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1. Introduction 

Variable structure control with sliding mode, which is commonly known as sliding mode 

control (SMC), is a nonlinear control strategy that is well known for its robust characteristics 

(Utkin, 1977). The main feature of SMC is that it can switch the control law very fast to drive 

the system states from any initial state onto a user-specified sliding surface, and to maintain 

the states on the surface for all subsequent time (Utkin, 1977), (Phuah et al., 2005 a). 

The conventional SMC has two disadvantages (Ertugrul & Kaynak, 2000), (Slotine & Sastry, 

1983), which are the chattering phenomenon (Slotine & Sastry, 1983), (Young et al., 1999) 

and the difficulty in calculating the equivalent control law of SMC that requires a thorough 

knowledge of the parameters and dynamics of the nominal controlled plant (Ertugrul & 

Kaynak, 2000), (Slotine & Sastry, 1983), (Hussain & Ho, 2004). 

Many methods of SMC using neural networks (NN) have been proposed (Phuah et al., 2005 

a), (Ertugrul & Kaynak, 2000), (Hussain & Ho, 2004), (Phuah et al., 2005 b), (Yasser et al., 

2007), (Topalov et al., 2007).  

In this paper, sliding mode controls using NN are proposed to deal with the problem of 

eliminating the chattering effect and the difficulty in calculating the equivalent control law 

of SMC that requires a thorough knowledge of the parameters and dynamics of the nominal 

controlled plant. The first method of this method applies a method using a simplified form 

of the distance function proposed in (Phuah et al., 2005 a), (Phuah et al., 2005 b). 

Furthermore, the simplified distance function of our method uses a sliding surface in the 

space of the output error and its derivations, as proposed in (Yasser et al., 2006 a), (Yasser et 

al., 2006 c), instead of the space of the states error to construct a corrective control input. 

Thus, no observer is required in the proposed method. Moreover, we also propose the 

application of an NN to construct the equivalent control input of SMC. The weights of the 

NN are adjusted using a backpropagation algorithm as in (Yasser et al., 2006 b). Hence, a 

thorough knowledge of the parameters and dynamics of the nominal controlled plant is not 

required for calculating the equivalent control law. Finally, a stability analysis is carried out, 

and the effectiveness of this first control method is confirmed through computer 

simulations. This first method has been previously discussed in (Yasser et al., 2007). 

The second method of this paper applies an NN to produce the gain of the corrective control 
of SMC. Furthermore, the output of the switching function the corrective control of SMC is 
applied for the learning and training of the NN. There is no equivalent control of SMC is 
used in this second method. As in the first method, this second method applies a method 
using a sliding surface in the space of the output error and its derivations, as proposed in 
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(Yasser et al., 2006 a), (Yasser et al., 2006 c). The weights of the NN are adjusted using a 
sliding mode backpropagation algorithm, that is a backpropagation algorithm using the 
switching function of SMC for its plant sensitivity. Thus, this second method does not use 
the equivalent control law of SMC, instead it uses a variable corrective control gain 
produced by the NN for the SMC. Hence, a thorough knowledge of the parameters and 
dynamics of the nominal controlled plant is not required for calculating the control law. 
Finally, a stability analysis is carried out, and the effectiveness of this first control method is 
confirmed through computer simulations. 

2. Sliding mode control 

In designing a standard sliding mode controller, first we are required to construct a sliding 
surface that represents a desired system dynamics, and then to develop a switching control 
law such that a sliding mode exists on every point of the sliding surface. Any states outside 
the surface are driven to reach the surface in a finite time. 
Let us consider an SISO nonlinear plant with BIBO described as 

 
( ) ( ( )) ( )

( ) ( ) ( ( ))

p p p p

p p p p

t t B u t

y t C t h t

= +

= +

x f x

x x

$
 (1) 

where ( )p tx  is an pn th-order plant state vector, ( )pu t  is the control input, ( )py t  is a plant 

output, ( )⋅f  is a nonlinear vector function pn
R∈ , ( )h ⋅  is a scalar nonlinear function, and pB  

and pC  are matrices with appropriate dimensions. We assume that the system in (1) is 

controllable and observable. 

The control objective is to determine a control law ( )pu t  such that the state vector ( )p tx  

tracks a given bounded desired state vector ˆ ( ) pn
p t R∈x . Therefore, the states error can be 

obtained as 

 
( 1)

ˆ( ) ( ) ( )

( ), ( ), , ( )

p

p

p p p

x p p

Tn
x x x

t t t

e t e t e t
−

= −

⎡ ⎤= ⎢ ⎥⎣ ⎦

e x x

$ A
. (2) 

Then the sliding surface in the space of the state error can be obtained as 

 ( ) ( )
p p p

T
x x xS t t= c e  (3) 

where 
1 2, , ,

p p p p p

T

x x x x nc c c⎡ ⎤= ⎣ ⎦c A is a slope of sliding surface. Generally 
pxc  is chosen to 

force the state error converge to zero when the state is on the sliding surface. 

Meanwhile, the process of SMC can be divided into two phases: the approaching phase with 

( ) 0
pxS t ≠  and the sliding phase with ( ) 0

pxS t = . Therefore, two types of control law: an 

equivalent control and a corrective control can be derived separately corresponding to those 

two phases. 

In the sliding phase, we have ( ) 0
pxS t =  and ( ) 0

pxS t =$ , then the equivalent control term 

( )equ t  will force the system dynamics to stay on sliding surface. The equivalent control 

( )equ t  can be obtained as 
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1

ˆ( ) ( ) ( ( ))
p p p

T T T
eq x p x p x pu t B t t

−
⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦c c x c f x$ . (4) 

In the approaching phase, where ( ) 0S t ≠ , a corrective control term ( )cu t  will force the state 

error outside the surface to reach the surface. The corrective control term ( )cu t  is defined as 

 ( )( ) ( )
pc s xu t k sign S t=  (5) 

where sk  is a positive gain constant, and ( )( )
pxsign S t  is a sign function defined as 

 ( )
1, if ( ) 0

( ) 0, if ( ) 0

1, if ( ) 0

p

p p

p

x

x x

x

S t

sign S t S t

S t

⎧+ >
⎪⎪= =⎨
⎪
− <⎪⎩

. (6) 

Then, the control law of SMC will be expressed as 

 ( ) ( ) ( )p eq cu t u t u t= + . (7) 

3. Sliding mode control using Neural Networks and a simplified distance 
function 

The first method of this method applies a method using a simplified form of the distance 
function proposed in (Phuah et al., 2005 a), (Phuah et al., 2005 b). An NN is applied to 
construct the equivalent control input of SMC. The weights of the NN are adjusted using a 
backpropagation algorithm as in (Yasser et al., 2006 b). 

3.1 Chattering elimination using a simplified distance function 

Based on the concept of point to hyperplane distance, an alternative control method to 
calculate the corrective control term ( )cu t has been proposed in (Phuah et al., 2005 a), (Phuah 
et al., 2005 b) to suppress the chattering phenomenon which is caused by high frequency 
oscillations exhibited by the corrective control law ( )cu t in (5). This method uses a distance 
function ( )h t  to calculate the distance between the trajectory of the state error and the 
sliding surface to generate the corrective control law. The distance function ( )h t  is defined 
as (Phuah et al., 2005 a), (Phuah et al., 2005)  

 
1

( ) ( )
p px xh t S t
−

= c  (8) 

where ⋅  is the usual Euclidean norm in pn
R . The corrective control law is defined as 

(Phuah et al., 2005 a), (Phuah et al., 2005)  

 ( ) ( )cu t kh t=  (9) 

where k  is a positive constant. 
To construct the corrective control law, the distance function (8) can be simplified to 
minimize the calculation process, and modified by applying the sliding surface in the space 
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of the output error and its derivations, proposed in (Yasser et al., 2006 a), (Yasser et al., 
2006 c), instead of the state error. For that, first, we consider a linear reference model to 
which the plant output required to follow in the form 

 
( ) ( ) ( )

( ) ( )
m m m m

m m m

t A t B u t

y t C t

= +
=

mx x

x

$
 (10) 

where ( )m tx  is an mn th-order reference model state vector, ( )mu t  is a reference model 

input, ( )my t  is a reference model output, mA , mC  are matrices with appropriate 

dimensions, and mB is a scalar value. The reference model can be independent of the 

controlled plant, and it is permissible to assume m pn n2 . Then, we define the output error 

( )
pye t  as 

 ( ) ( ) ( )
py m pe t y t y t= −  (11) 

Thus, the simplified distance function ( )simh t can be described as 

 ( ) ( )
psim sim yh t k S t=  (12) 

where simk  is a positive constant, and ( )
pyS t  is a sliding surface in the space of the output 

error and its derivations described as (Yasser et al., 2006 a), (Yasser et al., 2006 c)  

 
( 1)

1 2

( ) ( )

, , , ( ), ( ), , ( )

p p p

s

p p p s p p p

T
y y y

T
n

y y y n y y y

S t t

c c c e t e t e t−

=

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦

c e

$A A
 (13) 

where 2sn > .  
Then, by replacing ( )h t  in (9) with ( )simh t  from (12), a new corrective control law can be 
defined as 

 ( ) ( ) ( )
p pc sim y yu t kh t k S t= =  (14) 

where 
py simk k k= ⋅  is a positive constant. 

3.2 Neural Networks for equivalent control 

To avoid the requirement of the thorough knowledge of the parameters and dynamics of the 
nominal plant (1), we use a feedforward NN, which consists of an input layer, a hidden 
layer, and an output layer as in (Yasser et al., 2006 b), to construct the equivalent control 
input ( )equ t  of the SMC in (7). The equivalent control input ( )equ t  is described as 

 
( )

( ) ( )

( )

eq NN

ZOH NN

u t u t

f u k

α

α

=

=
 (15) 

where α  is a positive constant, ( )NNu t  is a continuous-time output of the NN, ( )NNu k  is a 

discrete-time output of the NN, and ( )ZOHf ⋅  is a zero-order hold function. 
As in (Yasser et al., 2006 b), we implement a sampler in front of the NN with an appropriate 
sampling period to obtain the discrete-time input of the NN, and a zero-order hold is 
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implemented to transform the discrete-time output ( )NNu k  of the NN back to the 
continuous-time output ( )NNu t  of the NN. 
The input ( )i k  of the NN is given as 

 ( ) ( 1), , ( )
p py yi k e k e k n⎡ ⎤= − −⎣ ⎦A  (16) 

where ( )
pye k  is the discrete-time form of ( )

pye t  in (11). And the dynamics of the NN are 

given as (Yasser et al., 2006 b) 

 ( ) ( ) ( )q i iq
i

h k i k m k=∑  (17) 

 
1

( ) ( )

( ( )) ( )

NN

q qj
i

u k o k

S h k m k

=

=∑  (18) 

where ( )ii k  is the input to the i -th neuron in the input layer ( 1, , ii n= A ), ( )qh k  is the input 

to the q -th neuron in the hidden layer ( 1, , qq n= A ), ( )o k  is the input to the single neuron in 

the output layer, in  and qn  are the number of neurons in the input layer and the hidden 

layer, respectively, ( )iqm k  are the weights between the input layer and the hidden layer, 

( )qjm k  are the weights between the hidden layer and the output layer, and 1( )S ⋅  is a 

sigmoid function. The sigmoid function is chosen as 

 1

2
( ) 1

1 exp( )
S X

Xμ
= −

+ −
 (19) 

where 0μ > .  

The objective of the NN training is to minimize the error function ( )
pyE k  described as 

 21 1
( ) ( ) ( ) ( )

2 2

j

p p

n

y y m p
j

E k e k y k y k⎡ ⎤= = −⎣ ⎦∑  (20) 

where ( )
pye k  is the discrete-time form of ( )

pye t  in (11). The NN training is done by adapting 

( )iqm k  and ( )qjm k  using the method in (Yasser et al., 2006 b) as follows 

 

1

( )
( )

( )

( ) ( ) ( ( ))

qj
qj

m p plant q

E k
m k c

m k

c y k y k J S h k

∂
Δ = − ⋅

∂

⎡ ⎤= ⋅ − ⋅ ⋅⎣ ⎦

 (21) 

 

2
1

( )
( )

( )

( ) ( ) ( ) (1 ( )) ( )
2

iq
iq

m p plant qj i

E k
m k c

m k

c y k y k J m k S X i k
μ

∂
Δ = − ⋅

∂

⎡ ⎤= ⋅ − ⋅ ⋅ ⋅ − ⋅⎣ ⎦

 (22) 

where c  is a learning parameter, and plantJ  represents the plant Jacobian estimated using 
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( )

( )

p
plant

NN

y k
J sign

u k

∂⎛ ⎞
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

 (23) 

as in (Yasser et al., 2006 b). 

3.3 Stability 

For the stability analysis of our method, we start by defining its Lyapunov function and its 
derivation as follows 

 
( ) ( ) ( )

( ) ( ) ( )

SMCNN NN SMC

SMCNN NN SMC

V t V t V t

V t V t V t

= +

= +$ $ $  (24) 

where ( )NNV t  is the Lyapunov function of the NN of our method, and ( )SMCV t  is the 
Lyapunov function of SMC of our method. 

For ( )NNV t$ , we assume that it can be approximated as 

 
( )

( ) NN
NN

V k
V t

T

Δ
≅

Δ
$  (25) 

where ( )NNV kΔ  is the derivation of a discrete-time Lyapunov function, and TΔ  is a 
sampling time. According to (Yasser et al., 2006 b), ( )NNV kΔ  can be guaranteed to be 
negative definite if the learning parameter c  satisfies the following conditions 

 
2

0
q

c
n

< <  (26) 

for the weights between the hidden layer and the output layer, ( )qjm k , and 

 
22

0 max ( ) max ( )k qj k i
q

c m k i k
n

−
⎡ ⎤< < ⋅⎣ ⎦  (27) 

for the weights between the input layer and the hidden layer, ( )iqm k . Furthermore, if the 
conditions in (26) and (27) are satisfied, the negativity of ( )NNV t$  can also be increased by 
reducing TΔ  in (25). 

For ( )SMCV t , it is defined as 

 

2 ( )
( )

2

( ) ( ) ( ).

p

p p

y

SMC

SMC y y

S t
V t

V t S t S t

=

= $$
 (28) 

Then we the following assumption. 
Assumption 1: The sliding surface in (13) can approximate the sliding surface in (3) (Yasser 
et al., 2006 c) 

 ( ) ( )
p py xS t S t≅ . (29) 

( )SMCV t$  in (28) can be assured to be negative definite if 
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( ) ( )

( )

p p

p p

y x

y y

S t S t

k S t

≅

′= −

$ $
. (30) 

where 
pyk′  is a positive constant. Following the stability analysis method in (Phuah et al., 

2005 a), we apply (1)—(3), (7), (14), (15), (29) and (30) to (28) and assume that (15) can 

approximate (4). Thus, ( )SMCV t$  can be described as 

 

( ) ( ) ( )

( ) ( )

ˆ( ) ( ) ( )

ˆ( ) ( ) ( ( )) ( )

ˆ( ) ( ) ( ( )) ( ) ( )

( ) ( )

p p

p p p

p p

p p p p

p p p p

p p p

p

SMC y x

T
y x x

T
y x p p

T T T
y x p x p x p p

T T T
y x p x p x p eq c

y y y

y

V t S t S t

S t t

S t t t

S t t t B u t

S t t t B u t u t

S t k S t

k

=

=

⎡ ⎤= −⎣ ⎦
⎡ ⎤= − −⎣ ⎦
⎡ ⎤⎡ ⎤= − − +⎣ ⎦⎣ ⎦
⎡ ⎤= −⎣ ⎦

= −

c e

c x x

c x c f x c

c x c f x c

$$

$

$ $

$

$

2 ( )
pyS t

. (31) 

which is negative definite, where 
p p p

T
y x p yk B k= c . The reaching condition (Phuah et al., 2005 

a) can be achieved if 

 ( ) ( ( ))
p p py y yk S t sign S tη− ≤ . (32) 

where η  is a small positive constant. 

3.4 Simulation 

Let us consider an SISO nonlinear plant described by (Yasser et al., 2006 b) 

 

1 2

2 1 1

1 1

0

2 sin( ) 1

sin( )

p

p

x x
u

x x x

y x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= +

$
$  (33) 

 

and the parameters [ ]12 1
p

T
y =c  in (13), 20

pyk =  in (14), 0.1α =  in (15), 1in =  in(17), 

5qn =  in (18), 2μ =  in (19), 0.001c =  in (21) and (22), 1plantJ = +  in (21), and 0.01TΔ =  in 

(25) are all fixed. The switching speed for the corrective control of SMC is set to 0.02 

seconds. We assume a first-order reference model in (10) with parameters 10mA = − , 

10mB = − , and 1mC = . 

Fig. 1 and Fig. 2 show the outputs of the reference model ( )my t  and the plant output ( )py t  

using the conventional method of SMC with an NN and a sign function. These figures show 

that the plant output ( )py t  can follow the output of the reference model ( )my t  closely but 

not smoothly, as chattering occurs as seen in Fig. 2. 

Fig. 3 and Fig. 4 show the outputs of the reference model ( )my t  and the plant output ( )py t  

using our proposed method. It can be seen that the plant output ( )py t  can follow the output 
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of the reference model ( )my t  closely and smoothly, as chattering has been eliminated as 

seen in Fig. 4. 
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Fig. 1. ( )my t  and ( )py t  using SMC with NN and a sign function 
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Fig. 2. Magnified upper parts of the curves in Fig. 1 

4. Sliding mode control with a variable corrective control gain using Neural 
Networks 

The method in this subsection applies an NN to produce the gain of the corrective control of 
SMC. Furthermore, the output of the switching function the corrective control of SMC is 
applied for the learning and training of the NN. There is no equivalent control of SMC is 
used in this second method. 
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Fig. 3. ( )my t  and ( )py t  using SMC with NN and the simplified distance function 
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Fig. 4. Magnified upper parts of the curves in Fig. 3 

4.1 A variable corrective control gain using Neural Networks for chattering elimination 

Using NN to produce a variable gain for a corrective control gain of SMC, instead of using a 

fixed gain in the conventional SMC, can eliminate the chattering. The switching function of 

the corrective control is used in the sliding mode backpropagation algorithm to adjust the 

weight of the NN. This method of SMC does not use any equivalent control of (7) in its 

control law. For the SISO nonlinear plant with BIBO described in (1), the control input of 

SMC with a variable corrective control gain using NN is given as 

 ( ) ( )p cVu t u t=  (34) 
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 ( )( ) ( ) ( )
p pcV y V yu t k t sign S t=  (35) 

where ( )cVu t  is the corrective control with variable gain using NN, and ( )
py Vk t  is the 

variable gain produced by NN described as 

 
( )

( ) ( )

( )

V NNV

ZOH NNV

k t u t

f u k

α

α

=

=
 (36) 

where α  is a positive constant, ( )NNVu t  is a continuous-time output of the NN, ( )NNVu k  is 

a discrete-time output of the NN, ⋅  is an absolute function, and ( )ZOHf ⋅  is a zero-order 

hold function. 

As in subsection 3.2, we implement a sampler in front of the NN with an appropriate 

sampling period to obtain the discrete-time input of the NN, and a zero-order hold is 

implemented to transform the discrete-time output ( )NNVu k  of the NN back to the 

continuous-time output ( )NNVu t  of the NN. 
The input ( )i k  of the NN is given as in (16), and the dynamics of the NN are given as 

 ( ) ( ) ( )V q i V iq
i

h k i k m k=∑  (37) 

 
1

( ) ( )

( ( )) ( )

NNV V

V q Vqj
i

u k o k

S h k m k

=

=∑  (38) 

where ( )ii k  is the input to the i -th neuron in the input layer ( 1, , Vii n= A ), ( )V qh k  is the 

input to the q -th neuron in the hidden layer ( 1, , Vqq n= A ), ( )Vo k  is the input to the single 

neuron in the output layer, V in  and Vqn  are the number of neurons in the input layer and 

the hidden layer, respectively, ( )Viqm k  are the weights between the input layer and the 

hidden layer, ( )Vqjm k  are the weights between the hidden layer and the output layer, and 

1( )S ⋅  is a sigmoid function. The sigmoid function is chosen as in (19). 

4.2 Sliding mode backpropagation for Neural Networks training 

In the sliding mode backpropagation, the objective of the NN training is to minimize the 

error function ( )
pyE k  described in (20). The NN training is done by adapting ( )Viqm k  and 

( )Vqjm k  as follows 

 

1

( )
( )

( )

( ) ( ) ( ( ))

Vqj
V qj

m p V plant V q

E k
m k c

m k

c y k y k J S h k

∂
Δ = − ⋅

∂

⎡ ⎤= ⋅ − ⋅ ⋅⎣ ⎦

 (39) 

 
2
1

( )
( )

( )

( ) ( ) ( ) (1 ( )) ( )
2

Viq
Viq

m p V plant Vqj i

E k
m k c

m k

c y k y k J m k S X i k
μ

∂
Δ = − ⋅

∂

⎡ ⎤= ⋅ − ⋅ ⋅ ⋅ − ⋅⎣ ⎦

 (40) 
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where c  is the learning parameter, and V plantJ  is described as 

 
( )

( )

( )
( )

( )

( )

p

p

p
V plant y

NNV

plant y

y k
J sign sign S k

u k

J sign S k

∂⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟∂⎝ ⎠

= ⋅

 (41) 

where ( )
pyS k  is the time-sampled form of ( )

pyS t  in (13). 

4.3 Stability 

For the stability analysis of our method, we start by defining its Lyapunov function and its 
derivation as follows 

 
( ) ( ) ( )

( ) ( ) ( )

V V V

V V V

SMCNN NN SMC

SMCNN NN SMC

V t V t V t

V t V t V t

= +

= +$ $ $  (42) 

where ( )NNVV t  is the Lyapunov function of the NN of our method, and ( )SMCVV t  is the 

Lyapunov function of SMC of our method. 

For ( )
VNNV t$ , we assume that it can be approximated as 

 
( )

( )
V

NNV
NN

V k
V t

T

Δ
≅

Δ
$  (43) 

where ( )NNVV kΔ  is the derivation of a discrete-time Lyapunov function, and TΔ  is a 

sampling time. According to (Yasser et al., 2006 b), ( )NNVV kΔ  can be guaranteed to be 

negative definite if the learning parameter c  satisfies the following conditions 

 2
0

Vq

c
n

< <  (44) 

for the weights between the hidden layer and the output layer, ( )Vqjm k , and 

 
22

0 max ( ) max ( )k V qj k i
Vq

c m k i k
n

−
⎡ ⎤< < ⋅⎣ ⎦

 (45) 

for the weights between the input layer and the hidden layer, ( )Viqm k . Furthermore, if the 

conditions in (44) and (45) are satisfied, the negativity of ( )VNNV t$  can also be increased by 

reducing TΔ  in (43). 

For ( )SMCVV t , it is defined as 

 

2 ( )
( )

2

( ) ( ) ( ).

p

V

V p p

y

SMC

SMC y y

S t
V t

V t S t S t

=

= $$
 (46) 

Then we again use assumption 1. Thus, ( )
VSMCV t$  in (46) can be assured to be negative 

definite if 
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( ) ( )

( )

p p

pV p

y x

y y

S t S t

k S t

≅

′= −

$ $
. (47) 

where 
pVyk′  is a positive constant. Based on the stability analysis method in subsection 3.3, 

we apply (1)—(3), (34), (35), (29) and (30) to (28). Thus, ( )SMCV t$  can be described as 

 

( )

( ) ( ) ( )

( ) ( )

ˆ( ) ( ) ( )

ˆ( ) ( ) ( ( )) ( )

ˆ( ) ( ) ( ( )) ( ) ( )

ˆ( ) (

V p p

p p p

p p

p p p p

p p p p pV p

p p

SMC y x

T
y x x

T
y x p p

T T T
y x p x p x p p

T T T
y x p x p x p y y

T
y x p

V t S t S t

S t t

S t t t

S t t t B u t

S t t t B k t sign S t

S t

=

=

⎡ ⎤= −⎣ ⎦
⎡ ⎤= − −⎣ ⎦
⎡ ⎤⎡ ⎤= − − ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

=

c e

c x x

c x c f x c

c x c f x c

c x

$$

$

$ $

$

$

$ ( )) ( ( )) ( ) ( ) ( )
p pV p p

T
x p y y yt t k t S t sign S t⎡ ⎤− −⎣ ⎦c f x

. (48) 

where ( ) ( )
pV p p

T
y x p y Vk t B k t= c . ( )SMCV t$  in (48) is negative definite if ( )

py Vk t  produced by the 

NN is large enough. The reaching condition (Phuah et al., 2005 a) can be achieved if 

 ( )ˆ( ) ( ) ( ( )) ( ) ( ) ( ) ( ( ))
p p p pV p p p

T T
y x p x p y y y yS t t t k t S t sign S t sign S tη⎡ ⎤− − ≤⎣ ⎦c x c f x$ . (49) 

where η  is a small positive constant. 

4.4 Simulation 

Let us consider an SISO nonlinear plant described in (33) and the parameters [ ]9 1
p

T
y =c  

in (13), 1α =  in (36), 2V in =  in (37), 5qn =  in (38), 2μ =  in (19) and (40), 0.01c =  in (39) 

and (40), 1plantJ = +  in (41), and 0.01TΔ =  in (43) are all fixed. The switching speed for the 

corrective control of SMC is set to 0.02 seconds. We assume a first-order reference model in 

(10) with parameters 10mA = − , 10mB = − , and 1mC = . 

Fig. 5 and Fig. 6 show the outputs of the reference model ( )my t  and the plant output ( )py t  

using our proposed method. It can be seen that the plant output ( )py t  can follow the output 

of the reference model ( )my t  closely and smoothly, as chattering has been eliminated as 

seen in Fig. 6. 

5. Conclusion 

In this chapter, we proposed two new SMC strategies using NN for SISO nonlinear systems 
with BIBO has been proposed to deal with the problem of eliminating the chattering effect.  
In the first method, to eliminate the chattering effect, it applied a method using a simplified 
distance function. Furthermore, we also proposed the application of an NN using the 
backpropagation algorithm to construct the equivalent control input of SMC.  
The second method of this paper applied an NN to produce the gain of the corrective 
control of SMC. Furthermore, the output of the switching function the corrective control of 

www.intechopen.com



Sliding Mode Control Using Neural Networks 

 

521 

SMC was applied for the learning and training of the NN. There was no equivalent control 
of SMC used in this second method. The weights of the NN were adjusted using a sliding 
mode backpropagation algorithm, that was a backpropagation algorithm using the 
switching function of SMC for its plant sensitivity. Thus, this second method did not use the 
equivalent control law of SMC, instead it used a variable corrective control gain produced 
by the NN for the SMC.  
Brief stability analysis was carried out for the two methods, and the effectiveness of our 
control methods was confirmed through computer simulations. 
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Fig. 5. ( )my t  and ( )py t  using SMC with a variable corrective gain using NN 
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Fig. 6. Magnified upper parts of the curves in Fig. 5 
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