 
ripples (>15 nm) were visualized directly (Nordlund, Keinonen & Mattila, 1996) whereas 
ripples on a nanoscopic scale (<15 nm) were only identified from the broadening of 
diffraction spots (Meyer et. al., 2007b) which prevents static bending from being 
distinguished from dynamic bending. Furthermore, it was argued that scaffolds supporting 
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graphene crystals and contamination by adsorbed hydrocarbons, can induce an external 
compression resulting in ripples especially on the large scale, or films remember the initial 
non-flat configuration induced by a silicon oxide substrate used for sample preparation. In 
either instance, the observed ripples would not be intrinsic. The difficulty with directly 
imaging ripples in a transmission electron microscope arises from their small amplitude: the 
defocus, even with aberration-correction, is not precise enough to reliably detail changes in 
contrast which would arise from height differences less than a few nanometers, let alone one 
nanometer. 
Observing perpendicularly onto an undulating plane of atoms, the bond inclination will 
cause variations in the projected bondlength. For example, inclinations of ~5° from the 
horizontal flat sheet will give rise to a change in the projected C-C bond lengths of ~1 %. 
Ripples possessing a wavelength of 5 nm, thus have an amplitude of 0.25 nm (this value 
being derived from electron beam diffraction (Meyer et al., 2007a)). However, such bond 
length changes are not easily observed in raw or even low-pass filtered HAADF lattice 
images, as seen using the filter detailed in fig. 4b and c. As FFTs of nano-scale areas, like in 
our case, are embedded in significant noise, the error in positioning the diffraction spot 
maxima gives rise to a bond length error of ~±2% in BF images, and slightly less in HAADF 
images.  Applying a narrow annular band pass filter, with a band width corresponding to 
~0.04 Å, i.e., imposing a narrow ring mask on the Fourier transform (FFT) of the raw images, 
passes spatial frequencies within ~2% of a selected frequency corresponding to a real space 
distance. The inverse transform (IFFT) reveals locations of atoms with such spacings, 
although with possible rotations, through intense lattice fringes. For graphene, the color 
coding is selected such that atoms possessing the correct bond length appear orange. Should 
the projected bond length change by as little as 2% owing to out-of plane bending of the 
atoms, the lattice periodicity will become less visible in the IFFT, and blurred patches will 
occur at such locations. Such regions appear blue. An example of this procedure shows ring 
filter and the resultant IFFT, respectively, in fig. 8a) and 8b). The latter is the projected bond 
length visualization; atomic scale detail can be seen as a fine raster superimposed on the 
colors. To better reveal the sheet rippling effect, the atomic detail has been removed by a 
Gaussian blurring function in the image in fig. 8d). In the Gaussian filtered images again, 
orange (blue) regions correspond to areas of small (large) deviations from the graphitic a-
plane distance of pristine and perfectly flat graphene sheets. Any spatial frequencies outside 
an annular mask diameter corresponding to the graphitic a-plane spacing, will possess 
significantly weaker intensity; the color-coded IFFT resulting from both, a smaller or larger 
band pass would therefore be expected to exhibit more bluish colors. Since flanks of 
undulations reduce the projected bond length, they become visible as bluish regions in 
IFFTs obtained with a narrow ring mask.  
We have obtained IFFTs of a number graphene images, using a series of filter diameters in 
each case, with increments corresponding to 0.02 Å (such an increment would arise from an 
inclination of ~5°), and with the above bandwidth of 0.04 Å. Although the ring mask 
increment lies within the error of measurement, it is still possible to follow gradual changes 
in contrast. In such a series of IFFT images, the spacing range covers ±10% variation of the 
graphitic a-plane distance. In each IFFT image, a different projected lattice spacing is passed 
by the respective filter and comes ‘into focus’; this is equivalent to observing the lattice in 
slices ‘cut’ through the crumpled 3D graphene sheet at different distances parallel to the flat 
sheet reference plane. In figure 9a and b, selected images from a series of IFFTs using ring 
mask diameter increments as described are detailed, the masks were applied to raw, single 
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Fig. 8. a) A ring mask typically used to construct the IFFTs in (b), which is the inverse FFT of 
a raw HAADF image. c) Model of graphene, with undulations and defects. d) Gaussian-
blurred image of (b) with the atomic detail removed, to highlight larger scale structure 
(flanks of undulations appear blue, approximate height scale given underneath in colour 
with flank inflection points set at zero). 

layer images, i.e. allowing spatial frequencies both below and above the first order 
diffraction spot distance to pass. Fig. 9 (uppermost and middle rows) detail identical 
features imaged in BF and HAADF, with their associated IFFTs. BF IFFTs for the same band 
pass are very similar in their overall pattern to those of HAADF images, taking into account 
that the color scheme is slightly different in both cases. This lends credibility to the method 
being applied to HAADF images with weak intensities. The strongest intensity variations 
(orange to blue) can be observed in Fig. 9 columns iv-vii, where the a-plane frequency has 
filtered through, whilst deviations from this band pass result in images of overall lower 
contrast (bluish colors, columns ii, iii and viii). In row c, the same method is applied to a 5-
layer graphene sample, (the number of graphene layers was determined using the 
procedures described in chapter 6 and also in (Eberlein et. al., 2008). The breadth of images 
exhibiting the brown-orange colors (columns iv-vii) suggests flatter sheets, but also reflects 
the accuracy limit of the measurement; however, the radius of the ring filter used in column 
v (blue arrow) corresponds most closely to the a-plane spacing. We note that pattern 
changes with band passes larger than the graphitic a-plane frequency (right of arrow, i.e. in 
columns vi and vii.) arise from a reduction in the bond length projection.  For example, the 
circled locations mark contrast inversions, where the lattice at the flank of a ripple comes 
into focus, and then goes out of focus. In a simplistic picture, the peaks / troughs of ripples 
should be ‘in focus’ at the same band pass as the flat sheet, and the flanks should then be 
‘out of focus’. The increment in the annular filter radius required to change the color from 
brown to blue (images in rows a and b, columns vi and vii, circled area), allows one to 
deduce the inclination angle as ~12°. The ripple width of ~5 nm yields a height of ~0.5 nm. 
Although this is slightly greater than the value reported (Meyer et. al., 2007b; Fasolino, Los 
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Fig. 9. In a) image (i) is a BF lattice image of a clean patch in a single graphene sheet, from 
which the IFFTs in (ii) to (viii) are obtained. All IFFT images have undergone Gaussian 
blurring. The arrow in column (v) marks the image corresponding to the correct graphitic 
lattice spacing. Bandpass deviations from the graphitic a-plane spacing, and hence from the 
C-C bond length are, (ii) +15%, (iii) +4.3%, (iv) +1%, (v) none, (vi) -1%, (vii) -3.3% and (viii) -
7.6%. In b) (i) represents the HAADF lattice image of the same area as in (a), and in c) (i) is 
the HAADF image of a 5-layer graphene patch. (ii) to (viii) in (b) and (c) represent IFFTs of 
the respective images in (i) with the same band pass filters as detailed for (a) above. The 
frame width of panels is 15 nm. 

& Katnelson, 2007), ripples of this height are frequent in occurrence and pronounced in our 
samples.  Ripples of lesser height are most likely present too, but they are concealed by 
larger undulations and are also close to the resolution limit of the present method: the 
smallest increment in Fig. 9 corresponds to 1% change in spatial frequency equivalent to ~6° 
inclination. The contrast variations reflect the complex and intricate sheet buckling, which is 
quite severe in certain regions. Additionally, topography on a larger scale arising from thin 
hydrocarbon deposits, as can be seen bordering ‘clean’ areas’ in all lower magnification 
images of graphene, also affects the IFFT image: such deposits introduce some amorphicity, 
hence many spatial frequencies are present in such locations, ranging from the lattice 
frequency down to low frequencies representing local, large scale disturbances. This 
accounts for the pink coloration occurring at such locations at all band passes. 
Although undulations are observed in every clean graphene ‘patch’ (graphene area free 
from hydro-carbon deposit that is) in the absence of visible topological defects, we observe 
that the ripple patterns can, however, be influenced by the latter. Further results on this are 
given in Bangert et al. (2009a). 

4.2 Turbostratic graphene 

All results shown so far were obtained of micro-mechanically cleaved and exfoliated 
graphene. Electron microscopy investigations were also carried out on graphene grown by 
chemical vapour deposition (CVD) on nickel and copper substrates and lifted off these 
substrates via aforementioned procedures. We note that hydrocarbon contamination is 
generally more extensive and more finely dispersed on all such samples.  
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The images in figure 10, in contrast to the STEM images of the previous figures, are high 
resolution phase contrast images, obtained in a transmission electron microscope, a Tecnai F30. 
Ni-grown samples consisted of large films (10’s to 100’s of μm), partially consisting of single 
layer, but in the main of few-and bi-layers, either in graphitic AB stacking or in turbostratic 
arrangements (de-coupled layers, rotated at various angles with respect to each other). Figure 
10a) depicts suspended CVD-graphene extracted from a Ni substrate. The small omni-present 
worm-like contrast arises from molecular hydrocarbons, presumably in form of chains, on the 
surface of bi- or triple-layer graphene. This contrast is present on all such CVD sample 
surfaces, uncontaminated surface areas are only of the order of few nm; upon closer inspection 
(fig. 10a might have to be viewed with slight enlargement) the underlying graphene lattice 
becomes obvious. The inset in the left hand top corner is an electron diffraction pattern of the 
image area, revealing the turbostratic nature by the two hexagonal spot patterns rotated with 
respect to each other (12 spots instead of 6). The right hand bottom inset is the FFT of the 
image, showing the same orientation relationship of the sheets as the diffraction pattern. Areas 
with apparent AB stacking can also be found (not shown here). This might, however, arise 
from differences in the rotation angle across the film: fig 10c) shows a schematics of graphene 
sheet rotated with respect to each other with different rotation angles, leading to varying 
Moiré patterns and different atomic lattice appearances within. 
 

5 nm5 nm

a) b)

c)

5 nm5 nm5 nm5 nm

a) b)

c)

 
Fig. 10. HREM phase contrast images of suspended graphene grown by CVD after lift-off 
from a) a nickel and b) a copper substrate. Insets in both cases are the experimental 
diffraction pattern (top left in each image) and the Fast Fourier Transform (FFT; bottom 
right) of the image areas shown; c) schematics of turbostratic arrangements leading to 
different appearances of the atomic-scale structure. 
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Figure 10b) shows an image of suspended CVD-graphene grown on copper. Regions of 
larger uncontaminated areas (some 10s of nm) are found in these samples, however, the 
films consist in large, like in the Ni-substrate case, of turbostratic graphene. The insets show 
again the electron diffraction pattern (left top) and the FFT (right bottom) of the image area. 
Close inspection of the lattice structure reveals a Moiré pattern similar to the right-hand 
schematics in fig.10c).  
Hence micromechanically exfoliated and CVD-grown graphene have quite different 
topographies, larger single-layer areas appear to be rare in the latter.  

5. Atomic scale chemical information: impurities- native, dosed and doped 

5.1 Impurities with Z ≥ 6   

We have explained and demonstrated in paragraphs 1-3 that HAADF is the prime tool for 
pinpointing impurities with Z ≥6 on graphene. We cannot identify hydrogen attached to 
C-atoms via HAADF, but we will show other means of detecting H in paragraphs 5 and 6. 
We can identify extensive C-adatom coverage (paragraph 3), and although HAADF 
contrast evaluation gives strong evidence that the ad-atoms are indeed C (the HAADF 
signal strength in respective locations  is twice that of graphene), due to the error in 
quantifying weak HAADF signals, we do not want to exclude oxygen atoms  as being part 
of the ad-atom population (although the signal strength in locations of O-adatoms should 
be ~3x that of pure graphene), nor do we want to exclude, at this stage, the existence of 
OH-groups. However, we should be able to identify fluorine with a Z number of 9, giving 
a theoretical HAADF signal ratio F:C of  81:36  and hence an expected HAADF signal 
strength, in places of F-adatoms, of ~4x that of pure graphene). We have dosed graphene 
with F (details not given here), however, we could not detect any F retention on pristine 
graphene patches.  
Extensive HAADF investigations, in which we have scrutinised many clean single-layer 
graphene patches for foreign atoms have revealed it is free of impurities with Z≥9. 
Graphene investigated for residual impurities was exfoliated by micromechanical cleavage 
as well as from CVD grown layers on Ni and Cu. Included were also attempts to dope/dose 
graphene with impurities via metal deposition (Au and Cr). 
It should be emphasised that the above said applies strictly to clean, single layer graphene; 
we have never observed impurity atoms of any kind attached to such sheets. However, we 
observed many types of impurities in the hydrocarbon contamination on single and 
multiple sheets, and we did also observe impurity atoms on clean areas in multi-layer 
graphene. 
Transition, noble, and group IV ad-atoms are predicted to modify the graphene electronic 
states to a large degree indicating covalent bonding with strong hybridization between 
ad-atoms and graphene. Metal-graphene interactions have been much studied by means 
of Density Functional Theory (DFT) calculations. H-sites (see fig.12e) are predicted as 
preferred location for most metals (e.g., Ti, Fe), T-sites for Sb, Sn and Ni, whereas Pd, Cr 
and Pt are expected to bind strongly to B sites (Suarez-Martinez et al, 2009; Uchoa, Lin & 
Neto, 2008;  Chan, Neaton & Cohen, 2008; Mao, Juan & Zhong, 2008; Sevincli et al, 2008). 
Experimental exploration of the metal-graphene systems is still limited, especially TEM 
observations are practically non-existent. Such observation would be of great interest, as 
calculations have lead to discrepancies in the site of metal atoms: the two common 
approximation for the calculations, local density approximation and generalized gradient 
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approximation –the latter does not represent Van-der-Waals forces very well (Leenaerts, 
Partoens & Peeters, 2008)-, lead to different binding energies and thereby to different sites 
for Au atoms, T-sites for the former and B-sites for the latter method (Aktürk & Tomak., 
2009). In addition, arbitrary variables used in the calculation, such as cut-off energy 
(Varns & Strange, 2008) and size of the supercell (Leenaerts, Partoens & Peeters, 2009) can 
affect the result of DFT calculations. It was furthermore found, theoretically and 
experimentally, that point defects in graphene provide nucleation sites and even further 
substitutional incorporation of metals (Charlier et al., 2009; Boukhvalov & Katsnelson, 
2009; Gan., Sun & Banhart, 2008; Krasheninnikov et al., 2009; Zhou, Gao & Goodman, 
2010). 
Gold atoms and its dimers on the graphene surface have been studied by using first-
principles calculation with the local density approximation (Varns & Strange, 3008).  The 
results show that the gold–gold interaction is significantly stronger than the gold–
graphene interaction (for this reason gold is highly mobile on graphene) as is 
experimentally confirmed by Gan., Sun & Banhart (2008) with observation of gold clusters 
–rather then atoms- on the graphene sheet. For a single gold atom the favourable energy 
configuration is found to be directly above a carbon atom. We have evaporated 0.1 nm of 
gold onto graphene. Figures 11a) and b) show results of such deposition: indeed on single 
or de-coupled (turbostratic) layers gold atoms do not remain dispersed, but cluster into 
nano-crystals, and notably, are exclusively located in the hydrocarbon contamination. 
This demonstrates the extreme mobility of gold on pure graphene. Only in stacked few-
layer films (here: exfoliated by cleaving) can single gold atoms be observed: it appears 
that atoms in sub-surface layers are needed to contribute to the bonding with surface gold 
atoms in order to prohibit dissociation and diffusion. Figure 11c) is a BF STEM image, and 
represents phase contrast (like an HREM image). The beam is focussed on the exit surface 
of the sample; this is the surface, on which the gold is evaporated. So the electron beam 
proceeds through the graphene layers before it encounters the gold atoms. The aggregate 
of gold atoms is so thin, that it is invisible in phase contrast, however, the graphene in the 
BF image exhibits strong contrast and relatively little noise, and shows the lattice 
periodicities well. This means that for BF analysis the raw (unprocessed) image can be 
used. Figure 11d) is the corresponding HAADF image, and is obtained simultaneously 
with the BF image. The image intensity arising from incoherent elastic scattering of few 
atom layers is very much lower than in BF, and the noise is so high that the benzene rings 
are barely recognisable. However, the gold atoms are clearly visible. They have formed a 
loose aggregate with single atoms dotted around the aggregate, some of which we have 
numbered. We note that comparing identical positions in images (c) and (d), the benzene 
ring centres, known to be black in HAADF images, correspond to bright patches in the BF 
images; this can be seen from the schematic benzene rings (red) overlaid on the HAADF 
image and positioned in identical locations in the BF image. Hence the C-atoms 
surrounding the black centres in HAADF images, constituting bright contrast, correspond 
to dark contrast in BF images. Due to the weak contrast and the noise of the raw HAADF 
image, although gold atoms can be located rather accurately, it would be near impossible 
to assign them exact sites on the benzene rings. However, the benzene ring shape is 
clearly discernible in the BF image, and by locating the exact corresponding position here 
(circled), the sites can be identified. It thus occurs that all gold atoms sit on T-sites. This is 
in agreement with theoretical predictions. 
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Fig. 11. a) TEM image of 0.1 nm gold evaporated on mono-layer graphene, b) BF STEM 
image of 0.1 nm gold evaporated on 2-layer turbostratic graphene with FFT of the image as 
inset to show, by the double spots, that the two layers are rotated with respect to each other, 
c) and d) BF and HAADF STEM lattice image of the same area in few-layer graphene. Here 
individual gold atoms can bee seen separated from the small cluster in the middle. Identical 
positions of the benzene rings are marked in red, showing that bright contrast in the BF 
image corresponds to the dark, hollow centres of benzene rings in the HAADF image. Single 
atoms 1-11 are marked with the numbers occurring just above the atoms in the HAADF 
image; identical places are marked by yellow circles in the BF image, showing that Au-
atoms sit on T-sites (see fig. 12e) on the sample surface. All images represent raw, unfiltered 
data. 
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Iron-atoms have not been deliberately deposited, but reside as impurities on many samples, 
presumably as a result of chemical processing. The graphene sample in the here presented 
results was obtained by micromechanical exfoliation. Figure 12a) shows again that on 
uncontaminated single layer areas (black patches) the sticking probability is very small: all 
Fe clusters and single atoms (white spots) are located on hydrocarbon contamination 
(greyish areas). On the surfaces of multi-layer graphene on the other hand individual atoms 
can be seen. Figures 12c) and d) are HAADF and BF images of 1-4-layer staggered graphene 
sheets; with the sheet number increasing from the right to the left (i.e., on the right edge of 
the image is one sheet). Fe-atoms are clearly visible in (c) and corresponding positions have 
been circled in (d). The spectrum on the right of fig. 12c) is an energy loss spectrum taken on 
an individual Fe-atom, showing the characteristic L2,3 absorption edge of Fe at ~708 eV. In 
fig.12b) the areas around two Fe-atoms are enlarged with a model of the AB-stacked 
graphene lattice overlaid. From this it becomes clear that the Fe-atoms in both cases sit on B-
sites. This contradicts calculations, which predict H-sites.  
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Fig. 12. a) Fe-atom contamination on single layer graphene, showing that all Fe- impurities 
sit on hydrocarbon contamination and not on clean graphene patches, b) enlargement of the 
red framed areas in the atomic resolution HAADF image of few-layer AB-stacked graphene 
in (c). The model of the lattice and positions of the Fe-impurity atoms are overlaid, c) 
HAADF image of larger area showing individual Fe-atoms on few-layer AB-stacked 
graphene. The inset on the right hand side of (c) shows an EEL spectrum with Fe L2,3 
absorption peak, taken on the arrowed atom. d) BF STEM lattice image of the same area as 
in (c); positions identical to those of atoms in the HAADF image in (c) are circled in red. The 
graphene sheets are staggered starting with a single sheet with on the right, followed by a 
second, third and fourth sheet towards the left with edges running parallel to the sides of 
the frame. e) model of benzene ring with sites of impurity atoms. 

Nickel-atom contamination is shown in figure 13. The graphene film in this case was grown by 
CVD on Si with a sacrificial Ni-layer on top of the Si-substrate. Ni-atoms have remained ‘stuck’ 
to the film after lift-off. The image in this example is a low-pass filtered HREM phase contrast 
image taken in a TEM. The large underlying image shows mono-layer Ni-atom islands or –
rafts on top of graphene, which itself consists of a patchwork of 1 and 2 layers and more. 
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Fig. 13. Low pass filtered HREM image, taken in a TEM, of graphene grown by CVD on a 
sacrificial Ni-layer on Si. The area in the image consists of patches of mainly mono- and bi-
layers, as well as of mono-layer Ni-islands. The larger inset is an enlargement of the black-
framed area, the smaller inset is an image simulation, using the TEMSIM program, of mono- 
and bi-layer graphene with a mono-layer island of Ni stretching over both. Features with 
similar contrast in the experimental image in the larger inset are circled with the respective 
colours. The focus value of +80 nm achieves strongest contrast of Ni and graphene 
simultaneously.  

The contrast in phase contrast images is not straight-forwardly interpretable and depends on 
sample lens aberrations, sample thickness and defocus, and it is common practice to run image 
simulation., if information other then that about lattice periodicities and perfection is to be 
extracted. We have used the TEMSIM code (Kirkland, 2005). The small inset shows simulated 
HREM contrast for 1 and 2 layers and a Ni-atom island covering parts of both, the single and 
the bi-layer. The model lattice for the graphene layers (red and blue) and a Ni-atom raft 
(green) is overlaid. The simulations were run for a series of focus values; we have depicted the 
simulation for 80 nm defocus, as this focus condition achieved the strongest contrast (best 
visibility) in the simulated images, so this value would be ‘automatically’ tuned to in the 
experiment. It should be noted that in overfocus conditions Ni-atoms have bright contrast 
similar to the centres of benzene rings in 2-layer graphene, whereas in 1-layer graphene the 
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centres of benzene rings are dark. Comparing this to the larger inset, which in turn is an 
enlargement of the black famed area in the underlying image, we can then identify single layer 
(circled in red) and bi-layer (circled in blue) patches. Atoms constituting a Ni-island (circled in 
green) can be recognised by their strong, bright contrast (like in the image simulation). In 
relationship to the C-hexagons the position of these Ni-atoms can be assigned T-sites in 
benzene ring in agreement with above mentioned calculations.  

5.2 Impurities with Z≤ 6  
Interesting potential electronic dopants in graphene, such as nitrogen and boron, due to the 
similarity in atomic number with carbon, cannot easily be detected in HAADF images. 
However, their presence, and even local bonding environment, should be accessible via core 
loss EELS. With probe aberration corrected STEM it is possible to detect EEL signals and 
positions of single atom (we have already shown an example of this in fig. 12c). Boron was ion 
implanted at 100 eV to a level giving on average one atom per nm2 (1014cm-2) (Bangert et al., 
2010a) Figure 14a) is an atomic resolution STEM BF image of few-layer graphene. A spectrum 
image was taken over the whole image area, and pixels, in which B K-edge signals were 
detected, are filled in yellow. Although the dopants appear dispersed the retention is less then 
10%. We do presently not have an explanation as to why the retention is so small, other then 
that the implantation energy might not have been large enough to incorporate B in the lattice. 
This might have been the case, since Pomoell et al. (2003) estimate that ions ranging from 
carbon to xenon loose on average 300 eV when penetrating a single walled CNT, i.e., 150 eV 
per graphene sheet. Figure 14f) shows EEL spectra of the B K-edge, extracted from the yellow 
pixels. Although noisy, the spectra exhibit a sharp peak at 192 eV, which very much resembles 
the π*-peak spectra of boron-doped carbon nanotubes measured by Fuentes et al. (2003), 
indicative for substitutional boron.  
 

 
Fig. 14. a) STEM BF image of few-layer graphene and b) of staggered graphene sheets, starting 
with a single sheet, whose edge runs diagonally from left side to bottom right, implanted with 
B to a dose of 1014 atoms cm-2 at an energy of 100 eV. Positions were B K-edge EEL signals 
were recorded in spectrum images (area indicated by red frames) are indicated by yellow 
squares (a) or red circle (b), c) literature reference spectrum of BN (Gatan EELS atlas), d) of 
amorphous B, e) of B4C, f) spectra extracted from yellow pixels in (a), g) spectra extracted from 
red circles in (b).The spectra in (f) and (g) indicate that B assumes substitutional positions in 
multilayers, and attaches along graphene edges in form of few-atom clusters. 
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Interestingly, the rather strong B-signal obtained from staggered graphene sheets in fig. 14g) 
does not exhibit the π*-peak. Signal positions are indicated by red circles in fig.14b); they 
coincide in most cases with the edge of graphene sheets: the leftmost portion of the image in 
14b) represents a single layer, followed (towards the right) by the ‘frayed’ edge of a second 
sheet along which a number of signal positions are marked. This edge is followed by, to a large 
part, straight edges of four further graphene sheets, with a cluster of boron signal positions 
marked at the bottom left hand corner of the image, and two further positions higher up along 
these edges. Typical spectra of the boron K-edge in red-circled pixels are shown in fig. 14g). 
Comparison with spectra of amorphous boron (fig.14d) and B4C (fig.14e) suggests that small 
few-atom boron clusters have formed attached to sheet edges or mono-atomic steps. Hence, 
although there is indication of substitutional B-incorporation via low energy ion implantation 
in few and many-layer samples (as in the case of carbon nanotubes (Bangert et al., 2010a), B 
does not seem to substitute atoms in single, bi- or triple-layers, nor does it appear bound to the 
surface. As in the case of metal impurities in previous examples mobilities of single-atom 
species on graphene surfaces seem very high. 
The possibility for atomic hydrogen to be chemi- or physisorbed on graphite surfaces (Jeloaica 
& Sidis, 1999) and graphene has been researched theoretically and experimentally (e.g., Ito, 
Nakamura & Takayama, 2009; Elias et al., 2009), and direct experimental observation has been 
attempted via transmission electron microscopy imaging (Meyer et al., 2008b). H-dosing 
appears promising for band-gap engineering of graphene. In order to carry out investigations 
of the effect of hydrogen on the graphene atomic and electronic structure we have dosed 
graphene with hydrogen by exposure to a hydrogen plasma, described in Elias et al., (2009).  
H cannot be revealed in HAADF images, so in order to assess H adsorption on graphene we 
have carried out EELS. Figure 15a) shows low loss spectra, which were obtained of 
uncontaminated graphene patches, typically a few 10 nm2 in size. The blue spectrum in (a) is 
a reference spectrum taken of pristine, hydrogen-free graphene. To ensure that we have 
hydrogen-free surface areas few-layer graphene regions were repeatedly scanned in the 
STEM. The scan raster was successively decreased, and HAADF images in combination with 
EEL measurements revealed material being peeled off layer-by-layer, until finally a hole 
appeared. The blue spectrum is from the last remaining layer after such a repeat-scan 
procedure; the Lorentzian fit curve (red dotted line) was obtained from least squares fitting, 
and was used as fit for the rise of the σ+π plasmon. Spectra of such freshly revealed areas 
did not show the bump at 13 eV like in the orange spectrum above, which was obtained 
from a deliberately hydrogen dosed sample.  
We applied the spectrum imaging method (Jeanguillaume & Colliex, 1989), and scrutinised 
entire EEL-spectrum images for occurrence of the ~13 eV core-level excitation signal of 
hydrogen. Spectrum images were obtained in the following way: a raster was defined over 
an area of an uncontaminated patch and in each pixel (typically 0.3x0.3nm2) of this raster a 
spectrum was taken. Intensity maps, extracted from these spectrum images are shown in 
figs 15b) and c). These maps were obtained by displaying in each pixel the intensity of the 
respective spectrum integrated over an energy window ~12-14 eV, after having subtracted 
the plasmon background determined by the Lorentzian fit. These maps represent the 
distribution and relative amount of hydrogen on the graphene surface. Since spectra from 
individual pixels display a great deal of noise, we carried out Principle Component Analysis 
(PCA) on the spectrum images prior to background subtraction (e.g., Borglund, Astrand & 
Csillag, 2005). This reduces the noise significantly, and clearly reveals the bump on the rise 
of the σ+π plasmon at ~ 13.2 eV as seen in the orange curve in fig.15a).  
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Fig. 15. a) low loss EEL spectra showing the π+σ-plasmon of H-free (electron beam ‘zapped’) 
single layer graphene with Lorentzian fit (blue spectrum) and of  hydrogen-dosed graphene 
with the same Lorentzian fit-curve (orange spectrum), b) EEL intensity map of hydrogen-
dosed graphene, showing the integrated intensity –after Lorentzian background 
subtraction- in the energy region 12-14 eV; the map is overlaid on the respective STEM BF 
image area (left); the corresponding HAADF image is shown on the right, c) EEL intensity 
map of pristine, i.e., undosed graphene, obtained with the same procedure as in (b), overlaid 
on the respective STEM BF image area. 

Figure 15b) shows an EEL intensity map of the H-core loss signal of hydrogen-dosed 
graphene. The intensity map is overlaid on the BF STEM image area where the spectrum 
image was taken. The corresponding HAADF image is also shown. It reveals a hydrocarbon 
‘net’ (greyish contrast), bordering uncontaminated single layer graphene patches (black), as 
well as contaminants of higher atomic number (white dots) on top of hydrocarbons. The 
intensity map shows highest H-signals (yellow/orange) in regions free of hydrocarbons, 
whereas hydrocarbon contamination shows up with lower intensity values (green). The 
reason for this is that hydrocarbons with longer chains have a distribution of energies of the 
molecular orbitals causing a spread in the H-core level energies with a shift towards lower 
values (Murell & Schmidt, 1972). These will not have been picked up in the energy window 
set for the intensity map in (b). Figure 15c) shows an intensity map obtained with the same 
energy window of 12-14 eV in an uncontaminated region in pristine graphene, revealing 
that hydrogen is present on clean graphene even without hydrogenation. Again the map is 
overlaid on the STEM BF image. The amount of hydrogen, however, is significantly lower 
(by 2-3 times) then in the dosed sample, as evidenced by the colour-scale. A detailed 
discussion of hydrogenation studied by EELS can be found in (Bangert et al., 2009b).  
The question about coverage, detailed atomic structure and bonding arrangements of the 
hydrogenated areas poses itself. We can get a fair insight into this via highly spatially 
resolved valence band EELS, i.e., EELS in the extreme low loss regime in combination with 
DFT calculations; an introduction into this will be given in paragraph 6. 

6. Plasmons in graphene: indicators of local electronic bandstructure 

6.1 Pure graphene  

From an experimental viewpoint, an essential task in the research into 2D structures is to 
provide evidence that they do indeed exist. This is especially important, because theory does 
not allow the existence of perfect crystals in 2D space. STM-, AFM- and Raman studies have 
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given indirect proof of the existence of single-layer graphene. The most conclusive evidence 
for the existence of free-standing graphene, except for the HAADF studies reported in  
Bangert et al. (2009b) and Gass et al. (2008), a resumé of which has been given in paragraph 
3, has been obtained from electron diffraction experiments (Meyer et al., 2007a).  
By carrying out highly spatially resolved electron energy loss spectroscopy (EELS), we 
observe significant red-shifts in the frequency of plasmons in sample positions concomitant 
with single graphene sheets (Eberlein et al. 2008), very similar to those observed in SWCNTs 
(Stéphan et al., 2002). Surface plasmon behaviour in thin metal sheets is well documented 
experimentally and explained using dielectric theory (Raether, 1977; Otto, 1967). There are 
also numerous reports on surface plasmons in graphite and carbon nanotubes (Annet, 
Palmer & Willis, 1988; Laitenberger & Palmer, 1996; Perez & Que, 2006; Kociak et al., 2001). 
A characteristic of thin foils is the vanishing of the bulk plasmon mode, leaving only the 
surface plasmon mode; the out-of-plane and in-plane contributions of the latter split in 
energy when the product of foil thickness d and plasmon momentum q, tends to zero; in 
graphite the maximum/minimum energy of the π -> π* transition tends to roughly 7 and 5 
eV, and of the σ-> σ* transition to 20 and 15 eV, respectively (Stéphan et al., 2002). The E-
field of a fast moving particle is elongated along its direction of travel, therefore, when 
passing perpendicularly through a graphene foil mainly the out-of plane mode, with 
momentum q parallel to E, should be excited. However, these modes are forbidden in a 
single layer (Eberlein et al. 2008), and they have weak intensity in graphite. In an EELS 
experiment carried out in a STEM, although the momentum transfer is close to zero, 
nonetheless, q has a considerable in-plane component (along a, the in-plane spacing) 
because the collection angle is several mrad. For this reason we will observe surface and 
bulk plasmons excited with E (or q) parallel to a. 
Graphene samples for the plasmon studies were obtained by exfoliation after 
micromechanical cleavage. An HAADF image of a region including one to up to a few 
graphene layers is shown in Fig. 16a), top panel; the narrow, rectangular bar shows the line 
along which the intensity (overlaid profile), integrated over the width of the bar, is traced. 
The step heights in the contrast profile are multiples of the smallest height at position 1 (to 
the right of which is vacuum), confirming that the contrast in this location arises from one 
single graphene sheet.  
Plasmon spectra taken in positions near the edges of one, two, three and several sheets 
(fig.16a, bottom panel) show that the π-mode, at 7 eV in graphite, has shifted to 4.8 eV at 
position 1 relating to single graphene layer. Furthermore, the spectrum here exhibits only 
the π+σ -surface mode at 15 eV and the 26 eV bulk mode of graphite is not present. The 
shape and intensity of the one-layer plasmon structure was repeatedly measured in different 
places on the same sample, in different samples and even in different experimental sessions. 
Given the same acquisition conditions (e.g., energy dispersion, electron beam current and 
dwell time), nearly identical spectra were obtained, which at the same time, constituted the 
lowest plasmon signal measured overall. For two sheets the triangular shape of the π+σ 
resonance gives way to a plateau and the integrated intensity under the peak approximately 
doubles, for three layers it triples; this linear relationship carries on up to ~8 layers, but for 
increasing numbers of sheets, features above 15 eV start to appear and the plasmon 
maximum moves to higher energies accompanied by further broadening. The multi-layer 
plasmon structure in fig.16a) strongly resembles that of graphite. The plasmon 
characteristics are thus supreme indicators for the presence of single layers.  
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Fig. 16. a) top panel: HAADF image of staggered graphene layers with overlaid intensity 
profile, which was taken in the turquoise box. The arrows indicate the positions of the edges 
of new layers, the bottom right corner is vacuum; bottom panel: b) EEL spectra taken of one, 
two, three and six layers, showing the π- and the π+σ-plasmon shifting to higher energies 
with increasing layer number; b)  AIMPRO calculations of EEL spectra of single, bi- and 
triple-layer graphene and of graphite for E-fields (plasmon q-vectors) parallel to the c-axis 
(top panel) and parallel to the graphene sheet (bottom panel). The latter spectra show good 
agreement with the experimental spectra, indicating that the plasmons in graphitic 
structures are in-plane plasmons. 

In support of the experimental results we have carried out EEL spectra calculations using 
the AIMPRO local density functional code (Jones et al., 2000; Fall et al., 2002) to evaluate the 
imaginary part of the dielectric tensor for q=0 and use the Kramers-Kronig relations to 
derive its real part. The loss function is then found for graphite, graphene and bi- and tri-
multilayers. We have also carried out density functional calculations using the WIEN2K 
code (Nelhiebel et al., 1999), (results of this are shown in the last part), and, after optimising 
the input parameters and obtaining convergence, acquired identical results as with 
AIMPRO. 
In modelling physical properties of extended periodic (e.g., crystalline) structures the 
desired process is applied to a unit cell of the structure and the ‘outcome’ for the entire 
sample obtained by assembling unit cells in a 3D repeat operation. The representation of 
nano-objects by repetition of a crystallographic unit cell within the nano-object is 
inappropriate (the object itself may only consist of few unit cells), here the usual approach is 
to build large ‘supercells’ with the entire structure of the nano-object placed in the middle 
surrounded by vacuum. A repeat structure of these supercells is then obtained and the 
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calculations carried out as described above. If the supercell is large enough, the calculations 
of individual unit cells do not impact on each other and the modelled physical property 
represents that of the supercell alone. To find the required size of such a supercell is tricky, 
and often a series of calculations for increasing size is carried out until the ‘outcome’ 
converges.  
Graphene, was modelled by expanding the lattice parameter along c (Eberlein et al., 2008); 
convergence occurs at around 20 lattice parameters in this direction, but qualitative changes 
in the low loss spectra already cease to happen at 5 c-parameters. Figure 16 b) shows 
calculated spectra for single, bi- and triple-layer graphene for plasmon propagation 
(momentum vectors) q along the c-axis (top panel) and in-plane (bottom panel).  Notably in 
single layers (red line) the loss for q|| c is almost zero up to 12 eV, and after this the onset 
occurs at a similar energy to graphite. However, the peak heights are very different from 
graphite. The disappearance of the 4 eV peak can be explained by a selection rule. As stated 
above the peak is due to a transition between occupied and unoccupied π * bands at the M 
(1/2,0,0) point of the Brillouin zone. (Inspection of the wave functions for these two states 
shows that both transform as pz, and are odd under the reflection symmetry present in the 
basal plane of graphene, but not AB graphite, and hence the dipole matrix element between 
them vanishes for transitions for which q is parallel to c, although the transition is allowed 
for q parallel to a.) This shows that the dielectric constant of graphene is not the same as 
graphite. Fig. 16b), bottom panel, compares the loss function for q||a for graphite and 
graphite. We note there are substantial red-shifts of the peaks found in graphite (Eberlein et 
al., 2008). The 7 eV plasmon peak has shifted downwards to about 4.8 eV while the broad 
peak around 27 eV has sharpened and shifted to 14 eV just as seen in the experimental 
spectra; in fact the latter seem to be entirely dominated by the in plane plasmon  component 
(q||a). The loss functions for bi-layers, triple-layers stacked as in graphite, and graphite 
itself are shown as green, blue and purple curves. The separation between periodically 
repeated multilayers was chosen as 5 times the separation in graphite. The supercell 
containing the trilayer for example, has three layers of graphene separated by the interlayer 
separation found in graphite, but the separation of these planes from similar planes in 
adjacent unit cells along the c-axis is now 5 times the separation in graphite. The peak 
positions depend on the number of layers. There is an increasing red shift of the π+σ 
plasmon resonance as the number of layers decreases. Markedly, there is also a red-shift to 
~4.7eV in the graphitic π-plasmon, the latter only occurs for q||c (see bottom panel 16b). 
The relative amplitudes of the two plasmon peaks here for the different layers seem roughly 
consistent with experimental spectra in Fig.16a). 
It is the π-plasmon, which bears significant information about electronic properties of 
graphene and is especially sensitive to modifications of graphene. In the last sub-paragraph 
we will give a glimpse of the wealth of properties of graphene that can be deduced from the 
π-plasmon.  

6.2 π-plasmon in modified graphene 

To give an example of the sensitivity of the low loss region to modification of graphene we 
return to the hydrogenation issue. In paragraph 5 we observed presence and distribution of 
hydrogen atoms by their core level excitation, but the detail of the atomic-scale structure 
was not revealed; questions concerning issues that might have implications for electronic 
properties include: Is hydrogenation complete? If not, is there ordering of H-atoms? Is H 
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bonded on both sides? If not, does this induce strain (Xue & Xu, 2010)? Does hydrogenation 
induce diamond-like, corrugated atomic stucture (Sofo, Chaudhari & Barber, 2007; Elias et 
al. 2009)? 

In all spectra, which showed the H-core loss signal, additional structure was found in the 
low loss region on the high energy tail of the π-plasmon. Experimental low loss spectra of 
pure and of hydrogenated graphene, including the π-plasmon, can be seen in figures 17a) 
(purple curve) and 17c) (orange curve). An extra peak at ~7eV has occurred in the latter, 
whereas the pre-plasmon peak at ~2eV in pure graphene has vanished. EEL intensity maps 
of the integrated intensity (after subtraction of a fitted plasmon tail) in the 6-8 eV region, 
from the same area as in fig. 15b show identical intensity distributions as seen in the latter 
figure. This suggests that the 7-eV feature is induced by hydrogen. More interestingly, the π-
plasmon remains present throughout the spectrum image, in co-existence with the new 
feature, which is similar to a feature occurring on unpassivated, reconstructed diamond 
surfaces (Bangert et al., 2006), which have undergone reconstruction of their dangling bonds 
into π-bonded chains. Hydrogenation ought to passivate the π-bonds, and cause formation 
of sp3 bonds instead, and hence dramatically diminish the occurrence of the π-plasmon.  
However, the π-plasmon in graphene exposed to a hydrogen plasma is nearly undiminished 
in areas, which, at the same time, show the H-ground state excitation. Co-existence of the π-
plasmon and the 13.2 eV signal suggests that hydrogenation is not complete, i.e., not every 
C-atom is bonded to an H-atom.  
In order to support the above interpretation of the EELS observations and to reproduce the 
EEL spectra theoretically, DFT calculations using the WIEN 2K code, have been performed. 
WIEN 2K is an all-electron code and uses the General Gradient Approximation with a 
mixed linearized augmented plane basis set of wave functions (Nelhiebel et al. 1999; see also 
Blaha et al. 2010). There is a fair number of bandstructure calculations of hydrogenated 
graphene in the recent literature, predicting the opening of a band-gap of ~3.7 eV and C 
atoms displaced from planar geometries by H atoms (e.g., Haberer et al., 2010), optimum 
corrugation angles and resulting bandstructure (Sofo, Chaudhari & Barber, 2007), and 
influence of hydrogenation on strain and corrugation angle (Xue & Xu, 2010). 
As mentioned before WIEN2K calculations carried out on graphite and pure graphene show 
identical results to those from ab-initio calculations using the AIMPRO code, which 
reproduces measured spectra very well (Eberlein et. al. 2008)  This gives us confidence in 
using WIEN calculations –not previously applied to graphene- on hydrogenated structures. 
It is beyond the scope of this chapter to go into detailed discussion of the input parameters 
and how they were established; it suffices to say here that all parameters (k-point number, 
maximum g-vector, muffin tin potential radius) were the minimum value requirements for 
convergence of the calculations to occur, and that a detailed discussion of the procedures 
and the results of WIEN calculations of hydrogenated graphene can be found in Bangert et 
al. 2010b. 
Also shown in figure 17a) is a calculated EEL spectrum for single-layer graphene. It matches 
the experimental spectrum very well. Surprisingly flat and corrugated unhydrogenated 
graphene both produce similar π-plasmons, indicating the presence of a π-electron system 
even in corrugated graphene. Figure 17b) shows the evolution of the π-plasmon in fully 
hydrogenated graphene (also termed graphane) with increasing corrugation angle. 
Interestingly, flat graphane, similar to graphene, possesses a π-plasmon. However, its 
energy is slightly higher then experimentally observed. The π-plamon has nearly vanished 
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Fig. 17. WIEN 2K calculations of low loss EEL spectra for a) non hydrogenated graphene in 
flat and corrugated geometry for the in-plane plasmon component (q||a) with overlaid 
experimental  spectrum. Note the agreement in the pre-plasmon structure; b) fully 
hydrogenated graphene with varying corrugation angle Ө, again, for (q||a). c) and d) show 
calculated in-plane and out-of-plane (q||c) plasmon components for corrugated graphene 
(Ө=1140) with different hydrogen content (given in % in the legend; model structures are 
shown in the sketch). The orange spectrum overlaid in (c) is an experimental spectrum of a 
hydrocarbon-free region in H-dosed graphene. Note the disappearance of the pre-plasmon 
feature and the occurrence of an extra peak at ~7eV. The distances given in Å in the legends 
are the separation distances of the graphene sheets, or the supercell dimension along the c-
axis. Further detail and fuller explanation of the input parameters (k-point number, muffin-
tin radii etc) are given in Bangert et al. 2010b. 

for 100 out-off-plane bending of bonds, and has disappeared for 220 bond bending. A feature 
at ~6-7 eV emerges at the rise of a (presumably) pure σ-plasmon, which sits at slightly 
higher energy then the π+σ-plasmon in graphene. Hence sp3 character does become 
established in corrugated graphene, when all bonds are used. It should be noted that (a) and 
(b) show the in-plane plasmon component. Figures 17c) and d) show plasmon calculations 
of the in-plane and the out-off-plane plasmon component for different hydrogen coverages 
for a sheet corrugation angle of 1140 (as deduced from diffraction experiments (Elias et al, 
2009)). The overlaid experimental spectrum fits the >25% hydrogenation cases rather well. 
The out-off plane component does not have a π-plasmon for any hydrogen coverage. 
Models to describe possible structural scenarios are shown as inset. It becomes clear that 
corrugation is essential to produce the ~7eV feature, as is occurrence of sp3-character. In 
order be preserve π-bonding, however, the corrugation angles have either to be small (as 
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would be the case for strained graphene, if it is hydrogenated mainly on one surface (Xue & 
Xu, 2010)) or unhydrogenated areas have to be present,. Alternatively or simultaneously, 
hydrogenated patches could be interleaved with pure graphene areas. The low loss region 
thus provides a wealth of information, which we have only just started to explore. 
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8. Conclusions 

Combined HAADF/BF imaging in an AC STEM has proven a most powerful method to 
‘see’ directly the atomic-scale landscapes of graphene; the former imaging mode provides 
chemical information and position of atoms, the latter, due to the stronger contrast, helps 
relate positions of ad-atom/ impurities with sites on benzene rings. Ultra-high resolution 
EELS has proven an invaluable add-on to identify the chemical nature of individual atoms, 
especially those with Z≤6, and to gain information about local bonding and electronic 
bandstructure. 
The imaging studies revealed extensive hydrocarbon contamination on every single 
graphene sample, independent of growth method or fabrication procedure, as well as a fair 
proportion of multiple layers and –in CVD grown samples- predominance of turbostratic 
arrangements. Here we present facts concerning uncontaminated (‘model’) graphene, which 
exists in patches of only few 10s of nm in diameter interspersed with extended chain-like 
adsorbate networks. In ‘model’ graphene we have shown existence of nanometer-size 
ripples, point- and ring defects and omnipresence of C-adatoms above C-C bonds. We have 
identified metal impurity sites and found Au- and Ni-atoms taking up T-sites on benzene 
rings, and Fe-atoms to occupy B-sites; the former in agreement with and the latter 
contradicting theoretical predictions. H can be found on clean graphene, and to a much 
larger extent on hydrogen-dosed graphene. EELS in combinations with DFT WIEN 
calculations shows the structure of the latter is concomitant with corrugated graphene 
possessing partial H-coverage and small corrugation angles, or/and co-existence of 
unhydrogenated areas. Plasmons in graphene show unique behaviour and can be used to 
identify single layers. 
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