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1. Introduction

The sliding mode control (Utkin, 1977; Hung et al., 1993) is robust with respect to certain
structured system uncertainties and disturbances. However, the early version of sliding mode
control adopts a switching function in its design, and this results in high-frequency oscillations
(the so-called chattering) in the control signal. Such control chattering is undesirable since it
can damage the actuator and the system. Among the various solutions to reducing chattering,
the boundary layer design (Burton & Zinober, 1986; Slotine & Sastry, 1983) is probably the
most common approach. In the boundary layer design, a smooth continuous function is used
to approximate the discontinuous sign function in a region called the boundary layer around
the sliding surface. As a result, the control signal in a boundary layer design will contain
no chattering in a noise free environment. However, the boundary layer design has two
disadvantages. First, chattering reduction of the control signal is achieved at the sacrifice of
control accuracy. To obtain smoother control signals, one must adopt a larger boundary layer
width. But a larger boundary layer width results in larger errors in control accuracy. Second,
when there is high-level measurement noise, the boundary layer design becomes ineffective
in chattering reduction.
One of the purposes of this chapter is to show that contrary to the common belief,
the boundary layer design does not completely solve the chattering problem in practical
applications. Essentially this is due to the fact that the boundary layer control design is
still a high gain design, and as a result, its control signal is very sensitive to high-frequency
measurement noise. Control chattering may still take place due to the excitations of
measurement noise. This fact will be demonstrated via the frequency domain analysis.
The other purpose of this chapter is to present a new design for chattering reduction by
low-pass filtering the control signal. The new design will be shown to be able to avoid the
disadvantages of conventional boundary layer design while effectively reduce chattering. The
new design adopts a special control structure, in which an integrator is placed in front of
the system to be controlled. A sliding mode control w is then constructed for the extended
system (the original system plus the integrator). The control signal w hence has chattering,
but the true control signal u going into the system is smooth since the high frequency
chattering in w will be filtered out by the integrator, which acts as a low pass filter. With
such a design, the chattering reduction is achieved by low pass filtering, and at the same
time the control accuracy can be maintained. Another advantage of the new design is that
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in noisy environment, measurement noise causes severe chattering in the signal w, but the
integrator can still effectively filter out the chattering. Hence, the new design has better noise
immunity than the conventional boundary layer design. Previous literature (Sira-Ramirez,
1993; Sira-Ramirez et al., 1996) contains no stability analysis or performance analysis, and does
not address noise-induced chattering. In (Xu et al., 2004), two first-order filters are employed
but again noise-induced chattering is not addressed.
The new low-pass-filtering design for chattering reduction is nevertheless non-trivial. As is
known, the sliding variable in sliding mode control design must be chosen such that control
input shows up in the time derivative of sliding variable. In this way, the control input can
influence how the sliding variable evolves. Such a design guideline must also be observed
in the new design. Hence, the time derivative of the new sliding variable for the extended
system should contain the sliding mode control w. This in turn suggests that the new sliding
variable itself for the extended system contains the integration of w which is the true control
signal u. Since the unknown disturbance d enters the system in the same place as the control
signal u (the so-called matching condition (Corless & Leitmann, 1981)), the new sliding
variable will inevitably contains the unknown disturbance d, and this makes evaluation of
the sliding variable difficult. This is a problem that is unique to the low-pass-filtering design.
Previous literature (Bartolini, 1989; Bartolini & Pydynowski, 1996) has attempted to solve
this problem only with partial success. In (Bartolini, 1989), a variable structure estimator
is proposed to estimate the sliding variable, but it must assume a priori that the system
state is uniformly bounded before proving the system stability. In (Bartolini & Pydynowski,
1996), a one-dimensional observer is proposed to estimate the sliding variable, but stability is
guaranteed only if a differential inequality with bounded coefficients is satisfied. This chapter
will propose a complete solution by using the disturbance estimator proposed in (Chen &
Tomizuka, 1989) for sliding variable estimation. A rigorous stability proof of the new sliding
mode control will also be presented.
This chapter is organized as follows. Section 2 reviews the boundary layer design for the
sliding mode control of a linear uncertain system. A simulation example is given to reveal the
weakness of boundary layer design. Section 3 introduces the new chattering reduction control
design. A second simulation example is given to confirm the advantage of new design. Finally,
Section 4 gives the conclusions.

2. Boundary layer control

The purpose of this section is to review the boundary layer design in sliding mode control for
a linear system with matching disturbance.

2.1 Noise-free boundary layer control

Consider a linear system with matching disturbance :

ẋ0 = Ax0 + B(u0 + d), (1)

where x0 ∈ Rn is the system state available from noise-free measurement, u0 ∈ R1 is the
scalar control input, and d is an unknown disturbance with known upper bounds |d| � D0,
|ḋ| � D1. The system matrices A ∈ Rn×n and B ∈ Rn×1. The pair (A, B) is controllable. The
control objective is to eliminate the interference of the disturbance d with the control u0.
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To achieve this objective, a sliding mode control with boundary layer design has previously
been proposed as :

u0 = −Kx0 + v0, (2)

where K is the state feedback gain that places the poles of (A − BK) to the left half plane so
that there exists a positive definite matrix P satisfying the Lyapunov equation

(A − BK)T P + P(A − BK) = −I, (3)

and v0 is the boundary layer control :

v0 = −ρ
s0

|s0| + ǫ
, ρ > D0 (4)

with the sliding variable s0 given by

s0 = 2BT Px0, (5)

and ǫ a small positive number specifying the boundary layer width. Since the above boundary
layer control is a continuous function of the system state, the resultant control signal (2) will
have no chattering phenomenon if there is no measurement noise and unmodeled dynamics.
Note that close to the sliding surface (s0 ≈ 0), the boundary layer control (4) reduces to a
proportional control with high control gain: v0 = −(ρ/ǫ)s0. This high gain characteristics is
the cause of noise-induced chattering introduced in the next section.

2.2 Noise-corrupted boundary layer control

In order to analyze how the conventional boundary layer control responds to measurement
noise, a zero-mean stochastic noise n is introduced into the measurement of system state x.
The state equation (1) thus becomes :

ẋ1 = Ax1 + B(u1 + d), (6)

where x1 is the noise-affected system state, u1 is the noise-affected control input :

u1 = −K(x1 + n) + v1, v1 = −ρ
s1

|s1| + ǫ
, (7)

where n is the stochastic measurement noise, and s1 the sliding variable

s1 = 2BT P(x1 + n). (8)

Define the perturbed control input δu = u1 − u0 as the difference between the noise-free u0

in the previous section and noise-affected u1 in this section. Similarly, the perturbed state
δx = x1 − x0 is the difference between the noise-free x0 and noise-affected x1. Since the
measurement noise n is assumed to be of small magnitude, so are δu and δx. As a result,
one can apply linearization technique to the nonlinear boundary layer control system; in
particular, one can derive the linear transfer function Tn(s) from the measurement noise
n to the perturbed control δu. From this transfer function Tn(s), one can learn how the
high-frequency measurement noise n affects the perturbed control δu and the noise-affected
input u1 = u0 + δu. If the high-frequency gain of Tn(s) is large, it suggests that measurement
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noise n can induce high-frequency chattering in the control u1. The derivation procedure of
T1(s) is as follows.
It follows from (1) and (6)

δẋ = Aδx + Bδu, (9)

and from (2) and (7),

δu = −K(δx + n) + v1 − v0. (10)

If one defines f (x) = ρ 2BT Px
|2BT Px|+ǫ

, according to (4) and (7),

v1 − v0 = − f (x1 + n) + f (x0) � −
∂ f

∂x x=x0

· (x1 + n − x0) = −N(δx + n), (11)

where the second equality results from the Taylor series expansion of f (x1 + n) at x0, and

N =
∂ f

∂x x=x0

= ρ
2BT Pǫ

(|s0| + ǫ)2
∈ R1×n (12)

Note that in the above Taylor series expansion of the nonlinear function f (·), one can neglect
all high-order terms and retains only the first order term because δx + n is small.
Combining equations (10) and (11) gives

δu = −(K + N)(δx + n). (13)

Substituting the above equation into (9) results in the closed-loop transfer function from n to
δx:

δx = −[sI − A + B(K + N)]−1B(K + N)n, (14)

where s represents the Laplace transform operator. Finally, the transfer function from n ∈ Rn

to δu ∈ R1 can be deduced from (13) and (14),

δu = Tn(s) n, Tn(s) = {(K + N)[sI − A + B(K + N)]−1B − I}(K + N). (15)

One may now use Equation (15) to study how the stochastic measurement noise n affects the
control input u1 = u0 + δu in the boundary layer control. In particular, one is interested in
knowing whether the high-frequency measurement noise n will contribute to the chattering
(high-frequency oscillations) of control signals in a boundary layer design. Note that control
chattering occurs only after the sliding variable s0 approaches almost zero. When this occurs,
the vector N in (12) may be approximated by

N � ρ
2BT P

ǫ
.

One may now plot the Bode diagram of Tn(s) in (15) with the row vector N given as above to
check how sensitive the boundary layer control is to the measurement noise.
A simulation example is given below to show that even if a boundary layer design has been
used, control chattering may still take place due to the measurement noise.
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Example 1: Consider the system (1) with

A =

⎡

⎣

0 1 0
0 0 1
7 −1 2

⎤

⎦ , B =

⎡

⎣

0
0
1

⎤

⎦ ,

and a disturbance d = cos(t) . The sliding mode control (2) and (4) has design parameters:
boundary layer width ǫ = 1, 0.01, and 0.001 respectively, control gain ρ = 1.2, and state
feedback gain K =

[

67 46 14
]

. From (15), the singular value of transfer function Tn(s) from n

to δu ∈ R1 is plotted in Figure 1.

Fig. 1. Singular values of Tn(s) with different ǫ

The high gain of Tn(s) at high frequency suggests that the sliding mode control signal is very
sensitive to high-frequency measurement noise. The smaller the boundary layer width ǫ, the
more sensitive the control input to the measurement noise. As a result, the high frequency
measurement noise n will create substantial high frequency oscillations (chattering) in the
perturbed control δu, and hence in the noise-affected input u1 = u0 + δu. Figure 2 shows the
time response of control input u1, which confirms the existence of high frequency chattering
even if a boundary layer of width ǫ = 0.005 has been introduced into the sliding mode control
design.

3. Filtered sliding mode control

3.1 Sliding variable design

As is demonstrated in the simulation example 1, sliding mode control with the boundary layer
design still exhibits the chattering phenomenon when there is a high level of measurement
noise. Hence, a solution better than the boundary layer design is required to reduce the
chattering in sliding mode control. To this end, one will introduce the Filtered Sliding Mode
Control in this section, whose control structure is depicted in Figure 3. In Figure 3, an
integrator is intentionally placed in front of the system, and w = u̇ is treated as the control
variable for the extended system. A switching sliding mode control law is chosen for w to
suppress the effects of disturbance d. Even though w is chattering, the control input u to
the system will be smooth because the high-frequency chattering will be filtered out by the
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Fig. 2. Time history of control input

integrator, which acts as a low-pass filter. In other words, the new control design removes
chattering by filtering the control signal, hence, the control structure in Figure 3 is called
Filtered Sliding Mode Control.

Fig. 3. Filtered sliding mode control

Consider a linear system with disturbance:

ẋ = Ax + B(u + d). (16)

For the design of filtered sliding mode control, one chooses the sliding variable as follows.

s2 = ż + λz, z = Cx, (17)

where λ is a positive constant, and the row vector C ∈ R1×n is chosen such that (A, B, C) is of
relative degree one, and the (n − 1) zeros of the system (A, B, C) are in the stable locations. It
will be shown in the proof of Theorem 3 below that when s2 is driven to zero, the system state
x will also be convergent to zero.
Using (17) and (16), one finds

s2 = CAx + CB(u + d) + λCx, (18)
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and, by taking the time derivative of s2,

ṡ2 = (CA2 + λCA)x + (CAB + λCB)u + CBw

+ (CAB + λCB)d + CBḋ.

Note that the control variable w = u̇ appears in the time derivative of the sliding variable s2,
suggesting that one can control the evolution of s2 by properly choosing the control variable w.
However, there is a problem that according to (18), the expression of s2 contains the unknown
disturbance term d. Therefore, it is difficult to evaluate the sliding variable s2.
To solve this problem, one will use the Disturbance Estimator proposed in (Chen & Tomizuka,
1989) to estimate the disturbance d. With an estimate of d, one can obtain an estimate of the
sliding variable s2 via (18). In the sequel, an estimator for the unknown disturbance d will be
constructed based on the scalar variable z defined in (17). Note that z satisfies the following
differential equation,

ż = CAx + CB(u + d), (19)

Call ẑ an estimate of z, and denote the estimation error as

e = z − ẑ.

Construct the governing equation of ẑ as follows.

˙̂z = CAx + βe + CB(u + v), v = ρ
e

|e| + ǫ
, (20)

where β is a positive constant, ρ an estimator gain larger than the disturbance upper bound
D0, and ǫ is a positive constant close to zero. With the above estimator (20), an estimate of the
disturbance d will be provided by

d̂ =
β

CB
e + v =

βe

CB
+

ρe

|e| + ǫ
. (21)

Once one has obtained an estimate of d, one can approximate s2 in (18) by

ŝ2 = CAx + CB(u + d̂) + λCx. (22)

The following theorem proves the effectiveness of the above disturbance estimator (20) and
(21).
Theorem 2: The disturbance estimation error d − d̂, where d̂ is given by (21), will become
arbitrarily small if the estimator gain ρ in (20) is sufficiently large.
Proof: One can refer to the original paper on disturbance estimator (Chen & Tomizuka, 1989).
For completeness of this chapter, a simple proof will be given below. From (19) - (20), one can
easily obtain

ė = −βe − CB(v − d) (23)

= −βe − CB(ρ
e

|e| + ǫ
− d).

It will be shown that both e and ė will become arbitrarily small if ρ is sufficiently large. Notice
from (23) and (21) that ė = CB(d − d̂). Therefore, the smallness of ė implies the smallness of
d − d̂ and hence, the success of disturbance estimation.
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Let Lyapunov function V1 = 1
2 e2, and take its time derivative,

V̇1 = e ė = e(−βe − CB(v − d))

≤ −βe2 − |CBe|(ρ
|e|

|e| + ǫ
− D0)

≤ −βn1
2, for all e /∈ N1,

where N1 = {e : |e| < n1 = (ǫD0)/(ρ − D0)}. With the last inequality, one can prove
(see (Chen & Tomizuka, 1989)) that |e(t)| < n1 for all t > T1 for some finite time T1. Since
n1 = (ǫD0)/(ρ − D0) becomes arbitrarily small as the disturbance estimator gain ρ becomes
sufficiently large, one concludes that e becomes arbitrarily small within a finite time if ρ is
sufficiently large.
To check the behavior of ė, one chooses V2 = 1

2 ė2, and take its time derivative,

V̇2 = ė ë = ė(−βė − CB(
ρǫė

(|e| + ǫ)2
− ḋ))

≤ −βė2 −
ρǫ|CB||ė|2

(n1 + ǫ)2
+ |CBė|D1, t ≥ T1,

≤ −βė2 −
ρǫ|CBė|

(n1 + ǫ)2
(|ė| −

D1(n1 + ǫ)2

ρǫ
), t ≥ T1,

≤ −βn2
2, for all ė /∈ N2,

where N2 = {ė : |ė| < n2 = D1(n1 + ǫ)2/(ρǫ)}. From the last inequality, one can prove (Chen
& Tomizuka, 1989) that |ė(t)| < n2 for all t > T2 for some finite time T2. Since n2 = D1(n1 +
ǫ)2/(ρǫ) becomes arbitrarily small as the disturbance estimator gain ρ becomes sufficiently
large, one concludes that ė = CB(d − d̂) becomes arbitrarily small within a finite time if ρ is
sufficiently large. End of proof.

3.2 Control variable design

In the filtered sliding mode control, the objective of the control variable w = u̇ is to drive the
sliding variable s2 to (almost) zero in the face of unknown disturbance. For this purpose, one
chooses

u̇ = w

= −(CA2 + λCA)x − (CAB + λCB)u

−σs2 − δ sgn(s2),

where σ > 0, sgn(·) is the sign function, and δ is an upper bound of the uncertainty |∆p| with

∆p = (CAB + λCB)d + ḋ. (24)

As explained in the previous section, it is impossible to evaluate the sliding variable s2 due to
the disturbance d involved. Hence, to implement the proposed control, one uses the estimate
ŝ2 in place of s2,

u̇ = w

= −(CA2 + λCA)x − (CAB + λCB)u

−σŝ2 − δ sgn(ŝ2), (25)
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where ŝ2 comes from (22). Finally, it is commented that in the above filtered sliding mode
control law one can replace the sign function by other smooth approximations such as the
saturation function or other boundary layer design.
From (25), the true control input to the system is given by

u = H(s)w, H(s) =
1

s
. (26)

Even though the switching control w in (25) contains high-frequency chattering, the
high-frequency chattering will be filtered out by the low-pass filter H(s). The control input u
to the real system can be obtained by direct integration and then becomes chattering free.
The following theorem, which is the main result of this chapter, proves that the proposed
control (25) is practically stabilizing.
Theorem 3: The proposed filtered sliding mode control (25) practically stabilizes the system
(16) with bounded control u, in the sense that the system state is asymptotically driven into a
residual set around the origin, with the size of residual set becoming arbitrarily small when
the estimator gain ρ in the disturbance estimator (20) becomes sufficiently large.
Proof: Denote s̃2 = s2 − ŝ2, where s2 and ŝ2 are as given by (18) and (22) respectively. It is easy
to check that s̃2 = CB(d− d̂). To study the evolution of s2, choose Lyapunov function V = 1

2 s2
2

and check its time derivative under the proposed control w in (25),

V̇ = s2[(CA2 + λCA)x + (CAB + λCB)u + CBw

+(CAB + λCB)d + CBḋ]

= s2[−σŝ2 − δ sgn(ŝ2) + ∆p]

= −σs2
2 + σs2 s̃2 + s2[−δ sgn(ŝ2) + ∆p], (27)

where ∆p is as given in (24), and one has used ŝ2 = s2 − s̃2 to obtain the third equality. There
are two possible cases for the square brackets in the above equation.
Case 1. |s2| > |s̃2|: In this case, sgn(ŝ2) = sgn(s2 − s̃2) = sgn(s2). Equation (27) then becomes

V̇ ≤ −σs2
2 + σs2 s̃2 − |s2|(δ − |∆p|)

≤ −σs2
2 + σs2 s̃2

≤ −σ|s2|
2 + σ|s2|υ,

where the second inequality results from the design choice δ > |∆p|, and the third inequality
(with υ an arbitrarily small number) comes from Theorem 2 that s̃2 = CB(d − d̂) becomes
arbitrarily small asymptotically. From the last inequality, it is not difficult to show that
asymptotically one has limt→∞ |s2| ≤ υ; that is, s2 becomes arbitrarily small asymptotically.
Case 2. |s2| ≤ |s̃2|: Since s̃2 = CB(d − d̂), it follows from Theorem 2 that |s2| becomes
arbitrarily small asymptotically.
Judging from conclusions of both Case 1 and 2, one can say that the sliding variable s2 becomes
arbitrarily small asymptotically. One next shows that the system state x will also become
arbitrarily small as s2 does. To this end, introduce a state transformation (Isidori, 1989),

x = T

[

z
η

]

, T ∈ Rn×n. (28)

where the external state z ∈ R1 is as defined in (17), and the internal state η ∈ Rn−1 satisfies

η̇ = Qη + Lz, (29)
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for some matrices Q, L, in which Q is a square matrix whose eigenvalues are open-loop zeros
of the triple (A, B, C) (Isidori, 1989). Since, in the design of sliding variable in (17), z = Cx is
chosen such that (A, B, C) has only stable zeros, Q is stable.
When s2 becomes arbitrarily small, it follows from (17) that the external state z also becomes
arbitrarily small since ż + λz = s2 can be regarded as a stable system z subject to small input
signal s2. Similarly, (29) can be regarded as a stable system η subject to small input signal
z. Hence, its state η will also become arbitrarily small asymptotically. Finally, since both
z and η become arbitrarily small, so does the original system state x according to the state
transformation (28). End of proof.
To show the efficacy of the proposed filtered sliding mode control in noisy environments, a
simulation example is presented below.
Example 2: Filtered sliding mode control.
The same system as in Example 1 is tested again for the proposed filtered sliding mode control
(25). Here one has chosen

C = [2, 3, 1] .

The disturbance d = cos(t) and the state measurement is contaminated with a uniform noise
with zero-mean and standard deviation 0.05. One tests the proposed filtered sliding mode
control (25). The parameters are chosen such that λ = 2 in (17) and β = 100, ρ = 1.2, ǫ = 0.005
in (20). Other design parameters are σ = 30 and δ = 9.6 in (25). The plot of Figure 4(a) shows
the time history of system state, which achieves almost the same performance as that with the
boundary layer control. However, note from the plot of Figure 4(b) that the filtered sliding
mode design has successfully removed chattering in the control input u even in this noisy
environment.

(a) System state

(b) Control input

Fig. 4. Filtered sliding mode control with noise
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4. Conclusions

This chapter first shows via the linearization technique and the frequency domain analysis
that the boundary layer design in the sliding mode control can still exhibit control chattering
due to the excitations of measurement noise. Hence, other solutions to the chattering
reduction such as those in (Chen et al., 2002; 2007) should be searched.
Second, a new design is proposed to reduce control chattering in sliding mode control by
low-pass filtering the control signal. The new design requires estimation of the sliding
variable, and this is achieved by the use of a disturbance estimator. The unique feature of this
new design is that chattering reduction is achieved by low-pass filtering the control signal, and
control accuracy can be maintained by a sufficiently large disturbance estimator gain. This is
contrary to the conventional boundary layer design, where chattering reduction is achieved
at the price of sacrificing the control accuracy. This chapter further shows via simulation
examples that when there is high-level measurement noise, the boundary layer design can no
longer reduce chattering, but the new design in this chapter can effectively reduce chattering
even in noisy environments.
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systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the

sliding mode control area.
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