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1. Introduction  

Optoelectronic oscillator was invented in 1994 by Yao and Maleki, two researchers of the 
NASA Jet Propulsion Laboratory [1]. The aim of this oscillator was first to generate 
microwave signal with particulary low phase noise. The best results is -163 dBc/Hz at 10 
kHz from a 10 GHz carrier. This system was initially developed for next generation radar to 
replace microwave generators. Then new applications appear for time and frequency, 
telecommunication, and navigation technology. Few years ago were published first 
Optoelectronic Oscillators (OEO) with fiber loop [2,3], affordable for telecommunication 
systems with adjustable frequency chosen with band filter value. But optical fiber are still 
bulky because of their several km packaged lenghts and bring difficulties with temperature 
control. However with a 4 km optical delay line in OEO, a 10 GHz oscillator prototype 
exhibits a frequency flicker of 3.7x10−12 (Allan deviation) and a phase noise lower than −140 
dB.rad²/Hz at 10 kHz off the carrier [4]. The choice of integrating a mini-resonator is a way 
to reach problems related to regulation of temperature and to work in limited volume, 
necessary condition for building transportable sources. Optical fiber delay line is replaced 
by a whispering gallery mode (WGM) optical  mini-resonator in simple topology of OEO. 
Optical signal can propagate by total internal reflection by WGM inside the crystal 
resonator. One can then achieve a long equivalent delay line into the few millimeter 
diameter optical mini-disk resonator. High quality factor were demonstrated [5]. In this 
chapter are presented main principle of OEO. The interest to build such an oscillator is that 
the expected microwave frequency that modulate the optic carrier can be increased without 

                                                 
1: X. S. Yao and L. Maleki, „High frequency optical subcarrier generator,“ Electronics Letters, 30(18), 

1525 (1994) 
2: A. Neyer, E. Voges,  "High frequency electro optic oscillator using an integrated interferometer," Appl. 
Phys. Lett. 40(1), 6-8 (1982) 
3: X. S. Yao, L. Maleki,  "Optoelectronic microwave oscillator," J. Opt. Soc. Am. B 13(8), 1725-1735 (1996) 
4: K. Volyanskiy, J. Cussey, H. Tavernier, P. Salzenstein, G. Sauvage, L. Larger, and E. Rubiola, 
"Applications of the optical fiber to the generation and measurement of low-phase-noise microwave 
signals," J. Opt. Soc. Am. B 25(12), 2140-2150 (2008) 
5: I. S. Grudinin, V. S. Ilchenko, L. Maleki, "Ultrahigh optical Q factors of crystalline resonators in the 
linear regime," Phys. Rev. A 74, 063806(9) (2006) 
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loosing stability. Main limitation are then in the ability to find stable enough components 
such as high speed photo detectors. 

2. How works an OEO 

An OEO is an oscillator typically delivering a microwave signal. Purity of microwave signal 

is achieved thanks to a delay line inserted into the loop. For example, a 4 km delay 

corresponds to 20 µs time for optical energy to stay in the line. It is equivalent to a quality 

factor Q=2πFT where F is the microwave frequency and T the delay induced by the delay 

line. The continuous light energy comping from a laser is converted to microwave signal. 

The loop of the oscillator consists in an optic and an electric part as systematized on the 

following figure. Light from the laser goes through a modulator. The modulation 

microwave signal comes from the output of the microwave amplifier after crossing a -10dB 

directional coupler. Resonant element can be an optic fiber equivalent to a delay line. It can 

also be an optical mini-resonator coupled to the optical fiber at the output of the phase 

modulator. The microwave signal is amplified after the photodiode. OEO can have optic out 

put with the modulated optical signal and microwave output through a directional coupler. 

The oscillator consists of an amplifier of gain G and a feedback transfer function β(f) in a 
closed loop. The gain G compensates for the losses, while β(f) selects the oscillation 
frequency.  Barkhausen condition gives  G.β(f)  = 1.  
 

 

Fig. 1. Typical architecture of a fiber delay line OEO realized at FEMTO-ST institute 

The optical fiber is a good choice for several reasons explained in this paragraph. A long 

delay can be achieved, of 100  µs and more, thanks to the low loss (0.2 dB/km at 1.55 µm 

and 0.35 dB/km at 1.31 µm). The frequency range is wide, at least of 40 GHz, still limited by 

the optoelectronic components. The background noise is low, close to the limit imposed by 

the shot noise and by the thermal noise at the detector output. The thermal sensitivity of the 

delay (6.85x10−6/K) is a factor of 10 lower than the sapphire dielectric cavity at room 

temperature. This resonator is considered the best ultra stable microwave reference. In 

oscillators and phase-noise measurements the microwave frequency is the inverse of the 
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delay. This means that the oscillator or the instrument can be tuned in steps of 10−5–10−6 of 

the carrier frequency without degrading stability and spectral purity with frequency 

synthesis. Finer-tuning is possible at a minimum cost in terms of stability and spectral 

purity. 

On the following figure is represented a typical topology of an OEO with a 4 km fiber delay 
line. 
 

 

Fig. 2. Phase noise of an OEO realized at FEMTO-ST with a 4 km fiber delay line with a -145 
dB.rad²/Hz noise floor at 10 kHz from a 10 GHz carrier 

2. Examples of other topologies 

With optical fiber several modes are in competitions. The use of two different loops enable 
elimination of parasitic peaks. For illustration, a simple topology with two loops is 
represented on figure 3. We design two optical ways detected by two different photo-
detectors. We schematically present on figure 4 how one loop can filter the signal. 
A new approach for the generation of ultralow jitter optical pulses using optoelectronic 
microwave oscillators was proposed. Short pulses are obtained through time-lens soliton-
assisted compression of sinusoidally modulated pre-pulses, which are self-started from a 
conventional single-loop optoelectronic oscillator. The inherent ultra-low phase noise of 
optoelectronic oscillators is converted into ultra-low timing jitter for the generated pulses. 
Generation of 4.1 ps pulses along with a microwave whose phase noise is -140 dBc/Hz at 10 
kHz from the 10 GHz carrier, with 2.7 fs jitter in the 1-10 kHz frequency band was 
demonstrated [6]. Figure 5 represents such topology with compression of impulsion. 

                                                 
6: Y. K. Chembo, A. Hmima, P. A. Lacourt, L. Larger and J. M. Dudley, „Generation of Ultralow Jitter 
Optical Pulses Using Optoelectronic Oscillators With Time-Lens Soliton-Assisted Compression,“ J. of   
Lightwave Technology, 27(22), 5160 – 5167 (2009) 
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Fig. 3. Double loop topology of OEO 

 

 

Fig. 4. A and B respectively represent long and short loops, one can see that peaks have been 
filtered in the sum, C signal. Amplitude is represented versus frequency 
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Fig. 5. Topology with compression of impulsion 

3. Non linear approach for modelling the OEO 

To study the behaviour of the system, a non linear approached was developed. It is based on 
complex equation for the delay. A Neimark-Sacker bifurcation was demonstrated and 
shown as a limitation for the performance of the system [7,8]. The possibility of multi-mode 
propagation according to the starting conditions of the oscillators was also demonstrated [9].  
They were experimentally confirmed with a remarkable precision. These results established 
for the first time theoretical base of the spectral stability of the OEOs : noise floor and 
characterization of peaks. 

4. Exploring the choice of compact resonators 

It is interesting to integer a compact resonator and forget a too long and temperature 
sensitive optical delay line. With its tetragonal crystal and a good behaviour with risk of 
water pollution, CaF2 is a good candidate but it has a bad reaction to mechanical shocks. 
Resonators with MgF2 and fused silica are still interesting for their properties [10,11]. MgF2 
can present low an inversion point around 80°C. Temperature variation of refractive index 

                                                 
7: Y. K. Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola and P. Colet, „Dynamic instabilities of 
microwaves generated with optoelectronic oscillators,“ Optics Letters, 32(17), 2571 (2007) 
8:  Y. K. Chembo, L. Larger and P. Colet, „Non linear dynamics and spectral stability of optoelectronic 
microwave oscillators,“ IEEE J. Quantum Electron., 44(9), 858 (2008) 
9: Y. K. Chembo, L. Larger, R. Bendoula and P. Colet, „Effect of gain and banwidth on the multimode 
behaviour of optoelectronic microwave oscillators,“ Optics Express, 16(12), 9067 (2008) 
10: P. Salzenstein, H. Tavernier, K. Volyanskiy, N. N. T. Kim, L. Larger, E. Rubiola, "Optical Mini-disk 
resonator integrated into a compact optoelectronic oscillator," Acta Phys. Pol. A 116(4), 661-663 (2009) 
11: H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. K. Chembo and L. Larger, „Magnesium Fluoride 
Whispering Gallery Mode Disk-Resonators for Microwave Photonics Applications,“ IEEE Photonics 
Technology Letters, 22(22), 1629-1631 (2010) 
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dne/dT of MgF2 is around zero in the range of 80°C (positive at lower temperatures and 
negative at upper temperatures). It is particularly helpful to achieve stable oscillators as a 
precise control of the temperature is a quasi-necessary condition to reach high stabilities. 
Hardness of MgF2 and CaF2 is in the range of 6 Mohs and they have both good answer to 
mechanical shocks that makes less difficult fabrication of mini-disk with these materials. 
There crystal class is very different as MgF2 crystal is tetragonal and fused silica is non 
crystalline, and if MgF2 is not sensitive to water pollution, it is necessary to have special 
treatments to minimize H2O inclusion in fused silica [12]. These two material are relatively easy 
to manipulate without damaging the surface. A special equipment must be developed for 
manufacturing resonator. A dedicated polishing machine affords small eccentricity and a 
precision adapter. System is hold on air bearing support to mechanically prevent influence of 
vibration on the surface of the external tore surface of the mini-disk resonator. Process is 
started from an initial crystal optical windows of about 6 mm diameter and 500 µm thickness 
for X-band applications. The coupling zone has to be reduced to less than 50 µm, that's why 
two 20 degrees angle bevels can be performed on the disk to form a sharp edge. We need a 
very good optical quality with very low and regular roughness all around the torical surface of 
the disk periphery. Powders with decreasing grain size are used. One can also achieve spheric 
resonators from electric flash in a fibber to perform spheric profile. Some methods exist to 
choose similar diameters for microspheres, based on the choice of similar diameters in the 
used powder. Advantage of spheres is to be free with polishing process, one disadvantage 
consist in the dispersion in the periphery, and difficulty to evacuate temperature. 
 

 

Fig. 6. Typical architecture of an optical resonator based OEO realized at FEMTO-ST institute 

In order to introduce into the loop the fabricated resonator, it has to be coupled to the 
optical light coming from a fiber. Best way to couple is certainly to to use a cut optical fibre 
through a prism. But a good reproducible way in a lab is to use a tapered fibber glued on a 
holder. Holder alloy and geometry match the thermal expansion of the glass. 
For measuring the resonance [13], one uses the signal from a tunable laser diode . Fast digital 
real time oscilloscope permits the analysis of the very sharp phenomena at peak resonance. 

                                                 
12: V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, "Hydroxyl Groups in High-Purity Silica Glass," 
Inorganic Materials, 36(4), 404-410 (2000) 
13: H. Tavernier, N. N. T. Kim, P. Feron, R. Bendoula, P. Salzenstein, E. Rubiola, L. Larger, "Optical disk 
resonators with micro-wave free spectral range for optoelectronic oscillator," Proc. of the 22nd 
European Time and Frequency Forum - Toulouse, France, paper FPE-0179 (2008) 
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It is necessary to use a high speed resolution oscilloscope for the analysis of very short 
phenomenas. Oscilloscope is inserted after the photodiode that detects optical signal coming 
from the mini-disk resonator coupled to the fibre glued on the holder. Resonance peak 
detection is in single mode excitation. Small taper size selects a thin excitation area. 
Resonance measurement set-up is in open loop. Although wavelength span is too small to 
scan a full free spectral range (FSR) and scan rate is 50 Hz, it let be possible Q factor measure 
with the self homodyne methodology [14]. Optical resonator is then inserted in the loop of 
the OEO as schematically represented on figure 6. Inside the optical resonator, light 
propagates with Whispering Gallery Modes (WGM) and the difference of optical index 
between the optical cavity and air permits a quasi total reflection of the signal inside the 
resonator, even if it depends on the roughness of the surface that also causes losses. OEO 
consists in a classic architecture. Phase modulator is optically driven by the laser. The optical 
mini-resonator is coupled to the optical fibre at the output of the phase modulator. Microwave 
signal is then amplified after being detected in the photodiode. Modulation microwave signal 
of the light comes from the output of the microwave amplifier through a directional coupler. 
 

 

Fig. 7. Photography of an optical resonator based OEO realized at FEMTO-ST institute. The 
rectangle represents A3 format (297x420mm²) 

                                                 
14: J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, " Analytical and experimental study of ringing effects 
in a Fabry–Perot cavity. Application to the measurement of high finesses," J. Opt. Soc. Am. B 14(11), 
2811-2817 (1997) 
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Figure 7 show an OEO with a compact mini-disk optical resonator. We clearly see the 

positioning system which combines the tapered fiber and the mini-resonator. Resonator 

coupled to the optic fiber can be seen at the top of the picture. It is under light in order to 

focus the camera (left top edge of the picture) on the coupling zone to watch on the screen of 

a camera-connected computer how closed is the fiber from the resonator. The nano-

positioning system provides enough space for the moves in a 12x12x12 mm3 typically 

volume and is controlled by a joystick including three different speeds to approach the 

resonator and the selected tapered fiber. 

Optical mini-disk resonator helps to increase reduction of the dimension of OEO. Structure 

could be optimized by the use of a several meters long fiber loop in addition to the optical 

mini-disk. It could be interesting to work at higher frequencies than in X-band. Working at 

upper frequencies (20 GHz, 60 GHz or more) could be helpful to achieve a better frequency 

stability close to the carrier, even if it is to early to think that OEO could replace stable 

quartz oscillators. By the way OEO with fiber delay line are still promising for such 

applications. Optical resonators can be good candidate for several connected applications 

like filtering the frequency, generation of frequency, non linear functions like optical 

modulator at higher frequencies, use of combs of modes etc. Optical resonators based OEO 

can also be improved by stabilization of Laser signal and control of the polarization. 

5. Measuring performances of an OEO 

To measure phase noise of a unique OEO at Fourier frequencies between 10 Hz and 100 kHz 

from the carrier using dedicated optoelectronic phase noise measurement bench [15] because 

it cannot be locked on another if there is not the same exact frequency. State-of-the art OEO 

in terms of phase noise are presently manufactured in the USA [16]. Fused Silica micro-

sphere resonators were already previously fabricated [17] and integrated into OEO. Recently, 

fused silica compact mini-disk optical resonators were also integrated into an OEO and it 

was demonstrated a upper phase noise floor [18]. The used fused silica resonator had a 

quality factor in the range of 108. In order to generate microwave signal in X-band (8.2-12.4 

GHz), diameter is in the range of 5 mm and quality of the surface less than few nanometres. 

Performance in terms of phase noise is certainly lower for an OEO based on compact optical 

resonator, but a large reduction of the noise should be possible with well optimized 

coupling conditions and thermal and mechanical environment of the resonator perfecty 

controlled. Stabilization of the laser on the resonance can be improved by the use of a Pound 

driver.  

                                                 
15: P. Salzenstein, J. Cussey, X. Jouvenceau, H. Tavernier, L. Larger, E. Rubiola, G. Sauvage, "Realization 
of a Phase Noise Measurement Bench Using Cross Correlation and Double Optical Delay Line," Acta 
Physica Polonica A, 112(5), 1107-1111 (2007) 
16: V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, "Crystalline resonators add 
properties to photonic devices," 17 February 2010, SPIE Newsroom. DOI: 10.1117/2.1201002.002536 
(2010) 
17: V. S. Ilchenko, X. S. Yao, and L.e Maleki, "High-Q microsphere cavity for laser stabilization and 
optoelectronic microwave oscillator,"  Proc. SPIE, 3611, 190 (1999) 
18: K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y. K. Chembo and L. Larger, „Compact 
Optoelectronic Microwave Oscillators using Ultra-High Q Whispering Gallery Mode Disk-Resonators 
and Phase Modulation,“ Optics Express, 18(21), 22358-22363 (2010) 
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6. Conclusion 

OEO is a particularly interesting system to be studied for fundamental physics with its 
complex system with delay, but also for its applications. Several aspect already have been 
explored and its performances help in understanding this system. It should probably play a 
major rule in the future especially for new generation navigation system applications. 
Several fields are still open in research, especially by considering new complex architectures 
regarding existing architectures. One contribution should help with a different approach 
than usual, i. e.  stochastic and non-linear dynamic systems. 
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