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1. Introduction 

A number of papers [1-7] have been presented to address the issues of multi-body 
mechanisms. Examples of their applications are found in gasoline and diesel engines, where 
the gas force acts on the slider and the motion is transmitted through the links. Whether the 
connecting rod is assumed to be rigid or not, the steady-state and dynamic responses of the 
connecting rod of the mechanism with time-dependent boundary condition were obtained 
by Fung et al. [1-3]. In addition, a number of controllers, for example, repetitive control [4], 
adaptive control [5], computed torque control [6], and fuzzy neural network control [7] were 
designed for the multi-body mechanisms.  
Over the past 25 years, the SMC algorithm [8-10] has been taken into account for dynamic 
control problems. The main feature of the SMC is to allow the sliding mode to occur on a 
prescribed switching surface, so that the system is only governed by the sliding equation 
and remains insensitive to a class of disturbances and parameter variations [8]. It is noted 
that the SMC is a robust control method and has been well established in pure motion 
control [9]. Afterwards, in order to eliminate the chattering phenomenon, which is 
commonly found in simulation of discontinuous SMC systems, and to simplify a hybrid 
numerical method that incorporates benefits of both SMC and differential algebraic 
equations, the (DAE) stabilization method was developed and successfully used to simulate 
constrained multi-body systems (MBS) whether under holonomic constraint or not [10]. 
However, the development of a control law which has been induced by a constrained force 
has not been adequately developed consistently in the previous studies. Su et al. [11] 
attempted to use the SMC for simultaneous position and force control on a constrained 
robot manipulator. They asserted that the control law, along with inclusion of the constraint 
force error in the definition of the sliding surface, produces an asymptotically stable force 
tracking error. However, Grabbe and Bridges [12] addressed their formulation as being a 
departure from the typical definition of a sliding surface, which is a linear differential 
equation in one tracking error variable [13], and the errors in the separate force control law 
and stability analysis were presented in [11]. Recently, Lian and Lin [14] have proposed a 
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new sliding surface in terms of motion error and force error, and claimed that the errors in 
[11] are improved; therefore, the asymptotic stability of the motion-tracking error and force-
tracking error can be ensured. However, Dixon and Zergeroglu [15] pointed out an error in 
the sliding mode control stability analysis of [14].  
In this chapter, our intent is to improve the errors in [11, 14] and simplify the control design 
and stability proof for the three typical mechanisms, including the slider-crank mechanism, 
the quick-return mechanism and the toggle mechanism as shown in Figs. 1~3 respectively, 
which are not seen in any references addressing the force/motion SMC. Here, a separate 
sliding surface is proposed using the measurements of the angular position and speed of the 
crank, but the SMC algorithm is derived as well in a simple manner using only the force 
tracking error to construct the controller. In these schemes, the force tracking error is shown 
to be arbitrarily small by changing the force control feedback gain. Then, by exploiting the 
structure of its dynamics, the fundamental properties of the dynamics are obtained to 
facilitate controller design, whereby the asymptotic stability of motion tracking error in 
sliding surface and force tracking error accumulated in controller can be ensured. 
The organization of this chapter is arranged as follows. In Section 2, the kinematic and 
dynamic analysis of the multi-body mechanism is investigated. A number of previous 
papers [4-7, 16-17] have shown the position and speed controllers for the regulation and 
tracking problems of the multi-body mechanism in the theoretical analysis and experimental 
results. However, control of the constrained force has not been investigated. The SMC laws 
are designed in Section 3. The simulated examples are shown in Section 4 and, finally, some 
conclusions are drawn. 

2. Dynamics analysis 

2.1 Dynamic equation of motion 

Based on the Euler-Lagrange formulation [4], the equation of motion for a mechanism can 
be expressed as:  

 ( ) = +T A
QM(Q)Q + N Q,Q +Φ λ Q U$$ $ . (1) 

where M(Q)  is an n n×  inertia matrix, nR∈Q  is the generalized coordinate vector, 
nR∈N(Q,Q)$  is the nonlinear vector, mR∈λ is the vector of Lagrange multipliers, 

[ ] m nR ×=  ∂ ∂ ∈QΦ Φ Q  is the partial derivative of the constraint equation with respect to the 

coordinate and is called the constraint Jacobian matrix, nR∈AQ  is the vector of non-

conservative forces and nR∈U  is the vector of applied control efforts. 
In order to obtain the general form of the force/motion controller design, we rewrite the 
nonlinear vector as: 

 = +C GN(Q,Q) N (Q,Q)Q N (Q)$ $ $ . (2) 

where n nR ×∈CN (Q,Q)$  is the vector of coriolis and centrifugal forces; nR∈GN (Q) is the 

vector of gravitational force. 
Then, Equation (1) becomes: 

 + = + +A
C GM(Q)Q + N (Q,Q)Q N (Q) Q U F$$ $ $ . (3) 

where = − T
QF Φ λ  is the constraint force. 
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2.2 Dynamic properties of the mechanism 

Equation (3) is similar to the motion equation of an n-link rigid constrained robot [11, 15] in 
the state space. Two simplifying properties should be noted about this dynamic structure: 
Property 1. The individual terms on the left-hand side of Equation (3) and the whole 
dynamics are linear in terms of a suitably selected set of equivalent manipulator and load 
parameters, i.e., 

 + = αC GM(Q)Q + N (Q,Q)Q N (Q) Y(Q,Q,Q)$$ $ $ $ $$ . (4) 

where Y(Q,Q,Q)$ $$  is a n r×  matrix; rRα ∈ is the vector of equivalent parameters. 

Property 2. From the given proper definition of the matrix CN (Q,Q)$ , − CM(Q) 2N (Q,Q)$$  is 

skew-symmetric. The detailed proof can be seen in Appendix A. 
Due to the presence of m constraints, the degree of freedom of the mechanism is (n-m). In 

this case, (n-m) linearly independent coordinates are sufficient to characterize the 

constrained motion. From the implicit function theorem, the constraint Equation (1) can 

always be expressed as [18]: 

 =p σ(q) . (5) 

Equation (5) is assumed that the elements of q are chosen to be the last (n-m) components of 
Q. If not the above case, Equation (1) still could always be reordered so that the last (n-m) 

equations would correspond to q and the first m equations to p. That is, .⎡ ⎤= ⎣ ⎦
TT TQ p q   

Then, to simplify the equation form of the dynamic model, defining 

 ( )

T T

n n mR × −
−

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
= = = ∈⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

n m

Q p q σ(q)
L(q) I

q q q q
. (6) 

and using Equation (5), we have: 

 =Q L(q)q$ $ , (7) 

 = +Q L(q)q L(q)q$$ $$$ $ . (8) 

Therefore, the dynamic model of Equation (3) restricted to the constraint surface can be 

expressed in a reduced form as: 

 + + = + +A
1 GM(q)L(q)q N (q,q)q N (q) Q U F$$ $ $ . (9) 

where 

 = +1 CN (q,q) M(q)L(q) N (q,q)L(q)$$ $ . (10) 

By exploiting the structure of Equation (9), three properties can be obtained as follows: 

Property 3. In terms of a suitably selected set of parameters, the motion equation (9) is still 

linear, i.e. 

 1)+ + = α1 GM(q)L(q)q N (q,q)q N (q Y (q,q,q)$$ $ $ $ $$ . (11) 
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Property 4. Define the matrix as 

 ( ) ( )n m n mR − × −= ∈TA(q) L (q)M(q)L(q) . (12) 

Then, = T
1A 2L (q)N (q,q)$ $  is skew-symmetric, where 

( )
1( , ) ( ) ( ) ( , ) ( ) n n m

CN q q M q L q N q q L q R × −= + ∈$$ $ , ( )( ) n n mL q R × −∈ . 

Property 5. = =T T T
Q Q[Φ L(q)] L (q)Φ 0 . 

The above three properties are basic principle in designing the force/motion SMC law. 

3. Design of the SMC Law 

3.1 The sliding mode controller design  

A number of previous papers have only shown the position and speed controller designed 
for the regulation and tracking problems control of the constrained mechanisms. However, 
control of the constrained force has not been investigated in the previous studies. In this 
section, a separate sliding surface is proposed using the measurements of the angular 
position and speed of the crank, but the SMC algorithm is derived as well in a simple 
manner using only the force tracking error to construct the controller. 

Given a desired trajectory dq  and a desired constrained force dF , or identically a desired 

multiplier dλ , which satisfy the imposed constraint, i.e., 0=dΦ(q ) and = − T
d Q d dF Φ (q )λ . The 

control objective is to determine the SMC law such that → dq q  and → dλ λ  as t → ∞ .  

From the SMC methodology, we define the tracking error n mR −∈me and a sliding surface 
n mR −∈1s  as: 

 )= −m de q(t) q (t . (13) 

 m= − = +1 r ms q q e Λe$ $ $ . (14) 

where n mR −∈rq  is the reference trajectory and ( ) ( )n m n mR − × −∈Λ  is a tunable matrix. 
The sliding controller [12] is defined as: 

 ϕ= − + −T A
1 1 Q cU Y (q,q,q) L(q)s Φ (q)λ Q$ $$ . (15) 

where 1Y  is a n r×  matrix of known functions of q,q$ and q$$ , L(q)  is defined in Equation (6), 

[ ]T rRϕ ϕ ϕ= ∈1 r...  is the vector of switching functions, and mR∈cλ  is a force control that is 

defined as: 

 = −c d λλ λ Ke . (16) 

where K is a m m× constant matrix of force control feedback gains, and λe is the error 
vector of the multipliers and defined as 

 mR= − ∈λ de λ λ . (17) 

3.2 Stability analysis 

Substituting Equation (15) into the dynamic model of Equation (9), whose order was 
reduced using property 3, we have: 
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 ϕ − + − = αT T
1 1 Q c Q 1Y (q,q,q) L(q)s Φ (q)λ Φ (q)λ Y (q,q,q)$ $$ $ $$ . (18) 

Defining α  as a constant r-dimensional vector and replacing q  by the reference 
trajectory rq , then the linear parameterization of the dynamics (Property 3) leads to: 

 + + = αr r r 1 r r r G r 1 r r rM(q )L(q )q N (q ,q )q N (q ) Y (q ,q ,q )$$ $ $ $ $$ . (19) 

Using the derivative of the sliding surface equation (14) and substituting into Equation (11), 

we obtain: 

 1+ + + + = α1 r 1 1 r GML(s q ) N (s q ) N Y$ $$ $ . (20) 

Then combining Equation (18) with Equation (20) and using Equation (19), we obtain: 

 ϕ= − − − + −T T
1 1 1 1 1 1 Q C QMLs Y Y α N s Ls Φ λ Φ λ$ . (21) 

According to property 5, the above equation becomes: 

 
1.ϕ

=

= − α − −

T
1 1

T T T T
1 1 1 1

As L MLs

L Y L Y L N s L Ls

$ $
 (22) 

To derive the control algorithm, the generalized Lyapunov function is considered as: 

 
1

2
= T

1 1V s As . (23) 

Differentiating V with respect to time and using property 4, Equation (23) becomes: 

 

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

1

2

( )

.

T T T T T

T T T T T T T

T

s As s As s As s L N s

s L Y L Y L N s L Ls s L N s

s L Y L Y L Ls

ϕ

ϕ

= + = +

= − α − − +

= − α −T T T
1 1

V

( )

$$ $ $

 (24) 

The ϕ  is chosen as: 

 ϕ
−

=

⎛ ⎞
⎜ ⎟= −α
⎜ ⎟
⎝ ⎠

∑
n m

T
1 1j 1 ji

j 1

sgn s (L Y ) ) ; 1,2,...,i r=  (25) 

such that 

 0≤ <T T
1 1V s L Ls$ . (26) 

In the derivation of Eq. (24), it is noted that  ( ) 2 ( , )CM Q N Q Q− $$  is skew-symmetric, and 

( 2 )T
CL M N L−$  is also skew-symmetric, which is the same as those in [11, 14]. Besides, the 

special cases of the three typical mechanisms in this chapter, ( 2 )T
CL M N L−$  is always equal 

to zero for 1n m− = .   
To reduce the chattering phenomenon along the sliding surface 0s = , we adopt the quasi-
linear mode controller [13], which replaces the discontinuous term of sign function of 
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Equation (25) with a continuous function inside a boundary layer around the sliding surface 
[24]. Therefore, the sgn(S) is replaced by the saturated function:  

1

1

if s ε,
s ssat( ) if ε s ε,ε ε

if s ε,

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

>
= − < <

>−

 

where  ε is the width of the boundary layer. This limits the tracking error and guarantees an 
accuracy of ε  order while alleviating the chattering phenomenon. 
From Equation (23) and Equation (26), it is evident that a sliding surface 1s  is at last 
converged exponentially to zero, i.e., →me 0  as t → ∞ . As if → dq q , the condition 

=d dp σ(q )  also implies that → dp p . 
Therefore, 

as t→ → ∞dq q . 

4. Simulation examples of the three typical mechanisms  

4.1 The slider-crank mechanism 

For more details on the kinematic and dynamic analysis of the slider-crank mechanism, refer 

to [19]. Using Hamilton’s principle and Lagrange multipliers [20] and adopting the 

generalized coordinate vector [ ]Tφ θ=Q in Equation (1) for the slider-crank mechanism 

shown in Figure 1, the dynamic equation can be obtained associated with the following 

matrices and elements: 

 

[ ]

1 2 3

1 2 3

1

2

2 2 2
2 2

2 2 2
1 2

2
1

    

( ) sin
cos cos     

( ) sin

1 1
sin    sin sin

3 2

1
( ) sin

2

sin cos  

B E

B E

B B

B

B

A E K K K

E B P P P

F F l u
l r

F F r u

A m l m l E m m rl

B m r m m r

K m l

φ
φ θ

θ

φ θ φ

θ

φ φ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
+⎡ ⎤ ⎡ ⎤

= − = =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
⎛ ⎞= − − = − +⎜ ⎟
⎝ ⎠

= − − +

= −

C G

A
Q

M N N

Φ Q U

$
2 2 3 2

2
1 2 2 2 3

1 1
 cos sin    cos

2 2

1
sin cos    ( ) sin cos    0

2

B

B B

K m m rl K m gl

P m m rl P m m r P

θ θ φ φ

φ θ φ θ θ θ

⎛ ⎞= − + = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − + = − + =⎜ ⎟
⎝ ⎠

$

$ $

 (27) 

where the dimensions of the slider-crank mechanism are 2, 1n m= = , and 1r =  in the 
dynamic analysis. For the single degree-of-freedom slider-crank mechanism, only one 
constraint equation exists, which can be shown as:  

 sin sin 0r θ l φ= − =Φ(Q) . (28) 
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The position of the slider B can be expressed as:  

 cos cosBx r lθ φ= + . (29) 

Substituting Equation (28) into Equation (29) yields: 

 
1

2 2 2 2cos sinBx r l rθ θ⎡ ⎤= + −⎣ ⎦
 (30) 

The angular displacement of the crank can be obtained as:  

 
2 2 2

1cos
2

B

B

x r l

rx
θ − ⎡ ⎤+ −

= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (31) 

The result can also be obtained if the cosine law is applied. 
The Jacobian matrix of the constraint equation (28) is 

 [ ]cos cosl r
θ

φ θ
φ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= = = −⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

Q

Φ(Q) Φ(Q) Φ(Q)Φ
Q

. (32) 

Differentiating Equation (28) with respect to time yields the constraint velocity equation: 

 cos cos 0r lθ θ φ φ= − =Φ(Q)$ $ $ . (33) 

Therefore, the matrix defined in Equation (6) becomes 

 cos
1 1

cos

T TT
r

l

φ θ φ θ
θ θ θ φ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎡ ⎤= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

Q
L(q)

q

$
$

 (34) 

and its first time derivative becomes 

 
2 2

sin cos cos sin
0

cos

T
rl rl

l

φ φ θ θ φ θ
φ

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
L(q)

$ $$  (35) 

The dynamic equation (9) of the slider-crank mechanism, when restricted to the constraint 
equation (28), can be expressed as: 

 

1 22 2

1 22 2

2

sin cos cos sin coscos

coscos cos

cos sin cos cos sin cos

cos coscos

1
( ) sincos

2
( )

0

B E

B E

rl rl rr
A K KA E

ll l

r rl rl rE B E P P
l ll

F F lm gl

F F r

φ φ θ θ φ θ θθ
φφ φ

θ θ
θ φ φ θ θ φ θ θ
φ φφ

φφ

⎡ ⎤−⎡ ⎤ + ++ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥ −+ + +⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤ +−⎢ ⎥+ =
⎢ ⎥ +
⎢ ⎥⎣ ⎦

$ $

$$ $
$ $

1

2

cos
.

sin cos

u l

u r

φ
λ

θ θ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (36) 

The symbols 1 2 1 2, , , , , ,A E B K K P P  and 2P  are shown in Equation (27). It is noted that BF  is 

the friction force, EF  is the external force, and 1 cosf l φλ=  and 2 cosf r θλ= −  are the 

constraint forces. From the results presented above, property 1~property 5 mentioned in 

Section 2.2 are all verified and fully satisfied in this example. 
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The control objective is to design a feedback controller so that the angle θ  tracks the desired 

trajectory dθ  and maintains the constraint force [ ]1 2
T

f f  to the desired one dF . In here, 

dθ and dF  are assumed to be consistent with the imposed constraint. The block diagram of 

the SMC algorithm is shown in Figure 4. 

Since λ → dλ  means [ ]1 2
T

f f → dF , dθ  and dλ  are chosen as 5.76( )rad=dθ  and 15=dλ  in 

the simulations. The initial values of the constraint forces are assumed to be 

[ ]= =T
d 1 2F (0) f (0) f (0) 0 , i.e., =λ(0) 0 . 

Using Equation (19), the applied control effort [ ]1 2
T

u u=U  can be derived as: 

 ϕ= − + −T A
1 1 Q CU Y Ls Φ λ Q . (37) 

where 

⎡ ⎤= + +⎣ ⎦1 d 1 d G

1
Y MLθ N θ N

α
$$ $ , ϕ

⎧ <⎪= ⎨
− >⎪⎩

T
1 1 1

T
1 1 1

α , s (L Y ) 0

α , s (L Y ) 0
, = + = − + −1 m m d ds e Λe (θ θ ) Λ(θ θ )$ $$ . 

For numerical simulations, the parameters of the slider-crank mechanism are chosen as: 

1 23.64 , 1 18 , 1 8 , 0 1 , 0 305 , 0.055 .Bm kg m . kg m . kg r . m l . m lp m= = = = = =  and 1 1α = , 1 1α =  and 
5Λ = . 

Since the trajectory tracking on the constraint surface with a specified constraint force is of 
interest, the initial position and speed of the slider-crank mechanism are chosen on the 
desired trajectory as: 

0

(0) 4.712( ); (0) 0.334( ); (0) 0; (0) 0;

( ) 0.343 , ( ) 0.443 .B B f

rad rad

x t m x t m

θ φ θ φ= = − = =
= =

$ $
. 

All the parameters in the SMC controller are chosen to achieve the best transient 
performance in numerical simulations under the limitation of the control effort and the 
requirements of stability. Furthermore, for the reason of using a single input actuation on 
joint 1, the control effort is only needed in the second equation of the constrained motion of 
Equation (36). As to the first part of Equation (36), it shows that the force equilibrium either 
with holonomic or nonholonomic constraints and the torque is exerted at joint 2. The 
responses of the crank angle, which is shown in Figure 5(a), reach the desired value in about 
0.8 sec. The slider position manipulated from Equation (29) is shown in Figure 5(b). The 
tracking results of the crank angle θ  and the slider position Bx  coincide with previous 
studies by Fung et al. [16, 17]. The control effort of the applied torque τ  is shown in Figure 
5(c) and the sliding surface 1s  is shown in Figure 5(d). The Lagrange multiplier Cλ  is 
shown in Figure 6(a), and constraint forces of joints 1 and 2 are shown in Figure 6(b) and 
Figure 6(c), respectively. From Figures 5 and 6, the control objectives of force/motion of the 
slider-crank mechanism are achieved successfully. 

4.2 The quick-return mechanism 

To present the robustness and a well-established control method of the SMC controller, the 

quick-return and toggle mechanisms (see Section 4.3) will be chosen to verify the SMC 

algorithm, which is then adequately developed to the general case of multi-body 

mechanisms. The quick-return mechanism is addressed first, where the kinematic and 
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dynamic analysis of the mechanism is found in [21] and the generalized coordinate vector 

[ ]Tφ β θ=Q in Equation (1) for the quick-return mechanism shown in Figure 2 is 

adopted. The dynamic equation can be obtained and is associated with the following 

matrices and elements:  

1 1 0

1 1 0

0 0

A G

H B

CC

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  

1 1 0

1 1 0

0 0 0
C

P T

Y R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

N  0=GN  

( )cos cos sin sin 0 sin sin cos cos

sin cos 0

D R R R R

L S

φ θ θ φ φ θ θ φ
φ β

⎡ + + − − ⎤
= ⎢ ⎥−⎣ ⎦

QΦ  

1

2

3

cos

sin   

0

PL u

PS u

u

φ
β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

AQ U     

( )2 2 2
1 2

1
1 cos

3
CA m L m m L φ= − − + , 

2

1
1 sin cos

2
CG m m SL β φ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

2

1
1 sin cos

2
CH m m SL β φ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 2 2

2

1
1 sin

3
CB m m Sβ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

( )2 2
3 2

1
,   1 cos sin

3
CCC m R P m m L φ φ φ= − = + $ , , 

2

1
1 cos cos

2
CT m m SLβ β φ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
$ , 2

1
1 sin sin

2
CY m m SLφ β φ⎛ ⎞= +⎜ ⎟

⎝ ⎠
$ , 

 21 sin cos .CR m S β β β= − $  (38) 

where 3, 2n m= =  and 1r =  are employed in the dynamic analysis. 
For the single degree-of-freedom quick-return mechanism, there exist two constraint 
equations as follows:  

 ( )
sin ( cos ) sin cos

0
sin (1 cos )

D R R

S L

φ θ θ φ
β φ

+ −⎡ ⎤
= =⎢ ⎥− −⎣ ⎦

Φ Q . (39) 

where ϕ  can be obtained by analyzing its geometric relations 

 1 sin
tan

cos

R

D R

θφ
θ

−=
+

. (40) 

The position of slider C can be expressed as: 

 cos sinx S Lβ φ= −C . (41) 

The Jacobian matrix of the constraint equations is: 
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 ( )cos cos sin sin 0 sin sin cos cos

sin cos 0

D R R R R

L S

φ θ θ φ φ θ θ φ
φ β

⎡ + + − − ⎤
= ⎢ ⎥−⎣ ⎦

QΦ . (42) 

Therefore, the matrix defined in Equation (6) is: 

 
2 2

2 2 2 2

1 1

( cos ) sin ( cos )
1

2 cos cos ( 2 cos )

T

T
DR R L DR R

D R DR S D R DR

φ β θ φ β φ β φ
θ θ θ θ θ θ φ θ

θ φ θ
θ β θ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤= = = = ×⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ +
= ⎢ ⎥

+ + + +⎢ ⎥⎣ ⎦

Q
L(q)

q

$ $ $ $ $
$ $ $ $ $

 (43) 

Then, differentiating Equation (43) with respect to time yields: 

 

2 2

2 2 2

2 2

2 2 2 2 2
11

2 2 2
21

2 2 2 2 2

sin ( )

( 2 cos )

sin sin cos ( )

cos ( 2 cos )

( 2 cos )( cos )( sin sin cos cos )

cos ( 2 cos )

0

DR R D

D R DR

LSDR R D

S D R DR L

LLS D R DR DR R

S D R DR

θ θ
θ

θ φ θ β
β θ

θ θ β φ β φ φ β
β θ

⎡ ⎤−
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥−⎢ ⎥+
⎢ ⎥+ +
⎢ ⎥

= =+ + + +⎢ ⎥
⎢ ⎥+ +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L(q)

$

$
$

$ $$ $
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (44) 

The dynamic equation of a quick-return mechanism, when restricted to the constraint 
equation, can be expressed as: 

 

2 2

2 2 2 2

2 2

2 2 2 2

( cos ) sin ( cos )
1 1

2 cos cos ( 2 cos )

( cos ) sin ( cos )
1 1

2 cos cos ( 2 cos )

DR R L DR R
A G

D R DR S D R DR

DR R L DR R
H B

D R DR S D R DR

CC

θ φ θ
θ β θ

θ φ θ
θ β θ

⎡ ⎤⎧ ⎫ ⎧ ⎫+ +⎪ ⎪ ⎪ ⎪× + ×⎢ ⎥⎨ ⎬ ⎨ ⎬
+ + + +⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭

⎢ ⎥⎧ ⎫ ⎧ ⎫+ +⎪ ⎪ ⎪ ⎪⎢ ⎥× + ×⎨ ⎬ ⎨ ⎬⎢ ⎥+ + + +⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

$$
1

2 2

11 21 2 2 2 2

2 2

11 21 12 2 2 2

1 ( cos ) 1 sin ( cos )
1 1

2 cos cos ( 2 cos )

1 ( cos ) 1 sin ( cos )
1 1

2 cos cos ( 2 cos )

0

co

P DR R T L DR R
A L G L

D R DR S D R DR

Y DR R R L DR R
H L B L

D R DR S D R DR

PL

θ

θ φ θ
θ β θ

θ φ θ θ
θ β θ

+

⎡ ⎤× + × +
× + × + +⎢ ⎥

+ + + +⎢ ⎥
⎢ ⎥× + × +⎢ ⎥+ × + × + + =
⎢ ⎥+ + + +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=

$ $

$ $ $

( )1
1

2
2

3

s cos cos sin sin sin

sin 0 cos .

0 sin sin cos cos 0

u D R R L

PS u S

u R R

φ φ θ θ φ φ
λ

β β
λ

φ θ θ φ

⎡ + + − ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥+ + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (45) 
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The parameters 11 211, 1, 1, 1, , , , 1, 1, 1, 1A G B H CC L L P T Y R$ $  are shown in Equation (38). It is 

noted that P  is the cutting force acting on the slider C, τ  is the external force acting on rod 

3, and the constraint forces are expressed as: 

( ){ }1 1 2cos cos sin sin sinf D R R Lφ θ θ φ λ λ φ= + + − , 

2 2cosf S βλ= ,  

{ }3 1sin sin cos cosf R Rφ θ θ φ λ= − − .  

The control objective is to control the slider C to move periodically. Since λ → dλ  

means [ ]1 2
T

f f → dF , we chose 4.712  rad=dθ  and 15=dλ in the simulations. The initial 

position of x is 2.167 m (i.e. 0 3.1416radθ = ) for the slider C and the controlled stroke of the 

slider C are set to be 0.85 m. Substituting the slider position x into Equations (39)-(41), the 

crank angle θ  can be obtained. 
In the simulations, the responses of the crank angle showing in Figure 7(a) reach the desired 
value in about 0.9 sec. The responses of the position of slider C are shown in Figure 7(b), the 
associated control efforts τ  are shown in Figures 7(c), and the sliding surface 1s  is shown in 
Figure 7(d). The Lagrange multiplier Cλ  is showed in Figure 8(a). The constraint forces of 
joints 1-3 are shown in Figures 8(b)-(d), respectively. From Figures 7 and 8, the control 
objectives of force/motion of the quick-return mechanism are achieved successfully. 

4.3 The toggle mechanism 

For more details of the kinematic and dynamic analysis of the toggle mechanism, refer to 

[23] and adopt the generalized coordinate vector [ ]T
5 2 1θ θ θ=Q  in Equation (1) for the 

toggle mechanism shown in Figure 3. The dynamic equation can be obtained and is 
associated with the following matrices and elements:  

0 0

0   0   0C W

W W W W

A E I J

B H K L

E H C P Q R

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

GM N N    

3 2 1 1

5 5 4 1

0 cos cos

cos 0 cos( )
n

i

r r

r r

θ θ∂
θ θ φ∂

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

Q

 Φ (Q)Φ
 Q

 

( )
( ) ( )

5 5

3 2

1 1 4 1

sin

sin

sin sin

F r

F F r

F F r F r

θ
θ

θ θ φ

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

C
A

B E

B E C

Q   

2 2 2 2
5 5 5 3 2 3

1 2 1 2
2 sin ,   2 sin  

2 3 2 3
C BA m m r B m m rθ θ

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞= − + = − +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

, 

( ) ( ) ( )
2 2

2 2 2 2 22 1 4
3 1 1 5 4 12

2

1
sin 2 sin 2 sin  

2
w B C

m r r
C m m r m m r

r
φ θ θ φ

⎧ ⎫⎪ ⎪= − + + + + +⎨ ⎬
⎪ ⎪⎩ ⎭

, 
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( ) ( ){ } ( ){ }5 4 5 1 5 3 1 3 1 2 2

1 1
2 sin sin ,   2 sin cos

2 2
C W BE m m r r Q m m r rθ φ θ θ θ θ= − + + = − + $ , 

( ){ } { }2
3 1 3 1 2 5 5 5 5

1 1
2 sin sin ,   2 sin cos

2 2
B CH m m r r I m rθ θ θ θ θ= − + = − $ , 

( ) ( ){ } 2
5 4 5 1 5 1 3 2 2 2

1 1
 2 cos sin ,  {2 sin cos }
2 2

C W BJ m m r r K m rθ φ θ θ θ θ θ= − + + = −$ $ , 

( ){ } ( ) ( ){ }3 1 3 1 2 1 5 4 5 1 5 5

1 1
2 cos sin ,  2 sin cos

2 2
B w CL m m r r P m m r rθ θ θ θ φ θ θ= − + = − + +$ $ , 

 ( ) ( ) ( ) ( )2 2
3 1 1 1 5 4 1 1 1

1
{2 sin cos 2 sin cos }  

2
W B CR m m r m m rθ θ θ φ θ φ θ= − + + + + + $  (46) 

Where 3, 2n m= =  and 1r =  are employed in the dynamic analysis. 
For the single degree-of-freedom toggle mechanism, there exist two constraint equations as 
follows:  

 ( ) ( )
1 1 3 2

5 5 4 1

sin sin
0

sin sin

r r f

r r h f

θ θ
θ θ φ

+ −⎡ ⎤
= =⎢ ⎥+ + − −⎣ ⎦

Φ Q . (47) 

where φ  can be obtained by analyzing its geometric relation as: 

 
2 2 2

1 1 4 2

1 4

cos
2

r r r

r r
φ − ⎛ ⎞+ −

= ⎜ ⎟⎜ ⎟
⎝ ⎠

. (48) 

The positions of sliders B and C can be expressed as follows: 

 ( )
1

22 2
1 1 3 1 1cos sinBx r r f rθ θ⎡ ⎤= + − −⎢ ⎥⎣ ⎦ , (49) 

 

1
2 2 2

4 1 5 4 1cos( ) { [( ) sin( )] }Cx r r h f rθ φ θ φ= + + − + − + . (50) 

The Jacobian matrix of the constraint equation is: 

 
3 2 1 1

5 5 4 1

0 cos cos

cos 0 cos( )
n

i

r r

r r

θ θ∂
θ θ φ∂

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

Q

 Φ (Q)Φ
 Q

. (51) 

Therefore, the matrix defined in Equation (6) is: 

 
( )4 15 2 1 1 1

1 1 1 5 5 3 2

cos cos
1

cos cos

TT
r r

r r

θ φθ θ θ θ
θ θ θ θ θ

⎡ ⎤+⎡ ⎤∂∂ ∂ ∂
= = = − −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

Q
L(q)

q
. (52) 

Then, differentiating Equation (52) with respect to time yields: 
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4 5 1 1 5 4 5 5 5 1
2 2
5 5

11
1 3 1 1 2 1 3 2 2 1

212 2
3 2

sin( )cos sin cos( )

cos

sin cos sin cos

cos
0

0

r r r r

r
L

r r r r
L

r

θ θ φ θ θ θ θ φ
θ

θ θ θ θ θ θ
θ

⎡ ⎤+ − +
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥− ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

L(q)

$ $

$
$ $$ $ .

 

(53) 

The dynamic equation of the toggle mechanism, when restricted to the constraint equation 
(51), can be expressed as: 

 

( )

( )

( )

4 1

5 5

1 1
1

3 2

4 1 1 1

5 5 3 2

4 1
11

5 5

21

cos

cos

cos

cos

cos cos

cos cos

cos

cos

W

W

r
A E

r

r
B H

r

r r
E A C

r r

r
A L I J

r

B L K T L

E L

θ φ
θ

θ θ
θ

θ φ θ
θ θ

θ φ
θ

⎡ ⎤⎧ ⎫+⎪ ⎪× − +⎢ ⎥⎨ ⎬
⎪ ⎪⎩ ⎭⎢ ⎥

⎢ ⎥⎧ ⎫⎪ ⎪⎢ ⎥× − + +⎨ ⎬⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥
⎧ ⎫ ⎧ ⎫+⎢ ⎥⎪ ⎪ ⎪ ⎪× − + × − +⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

⎧ ⎫+⎪ ⎪× + × − +⎨ ⎬
⎪ ⎪⎩ ⎭

× + × +

×

$$

$

$

$ ( )

( )
( ) ( )

1

4 1 1 1
11 21

5 5 3 2

5 5 1 5 5

3 2 2 3 2

1 1 4 1 3 1 1 4 1

cos cos

cos cos

sin 0 cos

sin cos 0

sin sin cos cos(

W W W

r r
H L P Q R

r r

F r u r

F F r u r

F F r F r u r r

θ

θ φ θ
θ θ

θ θ
θ θ

θ θ φ θ θ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫ ⎧ ⎫+⎪ ⎪ ⎪ ⎪+ × + × − + × − +⎢ ⎥⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦⎣ ⎦

C

B E

B E C

$

$

1

2

.

)

λ
λ

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (54) 

The parameters 11 21, , , , , , , , , , , , ,W W W WA E B H C L L I J K T L P Q$ $  and WR  are shown in Equation 
(46). It is noted that BF  is the friction force, EF  is the external force acting on the slider B, CF  
is the applied force acting on the slider C, and 1 5 2 5cosf r λ θ= , 2 3 2 2cosf r λ θ=  and 

3 1 1 1 4 2 1cos cos( )f r rλ θ λ θ φ= + +  are the constraint forces.  
The control objective is to regulate the position of slider B moving from the left to the right 
ends. The initial position of BX  is 0.104 m (i.e. 2 0( ) 4.712t radθ = ), and its expected position 
is 0.114 m. The desired values are ( ) 5.76d ft rad=θ  and 15dλ =  in the simulations. 
Furthermore, in order to show that the SMC is insensitive to parametric variation, the effects 
of friction forces in joints are considered in this toggle mechanism system by using the 
Lagrange multiplier method. 
The comparisons between the nominal case without considering friction forces and the case 
with friction forces are shown in Figures 9-11. Figures 9(a)-(c) show the trajectories of 
angles 1θ , 2θ  and 5θ , respectively. Figures 10(a)-(b) show the positions of sliders B and C, 
respectively. Figures 10(c)-(d) illustrate the control effort τ  and the sliding surface 1s , 
respectively. Finally, Figure 11(a) shows the Lagrange multiplier Cλ  and Figures 11(b)-(d) 
address the constraint forces 1f , 2f  and 3f  acting on the joints 1, 2, and 3, respectively. 
From the numerical results, it is found that the control efforts τ  are almost identical for both 
cases whether the friction forces are considered or not. From the above figures, the 
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force/motion control objective of a toggle mechanism using the SMC is achieved 
successfully and the system responses are insensitive to the effects of friction forces. 

5. Conclusion 

Based on the Lyapunov theorem, we successfully derived a generalized SMC algorithm in a 
simple manner. The algorithm used tracking the Lagrange multiplier error to facilitate 
controller design and proposed a separate sliding surface in terms of the displacement and 
velocity. Furthermore, some properties of the dynamic structure were presented and used to 
reduce the dynamic model equations. Finally, the slider-crank, quick-return, and toggle 
mechanisms were employed to illustrate and verify the methodology developed. From the 
numerical results, we conclude that the effectiveness in application of the developed SMC 
method is successfully verified in regards to the force/motion controls for these three 
typical mechanisms. First, fast attainment of the control objective: in the simulations, the 
three typical mechanisms reached the desired value in less than 1 second. Second, no 
overshoot in the control process: from the numerical results, the force/motion control 
objectives of the three mechanisms using the SMC were achieved successfully and the 
system responses did not overshoot in the whole control process. Third, insensitivity to 
parametric variation: the control efforts τ  are almost identical and the system responses are 
insensitive to the effects of the friction forces. 
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Appendix A 

Define the matrix ( , ) ( ) 2 ( , )CN Q Q M Q N Q Q= −$ $$ , then ( , )N Q Q$  is skew symmetric, i.e., the 
components jkn  of N  satisfy jk kjn n= − . 
Proof: Given the inertia matrix ( )M Q , the thkj  component of ( )M Q$  is given by the chain 
rule as 

 
1

,
n

kj
kj i

ii

m
m Q

Q=

∂
=

∂∑ $$  (A.1) 

and the thkj  component of ( , ) ( ) 2 ( , )CN Q Q M Q N Q Q= −$ $$  is given by 

 

1 1

2kj kj kj

n n
kj kj ij ijki ki

i i
i i i k k ji i

n m c

m m m mm m
Q Q

Q Q Q Q Q Q= =

= −

⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂⎧ ⎫∂ ∂⎪ ⎪= − + − = −⎢ ⎥⎢ ⎥⎨ ⎬
∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎢ ⎥⎢ ⎥⎩ ⎭⎣ ⎦ ⎣ ⎦

∑ ∑

$ $

$ $
 (A.2) 

Since the inertia matrix ( )M Q  is symmetric, i.e., ij jim m= , it follows from Equation (A.2), the 
thjk  component of ( , ))N Q Q$  is  

 
1

.
n

ij ki
jk kj

j ki

m m
n Q n

Q Q=

⎡ ⎤∂ ∂
= − = −⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑ $  (A.3) 
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Fig. 1. The physical model of the slider-crank mechanism 
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Fig. 2. The physical model of the quick-return mechanism 
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Fig. 3. The physical model of the toggle mechanism. 
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Fig. 4. The block diagram of mechanisms using the SMC controller 
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Fig. 5. The simulation results of the slider-crank mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the crank angle θ . (b) Response trajectories of the 
slider B in position BX . (c) Response trajectories of the control effort τ . (d) Response 
trajectories of the sliding surface 1s . 
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Fig. 6. The simulation results of the slider-crank mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the Lagrange multiplier Cλ . (b) Response trajectories 
of the constraint force 1f . (c) Response trajectories of the constraint force 2f . 
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Fig. 7. The simulation results of the quick-return mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the crank angle displacement θ . (b) Response 
trajectories of the slider C in position CX . (c) Response trajectories of the control effort τ . 
(d) Response trajectories of the sliding surface 1s . 
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Fig. 8. The simulation results of the quick-return mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the Lagrange multiplier Cλ . (b) Response trajectories 
of the constraint force 1f . (c) Response trajectories of the constraint force 2f . (d) Response 
trajectories of the constraint force 3f . 
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Fig. 9. The simulation results of the toggle mechanism. (‘─’desired curve; ‘---’actual 
trajectory (without friction), ‘---’actual trajectory (with friction and 0.3rf = )) (a) Response 
trajectories of the angle displacement 1θ . (b) Response trajectories of the angle displacement 

2θ . (c) Response trajectories of the angle displacement 5θ . 
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Fig. 10. The simulation results of the toggle mechanism. (‘─’desired curve; ‘---’actual 
trajectory (without friction ), ‘---’actual trajectory (with friction and 0.3rf = )) (a) Response 
trajectories of the slider C in position CX . (b) Response trajectories of the slider B in position 

BX . (c) Response trajectories of the control effort τ . (d) Response trajectories of the sliding 
surface 1s . 
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Fig. 11. The simulation results of the toggle mechanism. (‘─’desired curve; ‘---’actual 
trajectory (without friction), ‘---’actual trajectory (with friction and 0.3rf = )) (a) Response 
trajectories of the Lagrange multiplier Cλ . (b) Response trajectories of the constraint force 

1f . (c) Response trajectories of the constraint force 2f . (d) Response trajectories of the 
constraint force 3f  
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