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1. Introduction

Pneumatic muscles are innovative tensile actuators consisting of a fiber-reinforced vulcanised
rubber tubing with appropriate connectors at both ends. The working principle is based
on a rhombical fibre structure that leads to a muscle contraction in longitudinal direction
when the pneumatic muscle is filled with compressed air. This contraction can be used
for actuation purposes. Pneumatic muscles are low cost actuators and offer several further
advantages in comparison to classical pneumatic cylinders: significantly less weight, no
stick-slip effects, insensitivity to dirty working environment, and a higher force-to-weight
ratio. A major advantage of pneumatic drives as compared to electrical drives is their
capability of providing large maximum forces for a longer period of time. In this case electrical
drives are in risk of overheating and may result in increasing errors due to thermal expansion.
For these reasons, different researchers have investigated pneumatic muscles as actuators for
several applications, e.g. a planar elbow manipulator in Lilly & Yang (2005), a 2-DOF serial
manipulator in Van-Damme et al. (2007) or a parallel manipulator in Zhu et al. (2008).
Pneumatic muscles are characterised by dominant nonlinearities, namely the force and
volume characteristics. Hence, these nonlinearities have to be considered by suitable control
approaches such as sliding mode control. In this contribution the sliding mode technique
is applied to a novel linear drive actuated by four pneumatic muscles. This pneumatic
linear drive allows for maximum velocities of approximately 1.3 m/s in a workspace of
approximately 1 m. In Aschemann & Hofer (2004) and Aschemann et al. (2006) the authors
presented the implementation of a trajectory control for a carriage with a pair of pneumatic
muscles arranged at opposite sides of a carriage. Unfortunately, this direct actuation by
pneumatic muscles suffers from two main drawbacks: On the one hand, the maximum
velocity of the carriage is limited to approx. 0.3 m/s, on the other hand the workspace is
constrained to the maximum contraction length of the pneumatic muscles, in the given case
to approx. 0.25 m. To increase the available workspace as well as the maximum carriage
velocity, a new test-rig has been built up. At this test-rig, a rocker transmits the drive force
of the pneumatic muscles to the carriage, see Aschemann & Schindele (2008) or Schindele &
Aschemann (2010). One disadvantage of this setup is the required height, necessary for the
kinematics considered there. To reduce the overall size of the drive mechanism, now, the
muscle force is transmitted to the carriage by a pulley tackle consisting of a wire rope and
several deflection pulleys, see Fig. 1. The mentioned components are installed such that the
required muscle force as well as the maximum workspace and velocity of the carriage are
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Figure 1. Experimental setup.

increased by a factor of three, in comparison to a directly driven configuration. For actuation
of the carriage, four pneumatic muscles are employed, whereas two muscles are used for each
direction of tension, respectively. The mass flow rate of compressed air in and accordingly out
of each pneumatic muscle is controlled by means of two separate proportional valves. One
proportional valve is employed for the two left pneumatic muscles and the other proportional
valve is utilised for the two right pneumatic muscles. Pressure declines in the case of large
mass flow rates are avoided by using an air accumulator for each valve.
In the paper, first, a control-oriented model of the pneumatically driven high-speed linear
axis is derived in section 2 as the basis of control design. At this, polynomial descriptions
are utilised to describe the nonlinear characteristics of the pneumatic muscle, i.e., the muscle
volume and the muscle force as functions of both contraction length and internal muscle
pressure. Second, in sections 3 and 4, sliding mode control techniques are employed to design
a nonlinear cascade control. For this purpose the differential flatness-property of the system is
exploited. The inner control loops involve a fast pressure control for each muscle, respectively.
The outer control loop achieves a decoupling of the carriage position and the mean muscle
pressure as controlled variables and provides the reference pressures for the inner pressure
control loops. As an alternative to the standard sliding mode technique, additionally, a
second-order sliding mode controller and a proxy-based sliding mode controller has been
designed for the outer control loop. Proxy-based sliding mode control is a modification
of sliding mode control as well as an extension of PID-control, see Kikuuwe & Fujimoto
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Figure 2. Drawing of the left pulley tackle.

(2006), Van-Damme et al. (2007). The basic idea is to introduce a virtual carriage, called
proxy, which is controlled using sliding mode techniques, whereas the proxy is connected
to the real carriage by a PID-type coupling force. The goal is to achieve precise tracking
during normal operation and smooth, overdamped recovery in the presence of large position
errors, which leads to an inherent safety property. In sections 5 and 6, nonlinear friction and
remaining model uncertainties in the equations of motion are considered by a feedforward
friction compensation module, based on the LuGre model in combination with a nonlinear
reduced-order disturbance observer. Finally, in section 8, the proposed control strategy has
been implemented at the test rig of the Chair of Mechatronics, University of Rostock. Thereby,
desired trajectories for the carriage position can be tracked with high accuracy.

2. System modelling

The modelling of the pneumatically driven high-speed linear axis involves the mechanical
subsystem and the pneumatic subsystem, which are coupled by the tension forces of the
pneumatic muscles.

2.1 Modelling of the mechanical subsystem

The mechanical model of the high-speed linear axis consists of the carriage and two pulley
tackles, at which one pulley tackle transmits the tension force of two pneumatic muscles
to the carriage in each case. In this way two pneumatic muscles as well as one pulley
tackle is employed for each moving direction of the carriage, see Fig. 2. For modelling
the mechanical subsystem is divided into the following elements (Fig. 1 and Fig. 2): a
lumped mass for the carriage (mass mC), the two connection plates, which are also modelled
as lumped masses (mass mMFi, i = {l, r}) and the six pulleys (mass moment of inertia
Jij, i = {l, r}, j = {1, 2, 3}). The motion of the linear axis is completely described by the
generalised coordinate zC(t), which denotes the carriage position. The equation of motion
directly follows from Lagrange’s equations in form of a second-order differential equation

m · z̈C =
aM
k

(FMr − FMl) − FU , (1)
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with the reduced mass

m =
1
k2

⎛

⎝k2 ·mC + mMFl + mMFr +
3

∑
j=1

Jl j

(
j

r

)2
+

3

∑
j=1

Jrj

(
j

r

)2
⎞

⎠ . (2)

The parameter k = 3 denotes the number of pulleys (radius r) employed for each pulley
tackle, and the parameter aM = 2 stands for the two muscles, used for actuation in the left or
right direction, respectively. All remaining model uncertainties are taken into account by the
disturbance force FU. On the one hand, these uncertainties stem from approximation errors
concerning the static muscle force characteristics and non-modelled viscoelastic effects of the
vulcanised rubber material. On the other hand, time-varying damping and friction acting on
the carriage, the connection plates and the pulleys depend in a complex manner on lots of
influence factors and cannot be accurately represented by a simple friction model.

2.2 Modelling of the pneumatic subsystem

Under the assumption, that the dynamic behaviour of the internal muscle pressure is
identically for the two left and right muscles, for modelling and control of the pneumatic
subsystem only one muscle for each drive direction is considered. The larger force obtained
by utilising two muscles for each pulley tackle is regarded by the factor αM in equation (1). A
mass flow ṁMi, i = {l, r} into the pneumatic muscle leads to an increase in internal pressure
pMi, and a contraction ∆ℓMi of the muscle in longitudinal direction due to specially arranged
fibers. The maximum contraction length ∆ℓM,max is given by 25% of the uncontracted length.
This contraction effect can be exploited to generate forces. The force FMi and the volume
VMi of a pneumatic muscle depend nonlinear on the according internal pressure pMi and the
contraction length ∆ℓMi. Given the length of the uncontracted muscle ℓM, the contraction
length of a pneumatic muscle is related to the carriage position by the following equations

∆ℓMl = ℓM −
1
k
zC ,

∆ℓMr = ℓM +
1
k
zC .

(3)

(4)

The dynamics of the internal muscle pressure follows directly from a mass flow balance in
combination with the energy equation for the compressed air in the muscle. As the internal
muscle pressure is limited by a maximum value of pMi,max = 7 bar, the ideal gas equation
represents an accurate description of the thermodynamic behaviour of the air in muscle i =
{l, r} (Smith et al. (1996))

pMi

ρMi
= RL · TMi . (5)

Here, the density ρMi, the gas constant of air RL and the thermodynamic temperature TMi are
introduced. The thermodynamic process is modelled as a polytropic change of state (Smith
et al. (1996))

pMi

ρnMi

= const. (6)

with n = 1.26 as identified polytropic exponent. The polytropic exponent is in between n = 1
for an isothermal process, and n = κ for an isentropic process. Thus, the relationship between
the time derivative of the pressure and the time derivative of the density is given by

ṗMi = n · RL · TMi · ρ̇Mi . (7)

372 Sliding Mode Control

www.intechopen.com



1
2

3
4

5
6

7

x 10
5

0

0.1

0.2

0.3

4

5

6

7

8

9

10

x 10
−4

pMi in Pa∆ℓMi in m

V
M

i
in

m
3

Figure 3. Identified volume characteristic of the pneumatic muscle.

The mass flow balance for the pneumatic muscle is governed by

ρ̇Mi ·VMi = ṁMi − ρMi · V̇Mi (8)

The identified volume characteristic (Fig. 3) of the pneumatic muscle can be described by a
polynomial function of both contraction length ∆ℓMi and the muscle pressure pMi

VMi (∆ℓMi, pMi) =
3

∑
j=0

aj · ∆ℓ
j
Mi ·

1

∑
k=0

bk · p
k
Mi. (9)

By inserting (7) and (9), the pressure dynamics (8) for the muscle i results in

ṗMi =
n

VMi + n · ∂VMi
∂pMi

· pMi

[

uMi −
∂VMi

∂∆ℓMi
·

d∆ℓMi

dzC
· pMi · żC

]

= kui (∆ℓMi, pMi) uMi − kpi
(
∆ℓMi, ∆ℓ̇Mi, pMi

)
pMi,

(10)

where uMi = RL · TMi · ṁMi denotes the input variable. The internal temperature TMi can be
approximated with good accuracy by the constant temperature Tamb of the ambiance. In this
way, temperature measurements are avoided, and the implementational effort is significantly
reduced.
The force characteristic FMi (pMi, ∆ℓMi) of a pneumatic muscle states the resulting tension
force for given internal pressure pMi as well as given contraction length ∆ℓMi and represents
the connection of the mechanical and the pneumatic system part. The nonlinear force
characteristic (Fig. 4) has been identified by static measurements and, then, approximated
by the following polynomial description

FMi(pMi, ∆ℓMi) =

{

F̄Mi(pMi, ∆ℓMi), F̄Mi > 0

0 , else
, (11)
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Figure 4. Identified force characteristic of the pneumatic muscle.

with

F̄Mi(pMi, ∆lMi) =
3

∑
m=0

(am · ∆ℓmMi)

︸ ︷︷ ︸

f1i

pMi −
4

∑
n=0

(bn · ∆ℓnMi)

︸ ︷︷ ︸

f2i

. (12)

3. Control of the carriage position

The different sliding mode controllers for the carriage position are designed by exploiting
the differential flatness property of the system under consideration (Fliess et al. (1995),
Sira-Ramirez & Llanes-Santiago (2000)). For the mechanical system the carriage position zC
and the mean muscle pressure pM = 0.5 (pMl + pMr) are chosen as flat output candidates. The
trajectory control of the mean pressure allows for increasing stiffness concerning disturbance
forces acting on the carriage (Bindel et al. (1999)). As the inner controls have been assigned
a high bandwidth, these underlying controlled muscle pressures can be considered as ideal
control inputs of the outer control

u =

[
ul
ur

]

=

[
pMl

pMr

]

. (13)

Subsequent differentiation of the first flat output candidate until one of the control inputs
appears leads to

y1 = zC, (14a)

ẏ1 = żC, (14b)

ÿ1 =
aM
k ·m

(FMr − FMl)−
1
m
FU = z̈C (zC, żC, pMl , pMr, FU) , (14c)

whereas the second variable directly depends on the control inputs

y2 = pM = 0.5 (pMl + pMr) . (15)

374 Sliding Mode Control

www.intechopen.com



The disturbance force FU is estimated by a disturbance observer and used for disturbance
compensation. Due to the differential flatness of the system, the inverse dynamics can be
obtained by solving the equations (14) and (15) for the input variables

u =
1

aM ( f1l + f1r)

[
aM f2l − aM f2r − kmz̈C − kFU + 2aMpM f1r
aM f2r − aM f2l + kmz̈C + kFU + 2aMpM f1l

]

. (16)

3.1 Sliding mode control

Now, the tracking error ez = zCd − zC can be stabilised by sliding mode control. For this
purpose, the following sliding surface sz is defined for the outer control loop in the form

sz = żCd − żC + α (zCd − zC) . (17)

At this, the coefficient α must be chosen positive in order to obtain a Hurwitz-polynomial. The
convergence to the sliding surfaces in face of model uncertainty can be achieved by specifying
a discontinuous signum-function

ṡz = −Wz · sign(sz), Wz > 0. (18)

With a properly chosen positive coefficient Wz dominating the corresponding model
uncertainties, the sliding surface sz = 0 is reached in finite time depending on the initial
conditions. This leads to the stabilising control law for each crank angle

υz = q̈id + α · (żCd − żC) +Wz · sign(sz). (19)

Here, the carriage position zC, the carriage velocity żC, the desired trajectory for the carriage
position zCd and their first two time derivatives have to be provided. For the second stabilising
control input υp, the desired trajectory for the mean pressure pMd is directly utilised in a
feedforward manner, i.e., υp = pMd. Inserting these new defined inputs into (16), the inverse
dynamics becomes

u =
1

aM ( f1l + f1r)

[
aM f2l − aM f2r − kmυz − kFU + 2aMυp f1r
aM f2r − aM f2l + kmυz + kFU + 2aMυp f1l

]

. (20)

Having once reached the sliding surfaces, the final sliding mode is maintained during
trajectory tracking provided that the tracking error ez = zCd − zC is governed by an
asymptotically stable first-order error dynamics

ėz + α · ez = 0. (21)

Then, a globally asymptotically stable tracking of desired trajectories for the carriage position
is guaranteed leading to

lim
t→∞

ez(t) = 0. (22)

For reduction of high frequency chattering the switching function sign(sz) in (19) can be
replaced by the smooth function tanh

( sz
ǫ

)
, ǫ > 0

υz = z̈Cd + α · (żCd − żC) +Wz · tanh
( sz

ǫ

)

. (23)

This regularisation, however, implicates a non-ideal sliding mode within a resulting boundary
layer determined by the parameter ǫ in the switching function.
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3.2 Higher-order sliding mode control

An alternative method to reduce high frequency chattering effects is to employ higher-order
sliding mode techniques for control design, Levant (2008). For this approach the control
derivative is considered as a new control input. Containing an integrator in the dynamic
feedback law, real discontinuities in the control input are avoided at higher-order sliding
mode. In this contribution a quasi-continuous second-order sliding mode controller as
proposed in Levant (2005) is utilised. Then the tracking error is stabilised by the following
control law

υz = α
ṡz + β |sz|

1
2 sign (sz)

|ṡz| + β |s|
1
2

. (24)

In Pukdeboon et al. (2010) a slightly modified version of this controller is introduced. For a
reduction of the chattering phenomena, a small positive scalar ν is added to the denominator
of (24). Then the smoothed control law is given by

υz = α
ṡz + β |sz|

1
2 sign (sz)

|ṡz| + β |s|
1
2 + ν

. (25)

For further reduction of the chattering phenomena, similar to the first-order sliding mode
control law (23) the discontinuous function sign (sz) in (25) can be replaced by the smooth
function tanh

( sz
ǫ

)
, ǫ > 0. Again, the new control input υz has to be inserted in the inverse

dynamics (16), at which the second control input υp remains the same.

3.3 Proxy-based sliding mode control

Proxy-based sliding mode control is a modification of sliding mode control as well as an
extension of PID-control, see Kikuuwe & Fujimoto (2006), Van-Damme et al. (2007). The
basic idea is to introduce a virtual carriage, called proxy, which is controlled using sliding
mode techniques, whereas the proxy is connected to the real carriage by a PID-type coupling
force, see Fig. 5. The goal of proxy-based sliding mode is to achieve precise tracking during
normal operation and smooth, overdamped recovery in case of large position errors. The
sliding mode control law for the virtual carriage results from equation (19) with zS denoting
the carriage position of the proxy

υa = z̈Cd + α · (żCd − żS) +Wz · tanh

(
żCd − żs + α (zCd − zS)

ǫ

)

. (26)

The PID-type virtual coupling between the proxy and the real carriage is given by

υc = KI

∫

(zS − zC) dt + KP (zS − zC) + KD (żs − żC) . (27)

Assuming a proxy with vanishing mass, the condition υa = υc holds. By introducing the
new variable a as integrated difference between the real and the virtual carriage position a =
∫

(zS − zC) dt, the virtual coupling (27) and the stabilising proxy-based sliding mode control
law (26) result in (Kikuuwe & Fujimoto (2006))

υc = KIa + KP ȧ+ KD ä , (28)

υa = z̈Cd + αėz − αä +Wztanh

(
ėz + αez − αȧ− ä

ǫ

)

. (29)

The implementation of the control law is shown in the right part of Fig. 5.
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4. Control of internal muscle pressure

The internal pressures of the pneumatic muscles are controlled separately with high accuracy
in fast underlying control loops. The pneumatic subsystem represents a differentially flat
system with the internal muscle pressure as flat output, see Aschemann & Schindele (2008).
Hence, equation (10) can be solved for the input variable

uMi =
1

kui (∆ℓMi, pMi)
[ ṗMi + kpi

(
∆ℓMi, ∆ℓ̇Mi, pMi

)
pMi] . (30)

The contraction length ∆ℓMi as well as its time derivative ∆ℓ̇Mi can be considered as
scheduling parameters in a gain-scheduled adaptation of kui and kpi. With the internal
pressure as flat output, its first time derivative ṗMi = υi is introduced as new control input.
The error dynamics of each muscle pressure pMi, i = {l, r}, can be asymptotically stabilised
by the following control law

υi = ṗMid + ai · (pMid − pMi) , (31)

where the constant ai is determined by pole placement. By introducing the definition ei =
pMid − pMi for the control error w.r.t. the internal muscle pressure, the corresponding error
dynamics is governed by the following first order differential equation

ėi + ai · ėi = 0 . (32)

5. Feedforward friction compensation

The main part of the friction is considered by a dynamical friction model in a feedforward
manner. For this purpose, the LuGre friction model, introduced by de Wit et al. (1995), is
employed. This friction model is capable of describing the Stribeck effect, hysteresis, stick-slip
limit cycling, presliding displacement as well as rising static friction

ż = żCd −
|żCd|

g (żCd)
z , (33)

FFr = σ0z+ σ1 ż+ σ2 żCd , (34)

where the function g (żCd) is given by

g (żCd) = FC + (FS − FC) e
−

(
żCd
vS

)2

. (35)
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Here, the internal state variable z describes the deflection of the contact surfaces. The model
parameters are given by the static friction FS, the Coulomb friction FC and the Stribeck
velocity vS. The parameter σ0 is the stiffness coefficient, σ1 the damping coefficient and σ2 the
viscous friction coefficient. All parameters have been identified using nonlinear least square
techniques.

6. Reduced nonlinear disturbance observer

Disturbance behaviour and tracking accuracy in view of model uncertainties can be
significantly improved by introducing a compensating control action provided by a nonlinear
reduced-order disturbance observer as described in Friedland (1996). The observer design is
based on the equation of motion. The key idea for the observer design is to extend the state
equation with integrators as disturbance models

ẏ = f (y, FU, u) ,

ḞU = 0 ,
(36)

where y =
[

q q̇
]T denotes the measurable state vector. The estimated disturbance force F̂U

is obtained from F̂U = hTy + z with the chosen observer gain vector hT.

hT =
[
h1 h1

]
. (37)

The state equation for z is given by

ż = Φ
(
y, F̂U , u

)
. (38)

The observer gain vector h and the nonlinear function Φ have to be chosen such that the
steady-state observer error e = FU − F̂U converges to zero. Thus, the function Φ can be
determined as follows

ė = 0 = ḞU − hTf
(
y, F̂U , u

)
− Φ (y, FU , u) . (39)

In view of ḞU = 0, equation (39) yields

Φ (y, FU, u) = −hTf
(
y, F̂Uu

)
. (40)

The linearised error dynamics ė has to be made asymptotically stable. Accordingly, all
eigenvalues of the Jacobian

Je =
∂Φ (y, FU , u)

∂FU
(41)

must be located in the left complex half-plane. This can be achieved by proper choice of the
observer gain h1. The stability of the closed-loop control system has been investigated by
thorough simulations.

7. Control implementation

For the implementation at the test rig the control structure as depicted in Fig. 6 has been used.
Fast underlying pressure control loops achieve an accurate tracking behaviour for the desired
pressures stemming from the outer control loop. The nonlinear valve characteristic (VC) has
been identified by measurements, see Aschemann & Schindele (2008), and is compensated by
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Figure 6. Implementation of the cascaded control structure.

its approximated inverse valve characteristic (IVC) in each input channel. For each pulley
tackle one pneumatic muscle is equipped with a piezo-resistive pressure sensor mounted
at the connection flange that connects the muscle with the connection plate. The carriage
position zC is obtained by a linear incremental encoder providing high resolution. The
carriage velocity żC is derived from the carriage position zC by means of real differentiation
using a DT1-System with the corresponding transfer function GDT1(s) = s

T1s+1 . The desired
value for the time derivative of the internal muscle pressure can be obtained either by real
differentiation of the corresponding control input pMi in (16) or by model-based calculation
using only desired values, i.e.

ṗMid = ṗMid

(

zCd, żCd, z̈Cd,
...
z Cd, pMd, ṗMd, F̂U, ˙̂FU

)

. (42)

The corresponding desired trajectories are obtained from a trajectory planning module that
provides synchronous time optimal trajectories according to given kinematic and dynamic
constraints. It becomes obvious that a continuous time derivative ṗMid requires a three times
continuously differentiable desired carriage trajectory. In (42) the time derivative of F̂U is
needed. Considering equation (38) and the first time derivatives of the system states, the
value of ˙̂FU can be obtained as follows

˙̂FU = hT ẏ + ż. (43)

8. Experimental results

Both tracking performance and steady-state accuracy w.r.t. the carriage position zC have been
investigated by experiments at the test rig of the Chair of Mechatronics, University of Rostock.
It is equipped with four pneumatic muscles DMSP-20 from FESTO AG. The control algorithm
has been implemented on a dSpace real time system. For the experiments the trajectory shown
in Fig. 7 have been used. Here the desired carriage position varies in an interval between
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ż C
d

in
m s

z̈ C
d

in
m s2

e z
in

m

Figure 7. Desired values for the carriage position, velocity, and acceleration. Corresponding
control error ez = zCd − zC for standard sliding mode control.

0 5 10 15 20
1

2

3

4

5

6

7

 

 

0 5 10 15 20
1

2

3

4

5

6

7

 

 

t in st in s

p
M
l

in
ba

r

pMl

pMld

p
M
r

in
ba

r

pMr
pMrd

Figure 8. Comparison of desired and actual values for the left and right muscle pressure.

−0.35 m and 0.35 m. The maximum velocities are approximately 1.3 m/s and the maximum
accelerations are about 5 m/s2. The resulting tracking errors for the carriage ez = zCd − zC
are shown in the right lower part of Fig. 7. As for the carriage position, the maximum
tracking error during the acceleration and deceleration intervals is approximately 3.5 mm. The
maximum steady-state error is approximately 0.6 mm. Fig. 8 shows the corresponding desired
and actual values of the internal muscle pressure. Obviously, the underlying fast control
loops achieve a precise tracking of the desired values, which stem from the outer decoupling
control loop. Due to a time-optimal trajectory planning using desired ansatzfunctions with
limited jerk as described in Aschemann & Hofer (2005), the admissible range of the internal
muscle pressure is not exceeded. In Fig. 9 the different control approaches, introduced in
this contribution, are compared concerning the control error ez. The higher-order sliding
mode (HOSM) control approach results in a slightly larger maximum tracking error than

380 Sliding Mode Control

www.intechopen.com



0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8
x 10

−3

 

 

PBSM

HOSM

SM

t in s

e z
in

m

Figure 9. Comparison of different control approaches concerning the corresponding control
errror ez: Proxy-based sliding mode control (PBSM), Higher-order sliding mode control
(HOSM) and standard sliding mode control (SM).

with the standard sliding mode technique (SM). Nevertheless, the steady-state accuracy of the
HOSM approach is superior to the other approaches. As the chattering phenomena is reduced
by HOSM control the parameter ǫ in equation (25) can be chosen very small, so that the
hyperbolic tangent function is very close to the ideal switching-function. The parameter ǫ in
(23) have to be chosen about 100 times larger as compared to the value in HOSM, to avoid the
high-frequency chattering, which is critical for the proportional valves and results in a reduced
lifetime of the valves. The largest tracking errors occur with proxy-based sliding mode (PBSM)
control, which represents a PID-controller at normal operation. The benefits of the PBSM
control are its high robustness and its slow and safe recovery from unexpected disturbances
and abnormal events, which leads to an inherent safety property. In Fig. 10 the impact of
the feedforward friction compensation and the nonlinear reduced disturbance observer is
demonstrated. Here the tracking errors of SM control with feedforward friction compensation
(f.f.c.) and disturbance observer (d.o.), SM control only with f.f.c and SM control without f.f.c.
and d.o. are depicted. As can be seen the tracking errors can be significantly reduced by
employing the proposed disturbance compensation strategy. The sum of the feedforward
friction force FFr and the disturbance force estimated by the disturbance observer F̂U is
depicted in Fig. 11. The robustness of the proposed solution is shown by a unmodelled
additional mass of 25 kg, which represents almost the double of the nominal value. In the
corresponding force, the increase due to the higher inertial forces becomes obvious. The
corresponding tracking errors are shown in Fig. 12. All three control approaches show similar
results. Whereas the steady-state errors remain almost unchanged, the maximum tracking
errors are now approximately 8 mm due to the inertia forces during the acceleration and
deceleration phases. The closed-loop stability is not affected by this parametric uncertainty.
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Figure 10. Tracking errors of SM control without disturbance compensation, SM control with
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Figure 11. Estimated disturbance force with and without additional mass of 25 kg.
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Figure 12. Tracking errors with an additional mass of 25 kg.

9. Conclusions

In this paper, a nonlinear cascaded trajectory control was presented for a new linear axis
driven by pneumatic muscles that offers a significant increase in both workspace and
maximum velocity as compared to a directly actuated solution. Furthermore, the proposed
setup requires a relativ small overall size in comparison to a drive concept with an rocker as in
Aschemann & Schindele (2008). The modelling of this mechatronic system leads to nonlinear
system equations of fourth order containing identified polynomial descriptions of the main
nonlinearities of the pneumatic subsystem: the characteristic of the pneumatic valve and the
characteristics of the pneumatic muscle. The inner control loops of the cascade involve a
decentralised control of the internal muscle pressures with high bandwidth. For the outer
control loop different sliding mode control approaches have been investigated leading to a
decoupling of the carriage position and the mean pressure as controlled variables. Thereby,
critical high frequency chattering can be avoided either by a regularisation of the switching
function or by using a second-order sliding mode controller. Model uncertainties in the
muscle force characteristic as well as nonlinear friction are directly taken into account by
a compensation scheme consisting of a feedforward friction compensation and a nonlinear
reduced disturbance observer. Experimental results emphasise the excellent closed-loop
performance with maximum position errors of approximately 4 mm. The robustness of the
proposed control is shown by measurements with an almost doubled carriage mass.
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