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1. Introduction

At present, vision sensors represent a very good option for the control of robots since
they provide at a low cost a lot of information from the environment. The feasibility of
using a vision system as the only source of feedback information has been shown by many
approaches (Chaumette & Hutchinson (2006), Chaumette & Hutchinson (2007)). Particularly,
incorporating machine vision for the control of mobile robots can improve their navigation
capabilities (DeSouza & Kak (2002)). The approach of closing the control loop through a
vision system is called visual servoing (VS). The schemes in this control approach can be
classified according to the nature of the feedback information. Image data can be used
directly in the control loop (image-based schemes IBVS), for instance (Abdelkader et al. (2005),
Benhimane & Malis (2006)), or can be used to compute an estimate of pose parameters
(position-based schemes: PBVS) as in (Das et al. (2001), Fontanelli et al. (2009)). Hybrid
schemes combining these both approaches have been performed as well (Malis et al. (1999),
Fang et al. (2005)).
Most of the current efforts of the research on visual servoing focus on applications of
monocular vision. This chapter presents an IBVS approach to drive a wheeled mobile robot
equipped with a monocular camera onboard to a desired pose (position and orientation). The
desired pose is specified by a target image previously acquired, i.e., the teach-by-showing
strategy. In this context, a good way to relate the current and the target view is through
a geometric constraint: epipolar geometry or the homography model. A geometric
constraint is imposed on images in which there exist correspondences between features
(Hartley & Zisserman (2000)). The information provided by a geometric constraint can
be used directly as measurement for output feedback control. Comparing this two-view
geometric constraints, the epipolar geometry is a more general approach because it is not
constrained to planar objects or planar scenes. Currently, there also exist approaches that use
three views (Becerra et al. (2010)).
This chapter focuses on exploiting the epipolar geometry (EG) in an IBVS approach. This
constraint has been applied in some works (Basri et al. (1998), Rives (2000), Mariottini et al.
(2007), López-Nicolás et al. (2008)). These works deal with the teach-by-showing problem, in
which the target pose must be reached using only image data provided from the current and
target images. In (Basri et al. (1998)) and (Rives (2000)) are reported visual servoing schemes
based on epipolar geometry for manipulators. In the field of mobile robots, an epipolar-based
VS approach that takes into account the nonholonomic nature of the robots is introduced in
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2 Sliding Mode Control

(Mariottini et al. (2007)). The resultant motion in this approach steers the robot away from
the target while the lateral error is corrected, and after that, the robot moves backward to the
target position with a different control. This maneuvers are carried out in order to avoid a
singularity problem that is induced by the epipolar geometry. The problem arises when the
interaction matrix relating the robot velocities and the rate of change of the epipoles becomes
singular. The motion strategy has been improved by driving the robot directly toward the
target in the approach presented in (López-Nicolás et al. (2008)), however, in this work, one of
the control inputs is not computed when the singularity occurs.
Although some of the previous works claim to achieve good robustness against camera
parameters uncertainty, there is not a theoretical support of it. This chapter presents a sliding
mode (SM) control law that drives the robot moving always toward the target and deals with
the singularity problem. Thanks to the SM control, the robot is able to pass through the
singularity caused by the epipolar geometry using bounded control inputs. Moreover, the
visual control can be performed even when the initial robot pose is just on the singular point.
Additionally, the SM control provides the required robustness to the closed loop control in
this type of application. It is particularly important in the case of conventional perspective
cameras because the presence of camera calibration uncertainty. This has been tackled through
SM control in (Kim et al. (2006)) and (Becerra & Sagues (2008)). In this chapter, the last
work is extended to calibrated omnidirectional images given by a generic camera. This
type of camera is considered as an imaging system that approximately obeys the central
projection model (Geyer & Daniilidis (2000)). The use of a generic camera provides the
important advantage of keeping the target in the field of view. Wide field of view cameras
have been applied for the control of mobile robots, for instance in (Abdelkader et al. (2005))
and (Mariottini & Prattichizzo (2008)). Although the scheme described herein is a calibrated
approach, the benefits of SM control are present in the treatment of the singularity and
the robustness against image noise and the uncertainty in a control parameter (the distance
between the current and target locations).
The chapter is organized as follows. Section 2 introduces the mobile robot model, summarizes
the model of generic cameras and describes the way to estimate the epipolar geometry of this
type of cameras. Section 3 details the design procedure for the sliding mode control law.
Section 4 presents an stability analysis. Section 5 shows the performance of the closed-loop
control system via realistic simulations and finally, Section 6 provides the conclusions.

2. Mathematical modeling

2.1 Robot kinematics

Many wheeled mobile platforms can be represented as differential-drive robots, whose
kinematic model is expressed as the affine system ż = f (t, z) + B(t, z)u. The differential
kinematics of the robot to be controlled, in accordance with the frame defined in Fig. 1(a), is
as follows

⎡

⎣

ẋ
ẏ
φ̇

⎤

⎦ =

⎡

⎣

− sin φ 0
cos φ 0

0 1

⎤

⎦

[

v
ω

]

, (1)

where, z = (x, y, φ)T represents the state of the robot, x(t) and y(t) are the robot position
in the plane and φ(t) is the orientation. Additionally, v(t) and ω(t) are the translational
and rotational input velocities. The affine model (1) has the particularity that f (t, z) = 0.
Hence, this is a driftless system (i.e. no motion takes place under zero input, or in control
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Fig. 1. Upper view of a mobile robot with a camera onboard and important variables of the
system, where {W} referes to the world frame and {R} to the robot frame.

theory concepts, any state is an equilibrium point under zero input). Furthermore, the
corresponding linear approximation in any point z(t) ∈ ℜ3 does not have the property of
controlability. However, it fulfills the Lie Algebra rank condition (Isidori (1995)), in such a
way that controlability can be demonstrated from a nonlinear point of view.

2.2 Generic camera model

The constrained field of view of conventional cameras can be enhanced using wide field
of view imaging systems such as full view omnidirectional cameras, which capture images
as the one in Fig. 2(a). This can be achieved using some optic arrangements that
combine mirrors and lens, i.e., catadioptric imaging systems (Fig. 2(b)). These systems use
hyperboloidal, paraboloidal or ellipsoidal mirrors and have been well studied in the field
of computer vision (Baker & Nayar (1999)). According to this theory, all of them satisfy
the fixed view point constraint. In practice, with a careful construction of the system, it is
realistic to assume a central configuration and many robotic applications have proven its
effectiveness (Abdelkader et al. (2005), Benhimane & Malis (2006), Mariottini & Prattichizzo
(2008), Guerrero et al. (2008)).

(a) Omnidirectional image (b) Catadioptric imaging system

Fig. 2. Example of an omnidirectional image and the system to capture this type of images.

It is known that the imaging process performed by conventional and catadioptric cameras
can be modeled by a unique representation (Geyer & Daniilidis (2000)). Such unified
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4 Sliding Mode Control

projection model works properly for imaging systems having a single center of projection
(central cameras). Although fisheye cameras do not accomplish such property, some recent
experimental results have shown that the unified projection model is able to represent their
image formation process with the required accuracy for robotic applications (Courbon et al.
(2007)).
The unified projection model describes the image formation as a composition of two central
projections (Geyer & Daniilidis (2000)). The first is a central projection of a 3D point onto
a virtual unitary sphere and the second is a perspective projection onto the image plane.
According to (Barreto & Araujo (2005)), this generic model can be parameterized by (ξ,λ)
which are parameters describing the type of imaging system and by the matrix K containing
the intrinsic parameters

Kc =

⎡

⎣

αx s x0

0 αy y0

0 0 1

⎤

⎦ , (2)

where αx and αy represent the focal length of the camera in terms of pixel dimensions in the
x and y directions respectively, s is the skew parameter and (x0, y0) are the coordinates of the
principal point.
The parameter ξ encodes the nonlinearities of the image formation in the range 0 ≤ ξ ≤ 1
for the cases of catadioptric cameras and ξ > 1 for fisheye cameras. The parameter λ can be
seen as a factor for the focal length and it is already included in its estimated value. Thus, the
parameter ξ and the camera parameters can be obtained through a calibration process using
an algorithm for central catadioptric cameras like the one in (Mei & Rives (2007)).

The mapping of a point X in the 3D world with coordinates X =
[

X, Y, Z
]T

in the camera

frame Fc resulting in the image point xic with homogeneous coordinates xh
ic can be divided

into three steps (refer to Fig. 3):

1. The world point is projected onto the unit sphere on a point Xc with coordinates Xc in Fc,
which are computed as Xc = X/ ‖X‖.

2. The point coordinates Xc are then changed to a new reference frame Oc centered in O =
[

0, 0, −ξ
]T

and perspectively projected onto the normalized image plane Z = 1 − ξ:

xh =
[

xT , 1
]T

=
[

x, y, 1
]T

=
[

X
Z+ξ‖X‖

, Y
Z+ξ‖X‖

, 1
]T

.

3. The image coordinates expressed in pixels are obtained after a collineation K of the 2D

projected point xh
ic = Kxh.

The matrix K can be written as K = KcM, where Kc has been given in (2) and M is the
following diagonal matrix

M =

⎡

⎣

λ − ξ 0 0
0 ξ − λ 0
0 0 1

⎤

⎦ . (3)

Notice that, setting ξ = 0, the general projection model becomes the well known perspective
projection model. Images also depend on the extrinsic parameters C =(x, y, φ), i.e. the camera
pose in the plane relative to a global reference frame. Then an image is denoted by I (K, C).
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2.3 Epipolar geometry
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Fig. 3. Generic model of the image formation and epipolar geometry between generic central
cameras.

Regarding to Fig. 3, let X be a 3D point and let Xc and Xt be the coordinates of that point
projected onto the unit spheres of the current Fc and target frame Ft. The epipolar plane
contains the effective viewpoints of the imaging systems Cc and Ct, the 3D point X and the
points Xc and Xt. The coplanarity of these points leads to the well known epipolar constraint

XT
c E Xt = 0, (4)

being E the essential matrix relating the pair of normalized virtual cameras. Normalized
means that the effect of the known calibration matrix has been removed and virtually, the
cameras can be represented as perspective. As typical, from this geometry it is possible to
compute the epipoles as the points lying on the base line and intersecting the corresponding
virtual image plane. Figure 4(a) shows the epipolar geometry for a pair of catadioptric systems
and Fig. 4(b) depicts the projection of the epipoles in the produced omnidirectional images.
The virtual representation of these imaging systems as perspective cameras is shown in Fig.
4(c) considering the planar motion constraint. A global reference frame centered in the origin
Ct = (0, 0, 0) of the target viewpoint is defined, as well as important parameters. Then, the
current camera location with respect to this reference is Cc = (x, z, φ). Assuming the described
framework in Fig. 1, where the camera location coincides with the robot location, the epipoles
can be written as a function of the robot state as follows:

ecx = αx
x cos φ + y sin φ

y cos φ − x sin φ
, (5)

etx = αx
x

y
.

Cartesian coordinates x and y can be expressed as a function of the polar coordinates d and ψ
as

x = −d sin ψ, y = d cos ψ, (6)
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(a) 3D epipolar geometry (EG). (b) EG in omnidirectional images. (c) Planar EG framework.

Fig. 4. Generic cameras can be treated as virtual perspective cameras, in which the epipolar
geometry is estimated as typical when the points on the unitary sphere are used.

with ψ = − arctan (etx/αx), φ − ψ = arctan(ecx/αx) and d2 = x2 + y2. For the case of
normalized cameras αx = 1 in (5) and in the subsequent equations.

3. Sliding mode control law

The goal of this work is to steer a mobile robot to a target pose by using the feedback
information provided by the x-coordinate of the epipoles for any type of central camera. The
visual servoing problem is transformed in a tracking problem for a nonlinear system, where
the references for the epipoles are defined. A robust tracking control law under image noise
and uncertainty of parameters is designed on the basis of SM control theory. We propose to
perform a smooth motion toward the target position by tracking sinusoidal references to drive
the epipoles to zero.
The main concern of the proposal is to deal with the singularity problem that arises because
the decoupling matrix of the system becomes singular in a point of the state trajectory.
This causes the translational velocity to grow unbounded when the system evolves near
to that point. This problem is considered by (Mariottini et al. (2007)), where reaching the
singular value is avoided during the servoing by using a particular motion strategy. In
(López-Nicolás et al. (2008)), one of the control inputs is not computed when the singularity
happens. Our strategy is able to pass through the singularity by switching to a bounded SM
control law, instead of avoiding to reach to it. Furthermore, this approach can be also used
when the initial robot pose is just on the singularity.
Let us define the outputs of the system using the x-coordinates of the epipoles for the current
image Ic(K, C2(t)) and the target one It(K, 0). Then, the two-dimensional output of the
system is

y = h (x) =
[

ecx, etx
]T

. (7)

It can be seen from (5) that if both epipoles are zero implies x = 0, φ = 0 and y (depth
error) may be different to zero. From a control theory point of view this means that, when
the epipoles reach to zero the so-called zero dynamics is achieved in the robot system. Zero
dynamics is described by a subset of the state space that makes the output to be identically
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zero (Sastry (1999)). Thus, in the particular case of the robot system (1) with output vector (7),
this set is given as follows

Z∗ =
{

[

x, y, φ
]T

| ecx ≡ 0, etx ≡ 0
}

(8)

=
{

[

0, y, 0
]T

, y ∈ R

}

.

Zero dynamics in this control system makes necessary a second step in which the remaining
depth error must be corrected. We address the depth correction by using a constant
translational velocity and the stop condition is given by thresholding the image error between
corresponding points of the current and the target views. The image error is defined as the
mean squared error between the p corresponding image points of the current image and
points of the target image, i.e.,

ǫ =
1

p

p

∑
j=1

∥

∥

∥
xt,j − xc,j

∥

∥

∥
. (9)

In order to design the appropriate control law the following tracking error system (r-system)
is obtained by using the change of variables rc = ecx − ed

cx, rt = etx − ed
tx and the polar

coordinates (6).

[

ṙc

ṙt

]

=

⎡

⎣

−
αx sin(φ−ψ)
d cos2(φ−ψ)

αx

cos2(φ−ψ)

−
αx sin(φ−ψ)

d cos2(ψ)
0

⎤

⎦

[

υ
ω

]

−

[

ėd
cx

ėd
tx

]

. (10)

The system (10) has the form ṙ = M(φ, ψ)u − ėd, where M(φ, ψ) corresponds to the
decoupling matrix and ėd represents a known disturbance. It is evident that the decoupling
matrix loses rank if φ − ψ = nπ with n ∈ Z. For all the rest of the state space this matrix is
invertible, with inverse matrix

M−1(φ, ψ) =
1

αx

[

0 −
d cos2(ψ)
sin(φ−ψ)

cos2 (φ − ψ) − cos2 (ψ)

]

. (11)

We faced the tracking problem as an stabilization problem of the error system (10).

3.1 Decoupling-based control law

Firstly, in order to design a SMC law, we have to define suitable sliding surfaces. The simplest
way to do it for the r-system (10) is to use directly the errors as sliding surfaces, in such a way
that if there exist switching feedback gains that make the states to evolve in s = 0, then the
tracking problem is solved. Thus, the sliding surfaces are the following

s =

[

sc

st

]

=

[

rc

rt

]

=

[

ecx − ed
cx

etx − ed
tx

]

. (12)

Next, the equivalent control method is used to find switching feedback gains to drive the state
trajectory to s = 0 and to maintain it there. The equivalent control method consists in working
out the value of inputs from the equation ṡ = 0. The so-called equivalent control is then

ueq = M−1(φ, ψ)ėd. (13)
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8 Sliding Mode Control

A decoupling-based SMC law that ensures global stabilization of the r-system has the form
usm = ueq + udisc, where udisc is a two-dimensional vector containing switching feedback
gains. We propose the simplest form of these gains as follows

udisc = M−1(φ, ψ)

[

−ksm
c sign (sc)

−ksm
t sign(st)

]

, (14)

where ksm
c > 0 and ksm

t > 0 are control gains. Although usm can achieve global stabilization
of the r-system, it needs high gains and, consequently, the state trajectory may not reach the
sliding surfaces in a smooth way. This could cause a non-smooth behavior in the robot state
that is not valid in real situations. We add a pole placement term in the control law to alleviate
this problem

upp = M−1(φ, ψ)

[

−kc 0
0 −kt

] [

sc

st

]

, (15)

where kc > 0 and kt > 0 are control gains. Finally, the complete SMC law that achieves robust
global stabilization of the system (10) is as follows

udb =

[

υdb

ωdb

]

= ueq + udisc + upp. (16)

3.2 Bounded control law

The control law (16) utilizes the decoupling matrix and it presents the singularity problem for
the condition ecx = 0 (φ − ψ = nπ with n ∈ Z), which means that the camera axis of the robot
at its current pose is aligned with the baseline. We can note from (11) that the singularity only
affects the translational velocity computation. In order to pass through this singularity we
propose to commute to a direct sliding mode controller when φ− ψ is near to nπ. This kind of
controller has been studied for output tracking through singularities (Hirschorn (2002)). The
direct sliding mode controller is as follows

ub =

[

υb

ωb

]

=

[

−Msign (st b (φ, ψ))
−Nsign(sc)

]

, (17)

where M and N are suitable gains and b (φ, ψ) is a function that describes the change in sign
of the translational velocity when the state trajectory crosses the singularity. We can find out
this function from (10) as follows

ṙc = b1 (φ, ψ) υ + b2 (φ, ψ)ω − ėd
cx, (18)

ṙt = b3 (φ, ψ) υ − ėd
tx,

where b1 = −
αx sin(φ−ψ)
d cos2(φ−ψ)

, b2 = αx

cos2(φ−ψ)
, b3 = −

αx sin(φ−ψ)
d cos2(ψ)

. According to that, b2 is always

positive, and sign(b1) = sign(b3) = sign(− sin(φ − ψ)). Hence,

b (φ, ψ) = − sin(φ − ψ). (19)

The control law (17) with b (φ, ψ) as in (19) locally stabilizes the system (10) and is always
bounded.
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Sliding Mode Control for Visual Servoing of Mobile Robots using a Generic Camera 9

3.3 Desired references of the epipoles

As main requirement, the references to track must provide a smooth zeroing of the epipoles
starting from their initial values. Figure 5(a) shows two configurations of robot locations
for cases in which sign (e23) �= sign (e32). From these conditions, the epipoles are naturally
reduced to zero as the robot moves smoothly toward the target. Because of the nonholomic
motion constraint, any direct path reaching the target implies sign (e23) �= sign (e32).
Therefore, locations starting sign (e23) = sign (e32) need to be controlled to the situation of
sign (e23) �= sign (e32). This allows getting an adequate orientation from the very beginning
(Fig. 5(b)) in order to be able to align the robot with the target at the end of the first step. It is
worth emphasizing that this initial rotation is autonomously carried out through the control
inputs given by the described controllers. Thus, we define the following desired trajectories,
which are always opposite in sign each other

23
e

32
e

23
e

32
e +−

+

− 23
e

32
e

23
e

32
e

+

+−

−

(a) Condition where sign (etx) �= sign (ecx) (b) Condition where sign (etx) = sign (ecx)

Fig. 5. Motion strategy for different initial locations. For the cases in (a) a direct motion
toward the target is carried out and for those in (b), the robot rotates initially to reach the
same condition as in (a).

ed
cx (t) = S

ecx(0)

2

(

1 + cos
(π

τ
t
))

, 0 ≤ t ≤ τ (20)

ed
cx (t) = 0, τ < t < ∞

ed
tx (t) =

etx(0)

2

(

1 + cos
(π

τ
t
))

, 0 ≤ t ≤ τ

ed
tx (t) = 0, τ < t < ∞

where S = −sign (ecx(0)etx(0)) and T is the time to reach epipoles to zero. We highlight
that since our scheme is an IBVS approach, the desired trajectories in the image space play an
important role in the resulting Cartesian path. In fact, by only changing the trajectory for the
target epipole (related to the translational velocity) is possible to run our approach for car-like
robots. Thus, the references may also be used to constraint the target in the field of view.
However, as mentioned previously, this problem does not appear when using omnidirectional
vision.
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10 Sliding Mode Control

4. Stability analysis

In this section, the stability of both proposed sliding mode control laws is analyzed. Given
that the relationship between zeroing the epipoles and the robot state has been established
through the zero dynamics, we focus on demonstrating the convergence property of the
tracking control law as stated in the following proposition.

Proposition 1. A commuted control law that combines the decoupling-based control (16) by switching
to the bounded control (17) whenever |φ − ψ| < nπ + Th, where Th is a suitable threshold value and
n ∈ Z, achieves global stabilization of the system (10). Moreover, global stabilization is achieved even
with uncertainty in parameters.
Proof. Stabilization of the system (10) is proved by showing that the sliding surfaces can be
reached in a finite time (existence conditions of sliding modes). Let be the natural Lyapunov
function for a sliding mode controller

V = V1 + V2, V1 =
1

2
s2

c , V2 =
1

2
s2

t , (21)

which accomplish V(sc = 0, st = 0) = 0 and V > 0 for all sc �= 0, st �= 0.

V̇ = V̇1 + V̇2 = sc ṡc + st ṡt. (22)

We analyze each term of (22) for the decoupling-based controller (16)

V̇1 = sc

(

−
αx

αxe

(ksm
c sign (sc) + kcsc) + A

)

= −

(

αx

αxe

(

ksm
c |sc|+ kcs2

c

)

− sc A

)

,

V̇2 = st

(

−
αxde

αxe d
(ksm

t sign(st) + ktξt) + B

)

= −

(

αxde

αxe d

(

ksm
t |st|+ kts

2
t

)

− stB

)

,

where A = αx
αxe

(

de
d − 1

) (

ėd
tx − ksm

t sign(st)− ktst

)

cos2(ψ)
cos2(φ−ψ)

+
(

αx
αxe

− 1
)

ėd
cx,

B =
(

αxde
αxe d − 1

)

ėd
tx, and αxe , de represent estimated values for the corresponding system

parameter. We can see that

V̇1 ≤ −

(

αx

αxe

(ksm
c + kc |sc|)− |A|

)

|sc| ,

V̇2 ≤ −

(

αxde

αxe d
(ksm

t + kt |st|)− |B|

)

|st| .

V̇1 and V̇2 are negative definite iff the following inequalities are guaranteed for all sc �= 0,
st �= 0

ksm
c + kc |sc| >

αxe

αx
|A| , (23)

ksm
t + kt |st| >

αxe d

αxde
|B| .

Therefore, V̇ < 0 iff both inequalities (23) are fulfilled. Global convergence to the sliding
surfaces can be achieved regardless of uncertainty in parameters.
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Sliding Mode Control for Visual Servoing of Mobile Robots using a Generic Camera 11

Now, let us develop the existence conditions of sliding modes for the bounded controller (17).
The same Lyapunov function (21) is used. For each term of (22) after some basic operations
we have

V̇1 = −N
αx

cos2 (φ − ψ)
|sc| − sc ėd

cx − scC,

V̇2 = −M
αx |b (φ, ψ)|

d cos2 (ψ)
|st| − st ė

d
tx,

where C = M
αx |b(φ,ψ)|

d cos2(φ−ψ)
sign(st) and b (φ, ψ) is given in (19). We can see that

V̇1 ≤ −

(

N
αx

cos2 (φ − ψ)
−

∣

∣

∣
ėd

cx

∣

∣

∣
− |C|

)

|sc| ,

V̇2 ≤ −

(

M
αx |b (φ, ψ)|

d cos2 (ψ)
−

∣

∣

∣
ėd

tx

∣

∣

∣

)

|st| .

V̇1 and V̇2 are negative definite iff the following inequalities are assured for all sc �= 0, st �= 0

N >
cos2 (φ − ψ)

αx

(

|C|+
∣

∣

∣
ėd

cx

∣

∣

∣

)

, (24)

M >
d cos2 (ψ)

αx |b (φ, ψ)|

∣

∣

∣
ėd

tx

∣

∣

∣
.

Therefore, V̇ < 0 iff both inequalities (24) are fulfilled. The bounded controller does not need
any information of system parameters and thus, its robustness is implicit.
According to the existence conditions of sliding modes, the bounded controller (17) is able
to locally stabilize the system (10); its region of attraction is bigger as long as the control
gains M and N are higher. Nevertheless, this controller can not achieve the smooth behavior
demanded for real situations and it is only used to cross the singularity. Due to the control
strategy commutes between two switching control laws and each one acts inside of its region
of attraction, respectively, the commutation between the control laws does not affect the
stability of the control system. The decoupling-based controller ensures entering to the region
of attraction of the bounded one.
Once sliding surfaces are reached for any case of SMC law, the system’s behavior is
independent of uncertainties and disturbances. It is clear that uncertainties in the system
(10) fulfill the matching condition and then, robustness of the control system is accomplished.

5. Performance evaluation

The evaluation of the approach has been carried out through realistic simulations. These
simulations have been performed in Matlab with a sampling time of 100 ms. The results show
that the main objective of driving the robot to a desired pose ((0,0,0o) in all the cases) is attained
in spite of passing through the singularity that occurs in the first step for some initial poses,
and moreover, the task is accomplished even when the robot starts exactly in a singular pose.
The good performance of the approach with noise in the images is also reported.

231Sliding Mode Control for Visual Servoing of Mobile Robots using a Generic Camera

www.intechopen.com



12 Sliding Mode Control

Regarding to the parameters of the control law, the initial distance between the current and
target locations (de) is fixed to 10 m in all the cases. The threshold to switch to the bounded
control law (Th) is set to 0.03 rad. Related to the control gains, they are set to kc = 2, kt = 1,
ksm

c = 0.2, ksm
t = 0.2, M = 0.1 and N = 0.06. Synthetic images of size 640×480 pixels

are used to estimate the epipoles at each instant time. These images are obtained by using
adequate camera parameters in the generic model of Section 2.2. We present results with
hypercatadioptric, paracatadioptric and also fisheye cameras, which can be approximately
represented with the same model (Courbon et al. (2007)).
The simulations are carried out for four different initial locations: (-5,-9,-50o), (-4,-14,0o),
(8,-16,10o) and (2.5,-12,11.77o) and consequently, the fixed value of de represents a significative
uncertainty in the control parameter. In spite of that, the good behavior of the approach can
be seen in the image space through the pictures in Fig. 6. This figure shows the motion of the
point features for the different types of synthetic images used. We can notice that the points
of the images at the end of the motion (marker “×”) are practically the same as the ones in the
target images (marker “O”).
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(a) (-4,-14,0o) Paracatad. (b) (8,-16,10o) Fisheye. (c) (2.5,-12,11.77o) Hypercatad.

Fig. 6. Behavior of the approach in the image space for different omnidirectional images.

Figure 7(a) shows the resultant paths and the evolution of the epipoles for each one of the
initial locations. The case (-5,-9,-50o) corresponds to an initial location from where the robot
can exert a direct navigation to the target and has been tested using a hypercatadioptric
camera. In the cases (-4,-14,0o) and (8,-16,10o), the robot starts with sign (ecx) = sign (etx)
and by driving the epipoles to the desired trajectories, ecx changes its sign during the first
seconds (Fig. 7(b)). It causes a rotation of the robot, and then, it begins a direct motion toward
the target. These cases are tested using paracatadiotric and fisheye cameras respectively.
The initial location (2.5,-12,11.77o), tested with hypercatadioptric images, corresponds to a
special case where the state trajectory just starts on the singularity ecx = 0. The line from the
initial position to the target shows that the camera axis is aligned with the baseline for this
location. When the robot starts just on the singularity, we assign a suitable amplitude to the
desired trajectory for the current epipole. Given that |φ − ψ| is less than the threshold, the
bounded controller takes the system out of the singularity and then, the epipoles evolve as
shown in Fig. 7(b). In all the cases both epipoles reach to zero in τ = 60 s, which is fixed
through the desired trajectories.
From the graphics of the epipoles, it can be seen that the state trajectory crosses the singularity
ecx = 0 for the initial locations (-4,-14,0o) and (8,-16,10o). The behavior of the robot state is
presented in Fig. 8(a) for the former case. This is obtained using the bounded input velocities
of Fig. 8(b). It is worth noting that the control inputs are maintained bounded even when the
epipoles are close to zero after 45 s, which ensures entire correction of orientation and lateral
position. It takes approximately 3 s more to correct the remaining depth error using a constant
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Fig. 7. Behavior of the approach in the Cartesian space and evolution of epipoles for different
initial locations.
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Fig. 8. Evolution of the position and orientation of the robot and the velocities given by the
sliding mode control law for a case where the singularity is crossed, (-4,-14,0o) of Fig. 7.

translational velocity υ = 0.1 m/s in this case, but this time may be different for each initial
location with the same velocity. The stop condition is given by thresholding the mean squared
error (9) between the corresponding image points of the current image and the points of the
target image.
Finally, Fig. 9(a) shows the performance of the approach under image noise for the initial
location (5,-13,15o). An image noise with standard deviation of 0.5 pixels has been added and
the time to reach the alignment with the target is set to τ = 80 s. During the remaining 9 s,
depth correction is carried out by using a constant translational velocity and then, each one of
the state variables reaches zero (Fig. 9(b)). It is clear the presence of the noise in the motion
of the image points in Fig. 9(c). It can be seen in Fig. 10(a) that the estimated epipoles are
more affected by the noise as the robot approaches to the target and eventually it turns out
to be unstable (problem of short baseline). However, after 80 s only the sign of ecx is used to
compute the rotational velocity that keeps the robot aligned to the target (Fig. 10(b)).
According to these results when testing the performance of the proposed visual control
scheme, the use of SM control provides good benefits in order to solve the singularity problem
and robustness against image noise. Additionally, it is worth noting that the target location
is always reached with an accuracy in the order of centimeters for position and negligible
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(a) Path on the plane. (b) Evolution of the robot state. (c) Motion of the image points.

Fig. 9. Robustness under image noise using a hypercatadioptric imaging system.
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Fig. 10. Performance of the reference tracking and the velocities given by the sliding mode
control law for the servoing task of Fig. 9.

orientation error. This is achieved in spite of the uncertainty in the distance between the
current and the target locations (d). As mentioned before, it is enough to fix this value in
the controller thanks to the robustness of the control law. We claim that the second phase
regarding to depth correction may be carried out exploiting also the information provided
by the epipolar geometry. This could be a way to avoid the switching to a totally different
approach for depth correction.

6. Conclusions

In this chapter, a robust control law to perform image-based visual servoing for
differential-drive mobile robots has been presented. The visual control utilizes the usual
teach-by-showing strategy, in which the desired location is specified by a target image
previously acquired. The mobile robot is driven toward the target by comparing a set of
visual features in the current view of the onboard camera and those on the target image. The
visual features are gathered through the epipolar geometry and exploited in a sliding mode
control law, which provides good robustness against image noise and uncertainty in camera
parameters.
The major contribution of this work is the validity of the approach for generic imaging
systems. This extends the applicability of the proposed control scheme given that a generic
camera allows a major maneuverability of the robot than a conventional camera because
its wide field of view. Additionally, the use of sliding mode control allows to solve the
problem of passing through a singularity induced by the epipoles, maintaining bounded
inputs. Furthermore, the visual control accomplishes its goal even when the robot starts on
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the singularity. The good performance of the approach has been evaluated through realistic
simulations using virtual images.
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