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1. Introduction

PID control, which is usually known as a classical output feedback control for SISO systems,
has been widely used in the industrial world(Åström & Hägglund, 1995; Suda, 1992). The
tuning methods of PID control are adjusting the proportional, the integral and the derivative
gains to make an output of a controlled system track a target value properly. There exist much
more researches on tuning methods of PID control for SISO systems than MIMO systems
although more MIMO systems actually exist than SISO systems. The tuning methods for SISO
systems are difficult to apply to PID control for MIMO systems since the gains usually become
matrices in such case.
MIMO systems usually tend to have more complexities and uncertainties than SISO systems.
Several tuning methods of PID control for such MIMO system are investigated as follows.
From off-line approach, there are progressed classical loop shaping based methods (Ho
et al., 2000; Hara et al., 2006) and H∞ control theory based methods (Mattei, 2001; Saeki,
2006; Zheng et al., 2002). From on-line approach, there are methods from self-tuning control
such as the generalized predictive control based method (Gomma, 2004), the generalized
minimum variance control based method (Yusof et al., 1994), the model matching based
method (Yamamoto et al., 1992) and the method using neural network (Chang et al., 2003).
These conventional methods often require that the MIMO system is stable and are usually
used for a regulator problem for a constant target value but a tracking problem for
a time-varying target value, which restrictions narrow their application. So trying these
problems is significant from a scientific standpoint how there is possibility of PID control and
from a practical standpoint of expanding applications. In MIMO case, there is possibility to
solve these problems because PID control has more freedoms in tuning of PID gain matrices.
On the other hand, adaptive servo control is known for a problem of the asymptotic output
tracking and/or disturbances rejection to unknown systems under guaranteeing stability.
There are researches for SISO systems (Hu & Tomizuka, 1993; Miyasato, 1998; Ortega & Kelly,
1985) and for MIMO systems (Chang & Davison, 1995; Dang & Owens, 2006; Johansson, 1987).
Their controllers generally depend on structures of the controlled system and the reference
system, which features are undesirable from standpoint of utility (Saeki, 2006; Miyamoto,
1999). So it is important to develop the fixed controller like PID controller to solve the servo
problem and to show that conditions. But they are difficult to apply to the tuning of PID
controller because of differences of their construction.
In this paper, we consider adaptive PID control for the asymptotic output tracking problem of
MIMO systems with unknown system parameters under existence of unknown disturbances.
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The proposed PID controller has constant gain matrices and adjustable gain matrices. The
proposed adaptive tuning laws of the gain matrices are derived by using Lyapunov theorem.
That is a Lyapunov function based on characteristics of the proposed PID controller is
constructed. This method guarantees the asymptotic output tracking even if the controlled
MIMO system is unstable and has uncertainties and unknown constant disturbances. Finally,
the effectiveness of the proposed method is confirmed with simulation results for the 8-state,
2-input and 2-output missile control system and the 4-state, 2-input and 2-output unstable
system.

2. Problem statement

Consider the MIMO system:

ẋ(t) = Ax(t) + Bu(t) + di, (1)

y(t) = Cx(t) + do, (2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm are the state vector, the input vector and the output
vector respectively, di ∈ Rn, do ∈ Rm are unknown constant disturbances, and A, B, C are
unknown system matrices.
The target signal of the output is yM(t) ∈ Rm generated by the reference system:

ẋM(t) = AMxM(t) + BMuM, (3)

yM(t) = CMxM(t), (4)

where xM(t) ∈ RnM and uM ∈ RrM are the state vector and the constant input vector,
respectively. Note that AM, BM, CM are allowed to be unknown matrices.
In this article, we propose the new adaptive PID controller:

u(t) = KI0

∫ t

0
ey(τ)dτ + (KP0 + KP1(t))ey(t) + KD1(t)ėy(t) + KP2(t)yM(t) + KD2(t)ẏM(t) (5)

which has the adjustable gain matrices KP1(t), KP2(t), KD1(t), KD2(t) ∈ Rm×m and the
constant gain matrices KI0, KP0 ∈ Rm×m, and

ey(t) = yM(t) − y(t) (6)

denotes the error of the output from the target signal yM(t). The diagram of the proposed PID
controller is shown in Fig. 1.
The objective is to design the constant gain matrices KI0, KP0 and the adaptive tuning laws
of the adjustable gain matrices KP1(t), KP2(t), KD1(t), KD2(t) to solve the asymptotic output
tracking, i.e. ey(t) → 0 as t → ∞.
Here we assume the following conditions:

Assumption 1: rank

[

A B
C 0

]

= n + m, and λi(M11)λj(AM) �= 1, i = 1, 2, · · · , n, j = 1, 2, · · · , nM,

where

[

M11 M12
M21 M22

]

:=

[

A B
C 0

]−1

, M11 ∈ Rn×n and λ(·) denotes eigenvalues of a matrix.

Assumption 2: rank

[

CM

CM AM

]

= nM.

Assumption 3: The zero-dynamics of {A, B, C} is asymptotically stable.
Assumption 4: (a) CB = 0, CAB > 0 or (b) CB > 0.
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Let us explain these assumptions. Assumption 1 is well known condition for a servo problem.
Assumption 2 means the output of the reference system and its derivative contain the
information of its state. Assumption 3 equals to the minimum phase property of the controlled
system. Assumption 4 contains the condition that the relative degrees are ≤ 2. It is inevitable
that these conditions seem a little severe because these are conditions for the PID controller
that has the structural constraint. But also there is an advantage that the controlled system’s
stability property, which is often assumed in other PID control’s methods, is not assumed.

Fig. 1. Proposed Adaptive PID Controller

3. Error system with proposed adaptive PID controller

In this section, we derive the error system with the adaptive PID controller. When the perfect
output tracking occurs (i.e. y(t) = yM(t), ∀t ≥ 0), we can define the corresponding state and
input trajectories as x∗(t), u∗(t), respectively. That is x∗(t), u∗(t) are trajectories satisfying the
following relation:

ẋ∗(t) = Ax∗(t) + Bu∗(t) + di, (7)

yM(t) = Cx∗(t) + do, ∀t ≥ 0. (8)

From Appendix A inspired by (Kaufman et al., 1994), there exist matrices Mij, Tij, i, j = 1, 2

under Assumption 1, and the ideal trajectories x∗(t), u∗(t) satisfying relations (7), (8) can be
expressed as

x∗(t) = T11xM(t) + T12uM − M11di − M12do, (9)

u∗(t) = T21xM(t) + T22uM − M21di − M22do. (10)

Introducing these ideal trajectories, we can define the following state error

ex(t) = x∗(t) − x(t). (11)

Then, the output tracking error (6) can be described as

ey(t) = yM(t) − y(t) = (Cx∗(t) + do) − (Cx(t) + do) = Cex(t), (12)

which means that if the error system obtained by differentiating (11):

ėx(t) = Aex(t) + B(u∗(t) − u(t)) (13)

can be asymptotically stabilized i.e. ex(t) → 0, then the asymptotic output tracking can be
achieved i.e. ey(t) → 0.
Now, substituting (5) and (10) into (13), we get the following closed loop error system:

ėx(t) = Aex(t) − B
[
− T21xM(t) − T22uM + M21di + M22do + KI0

∫ t

0
ey(τ)dτ

+ KP0ey(t) + KP1(t)ey(t) + KD1(t)ėy(t) + KP2(t)yM(t) + KD2(t)ẏM(t)
]
. (14)
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From Appendix B, there exist matrices S1, S2 ∈ Rm×m under Assumption 2, and T21xM(t) in
(14) can be decomposed as

T21xM(t) = S1yM(t) + S2(ẏM(t) − CMBMuM). (15)

Hence, (14) can be expressed as

ėx(t) = Aex(t) − B
[
(S2CMBM − T22)uM + M21di + M22do + KI0

∫ t

0
ey(τ)dτ + KP0ey(t)

+ KP1(t)ey(t) + KD1(t)ėy(t) + (KP2(t) − S1)yM(t) + (KD2(t) − S2)ẏM(t)
]
. (16)

Here put the constant term of the above equation as

d̃ := (S2CMBM − T22)uM + M21di + M22do

to represent (16) simply as

ėx(t) = Aex(t) − B
[
d̃ + KI0

∫ t

0
ey(τ)dτ + KP0ey(t) + KP1(t)ey(t) + KD1(t)ėy(t)

+ (KP2(t) − S1)yM(t) + (KD2(t) − S2)ẏM(t)
]
. (17)

Therefore, if the origin of this close-loop error system is asymptotically stabilized i.e. ex(t) →
0, the asymptotic output tracking i.e. ey(t) → 0 is achieved. We derive the constant gain
matrices and the adaptive tuning laws of adjustable gain matrices to accomplish ex(t) → 0
in the next section.

4. Adaptive tuning laws of PID gain matrices

In this section, we show the constant gain matrices KI0, KP0 and the adaptive tuning law of
the adjustable gain matrices KP1(t), KP2(t), KD1(t), KD2(t) to asymptotically stabilize the error
dynamics (17) (i.e. ex → 0 as t → ∞) at Case A when Assumption 4(a) is hold or at Case B when
Assumption 4(b) is hold.

4.1 Case A

Theorem 1: Suppose Assumption 3 and Assumption 4(a). Give the constant gain matrices
KI0, KP0 as

KI0 = γI H1, KP0 = γI H2, (18)

and the adaptive tuning laws of the adjustable gain matrices KPi(t), KDi(t), i = 1, 2 as

K̇P1(t) = ΓP1

(
H1ey(t) + H2 ėy(t)

)
ey(t)T, (19a)

K̇D1(t) = ΓD1

(
H1ey(t) + H2 ėy(t)

)
ėy(t)T, (19b)

K̇P2(t) = ΓP2

(
H1ey(t) + H2 ėy(t)

)
yM(t)T, (19c)

K̇D2(t) = ΓD2

(
H1ey(t) + H2 ėy(t)

)
ẏM(t)T (19d)

where

H1 = diag{h11, · · · , h1m}, H2 = diag{h21, · · · , h2m}, h1j, h2j > 0, j = 1, · · · , m, (20)

then the origin of (17) is asymptotically stable (ex(t) → 0 as t → ∞) and the adjustable gain
matrices are bounded. Here ΓP1, ΓP2, ΓD1, ΓD2 ∈ Rm×m are arbitrary positive definite matrices
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and γI is arbitrary positive scalar.

Proof: From Assumption 4(a), the error dynamics (17) is transformed into the normal form
(see e.g. (Isidori, 1995)):




ξ̇1(t)
ξ̇2(t)
η̇(t)


 =




0 Im 0
Q21 Q22 Q23
Q31 Q32 Aη







ξ1(t)
ξ2(t)
η(t)


 −




0
CAB

0




[
KI0

∫ t

0
ξ1(τ)dτ + KP0ξ1(t) + d̃

+ KP1(t)ξ1(t) + KD1(t)ξ2(t) + (KP2(t) − S1)yM(t) + (KD2(t) − S2)ẏM(t)
]
, (21)

which Qij are unknown matrices, by transformation




ξ1(t)
ξ2(t)
η(t)


 =




C
CA
T


 ex(t) (22)

where TB = 0, T ∈ R(n−2m)×n and

ξ1(t) = Cex(t) = ey(t), ξ2(t) = CAex(t) = ėy(t). (23)

Note that when ξ1(t), ξ2(t) ≡ 0,

η̇(t) = Aηη(t), (24)

which is called zero-dynamics, is asymptotic stable from Assumption 3.
Thus (21) is can be rewritten as




ξ̇1(t)
ξ̇2(t)
η̇(t)


 =




0 Im 0
−Kξ1 −Kξ2 Q23

Q31 Q32 Aη







ξ1(t)
ξ2(t)
η(t)


 −




0
Im

0




[
CAB(KI0

∫ t

0
ξ1(τ)dτ + KP0ξ1(t) + d̃)

+ (CABKP1(t) − Q21 − Kξ1)ξ1(t) + (CABKD1(t) − Q22 − Kξ2)ξ2(t)

+ CAB(KP2(t) − S1)yM(t) + CAB(KD2(t) − S2)ẏM(t)
]

(25)

where Kξ1, Kξ2 ∈ Rm×m are the constant matrices only used in the proof.

For simplicity, put

ξ(t) :=

[
ξ1(t)
ξ2(t)

]
, Aξ :=

[
0 Im

0 0

]
, Bξ :=

[
0
Im

]
, (26)

Kξ :=
[
Kξ1 Kξ2

]
, Q1 :=

[
0

Q23

]
, Q2 := [Q31 Q32] , (27)

ψI(t) := CAB(KI0

∫ t

0
ξ1(τ)dτ + KP0ξ1(t) + d̃), (28)

ΨP1(t) := CABKP1(t) − Q21 − Kξ1, (29a)

ΨD1(t) := CABKD1(t) − Q22 − Kξ2, (29b)

ΨP2(t) := CAB(KP2(t) − S1), (29c)

ΨD2(t) := CAB(KD2(t) − S2) (29d)
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to describe (25) as
[

ξ̇(t)
η̇(t)

]

=

[

Aξ − Bξ Kξ Q1

Q2 Aη

] [

ξ(t)
η(t)

]

−

[

Bξ

0

]

[

ψI(t) + ΨP1(t)ξ1(t)

+ ΨD1(t)ξ2(t) + ΨP2(t)yM(t) + ΨD2(t)ẏM(t)
]

, (30)

where

ψ̇I(t) = CAB(KI0ξ1(t) + KP0ξ2(t)), (31)

Ψ̇P1(t) = CABK̇P1(t), (32a)

Ψ̇D1(t) = CABK̇D1(t), (32b)

Ψ̇P2(t) = CABK̇P2(t), (32c)

Ψ̇D2(t) = CABK̇D2(t). (32d)

Meanwhile because {Aξ , Bξ} is controllable pair from (26), there exist Kξ such that Lyapunov
equation

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)
TPξ = −Q, Q > 0

has an unique positive solution Pξ > 0. So here we set Q = 2εI2m, ε > 0 and select Kξ as

Kξ1
= εH−1

1 , Kξ2
= εH−1

2 (Im + (1/ε)H1), (33)

Hi = diag{hi1, · · · , him}, hij > 0, i = 1, 2, j = 1, · · · , m,

such that

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)
TPξ = −2εI2m, ε > 0, (34)

has the unique positive solution

Pξ =

[

Pξ1 P

P
T

Pξ2

]

∈ R2m×2m, (35)

P = H1, Pξ2 = H2, Pξ1 = ε(H1H−1
2 + H−1

1 H2) + H1H−1
2 H1.

It is clear Pξ of (35) is a positive matrix on ε > 0 from Schur complement (see e.g. (Iwasaki,

1997)) because Pξ2 = H2 > 0, Pξ1 − PP−1
ξ2 P

T
= ε(H1H−1

2 + H−1
1 H2) > 0.

Furthermore since Aη of (24) is asymptotic stable matrix from Assumption 3, there exists an

unique solution Pη ∈ R(n−2m)×(n−2m)
> 0 satisfying

Pη Aη + AT
η Pη = −In−2m. (36)

Now, by using Pξ of (35) and Pη of (36), we consider the following Lyapunov function
candidate:

V(ξ(t), η(t), ψI(t), ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t))

=

[

ξ(t)
η(t)

]T [

Pξ 0
0 Pη

] [

ξ(t)
η(t)

]

+ ψI(t)Tγ−1
I (CAB)−1ψI(t)

+ Tr
[

ΨP1(t)TΓ−1
P1 (CAB)−1ΨP1(t)

]

+ Tr
[

ΨD1(t)TΓ−1
D1 (CAB)−1ΨD1(t)

]

+ Tr
[

ΨP2(t)TΓ−1
P2 (CAB)−1ΨP2(t)

]

+ Tr
[

ΨD2(t)TΓ−1
D2 (CAB)−1ΨD2(t)

]

(37)
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where ΓP1, ΓD1, ΓP2, ΓD2 ∈ Rm×m are arbitrary positive definite matrices, γI is positive scalar.
Tr[·] denotes trace of a square matrix. Here put V(t) := V(ξ(t), η(t), ψI(t), ΨP1(t), ΨP2(t),
ΨD1(t), ΨD2(t)) for simplicity. The derivative of (37) along the trajectories of the error system
(30) ∼ (32d) can be calculated as

V̇(t) = 2

[

ξ̇(t)
η̇(t)

]T [

Pξ 0
0 Pη

] [

ξ(t)
η(t)

]

+ 2ψI(t)Tγ−1
I (CAB)−1ψ̇I(t)

+ 2Tr
[

ΨP1(t)TΓ−1
P1 (CAB)−1Ψ̇P1(t)

]

+ 2Tr
[

ΨD1(t)TΓ−1
D1 (CAB)−1Ψ̇D1(t)

]

+ 2Tr
[

ΨP2(t)TΓ−1
P2 (CAB)−1Ψ̇P2(t)

]

+ 2Tr
[

ΨD2(t)TΓ−1
D2 (CAB)−1Ψ̇D2(t)

]

=

[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)
TPξ

(Pξ Q1 + Q
T
2 Pη)T

Pξ Q1 + Q
T
2 Pη

Pη Aη + AT
η Pη

]

[

ξ(t)
η(t)

]

+ 2ψI(t)T
[

− BT
ξ Pξ ξ(t) + γ−1

I (CAB)−1ψ̇I(t)
]

+ 2Tr
[

ΨP1(t)T
(

− BT
ξ Pξ ξ(t)ξ1(t)T + Γ−1

P1 (CAB)−1Ψ̇P1(t)
) ]

+ 2Tr
[

ΨD1(t)T
(

− BT
ξ Pξ ξ(t)ξ2(t)T + Γ−1

D1 (CAB)−1Ψ̇D1(t)
) ]

+ 2Tr
[

ΨP2(t)T
(

− BT
ξ Pξ ξ(t)yM(t)T + Γ−1

P2 (CAB)−1Ψ̇P2(t)
) ]

+ 2Tr
[

ΨD2(t)T
(

− BT
ξ Pξ ξ(t)ẏM(t)T + Γ−1

D2 (CAB)−1Ψ̇D2(t)
) ]

=

[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)
TPξ

(Pξ Q1 + Q
T
2 Pη)T

Pξ Q1 + Q
T
2 Pη

Pη Aη + AT
η Pη

]

[

ξ(t)
η(t)

]

+ 2ψI(t)T
[

− BT
ξ Pξ ξ(t) + γ−1

I

(

KI0ξ1(t) + KP0ξ2(t)
)

]

+ 2Tr
[

ΨP1(t)T
(

− BT
ξ Pξ ξ(t)ξ1(t)T + Γ−1

P1 K̇P1(t)
) ]

+ 2Tr
[

ΨD1(t)T
(

− BT
ξ Pξ ξ(t)ξ2(t)T + Γ−1

D1 K̇D1(t)
) ]

+ 2Tr
[

ΨP2(t)T
(

− BT
ξ Pξ ξ(t)yM(t)T + Γ−1

P2 K̇P2(t)
) ]

+ 2Tr
[

ΨD2(t)T
(

− BT
ξ Pξ ξ(t)ẏM(t)T + Γ−1

D2 K̇D2(t)
) ]

. (38)

Therefore from ξ(t) = [ξT
1 , ξT

2 ]T = [eT
y , ėT

y ]T and BT
ξ Pξ =

[

H1 H2

]

, giving the constant gain

matrices KI0, KP0 as (18), (20) and the adaptive tuning laws of KPi(t), KDi(t), i = 1, 2 as (19a)
∼ (19d), (20) , we can get (38) be

V̇(t) =

[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)
TPξ

(Pξ Q1 + Q
T
2 Pη)T

Pξ Q1 + Q
T
2 Pη

Pη Aη + AT
η Pη

]

[

ξ(t)
η(t)

]

. (39)

Here the symmetric matrix of (39) can be expressed as

[

−2εI2m Pξ Q1 + Q
T
2 Pη

(Pξ Q1 + Q
T
2 Pη)T −In−2m

]

(40)

www.intechopen.com



PID Control, Implementation and Tuning194

from (36), (34). Using Schur complement, we have the following necessary and sufficient
conditions such that (40) is negative definite:

− 2εI2m < 0, (41)

− In−2m + (Pξ Q1 + Q
T
2 Pη)T 1

2ε
(Pξ Q1 + Q

T
2 Pη) < 0 (42)

where

Pξ Q1 =

[

P
Pξ2

]

Q23 =

[

H1
H2

]

Q23 (43)

from (27), (35). Obviously, the first inequality (41) is hold. The second inequality (42) is also

achieved under large ε > 0 (because Q
T
2 Pη and Pξ Q1 are independent of ε). At this time, (40)

becomes negative definite matrix and (39) is

V̇(t) =

[

ξ(t)
η(t)

]T
[

−2εI2m Pξ Q1 + Q
T
2 Pη

(Pξ Q1 + Q
T
2 Pη)T −In−2m

]

[

ξ(t)
η(t)

]

≤ 0. (44)

Hence, giving the constant gain matrices KI0,KP0 as (18), (20) and the adaptive law of KPi(t),
KDi(t), i = 1, 2 as (19a) ∼ (19d), (20), we have shown that there exists the Lyapunov function
which derivative is (44). Therefore, all variables in V(·) is bounded, that is ξ(t), η(t), ψI(t),

ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t) ∈ L∞. Furthermore, ξ̇(t), η̇(t) are bounded from (30) and

ξ(t), η(t) ∈ L2 from (44). Accordingly, since ξ(t), η(t) ∈ L2 ∩ L∞, ξ̇(t), η̇(t) ∈ L∞, the origin
of the error system (ξ, η) = (0, 0), namely ex = 0 is asymptotically stable from Barbalat’s
lemma, and KPi(t), KDi(t), i = 1, 2 are bounded from ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t) ∈ L∞. �

Remark 1: In proposed method, it is important how to select H1, H2, hij > 0 which always
guarantee the asymptotic stability because they also affect the transient response. Especially,
taking large hij causes the large over shoot of inputs at first time range because of the

proportional gain matrix KP0 with hij. So it seems to be appropriate to adjust hij from small
values slowly such that better response is gotten although it is difficult to show concrete
guide because system’s parameters are unknown. But it is also one of the characteristic
in our proposed method that the designer can adjust transient response manually under
guaranteeing stability.

4.2 Case B

Corollary 1: Suppose Assumption 3 and Assumption 4(b). Give the constant gain matrices
KI0, KP0 as (18) and the adaptive tuning law of the adjustable gain matrices KPi(t), KDi(t), i =
1, 2 as (19a) ∼ (19d) where H1 = diag{h1j, · · · , h1m}, H2 = 0, h1j > 0, j = 1, · · · , m , then
(17) is asymptotically stable and the adjustable gain matrices are bounded. Here ΓP1, ΓP2,
ΓD1, ΓD2 ∈ Rm×m are arbitrary positive definite matrices and γI is arbitrary positive scalar.

Proof : After transforming the error system (17) into the normal form (see e.g. (Isidori, 1995))
based on Assumption 4(b), do the procedure like Theorem 1, it can be proved more easily than
Theorem 1. �

5. Simulations

Example 1

Consider the missile control system (Bar-Kana & Kaufman, 1985):
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ẋ(t) =



















3.23 12.5 −476 0 228 0
−12.5 −3.23 0 476.0 0 −228
0.39 0 −1.93 −10 −415 0

0 −0.39 10 −1.93 0 −415
0 0 0 0 0 0
0 0 0 0 0 0
0 0 22.4 0 −300 0
0 0 0 −22.4 0 300

0 0
0 0
0 0
0 0
75 0
0 −75

−150 0
0 −150



















x(t) +



















0 0
0 0
0 0
0 0
0 0
0 0
−1 0
0 −1



















u(t) + di.

y(t) =
[

−2.99 0 −1.19 1.5375
0 −2.99 1.5375 1.19

−27.64 0 0 0
0 27.64 0 0

]

x(t) + do.

Let the reference system be

ẋM(t) =





0 qM1 0 0
−qM1 0 0 0

0 0 0 qM2

0 0 −qM2 0



 xM(t), yM(t) =
[

0 qM3 0 0
0 0 qM4 0

]

xM(t).

which means yM(t) =
[

qM3 cos qM1t qM4 sin qM2t
]T

at xM(0) =
[

0 1 0 1
]T

.
Set disturbances di, do and parameters of the reference system qM as follows:

qM1 = 1, qM2 = 2.0, qM3 = 0.5, qM4 = 1, di =
[

0 0 0 0 0 0 1 2
]T

, do =
[

0.5 − 1
]T

.

Select arbitrary H1, H2 as H1 =

[

0.5 0
0 0.5

]

, H2 =

[

0.5 0
0 0.5

]

based on Remark 1. Set the ΓP1 =

ΓP2 = ΓD1 = ΓD2 = I2 and γI = 1. Put the initial values x(0) = 0, KPi(0) = KDi(0) =
0, i = 1, 2. It is observed from simulation results at Fig. 2 that KP1(t), KP2(t), KD1(t), KD2(t)
are on-line adjusted and the asymptotic output tracking is achieved.

Example 2

Consider the following unstable system:

ẋ(t) =







1 1 4 3
1 4 −3 1
−1 1 −5 −1
1 0 −1 −1






x(t) +







1 0
0 1
0 0
0 0






u(t) + di,

y(t) =

[

1 0 0 0
0 1 0 0

]

x(t) + do.

Set the reference system be

ẋM(t) =







0 qM1 0 0
−qM1 0 0 0

0 0 0 qM2
0 0 −qM2 0






xM(t) +







0 0
0 1
−1 0
0 0






uM,

yM(t) =

[

0 qM3 0 0
0 0 qM4 0

]

xM(t),

which generates yM(t) =
[

qM3 cos qM1t qM4 sin qM2t
]T

at xM(0) =
[

0 1 0 1
]T

when uM = 0.
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(a) y1(t), yM1(t) (b) y2(t), yM2(t)

(c) KP1(t) (d) KD1(t)

(e) KP2(t) (f) KD2(t)

Fig. 2. Simulation Results of Example 1
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(a) y1(t), yM1(t) (b) y2(t), yM2(t)

(c) KP1(t) (d) KD1(t)

(e) KP2(t) (f) KD2(t)

Fig. 3. Simulation Results of Example 2
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Disturbances di, do and parameters of the reference system qM are set as follows:

qM1 = 1.0, qM2 = 0.5, qM3 = 0.5, qM4 = 1, uM =
[

1 2
]T,

di =
[

1 − 2 0 0
]T, do =

[

0 1
]T

From Colloraly 1, select arbitrary H1, H2 as H1 =

[

1 0
0 1

]

, H2 =

[

0 0
0 0

]

.

Set the ΓP1 = ΓP2 = ΓD1 = ΓD2 = I2 and γI = 1. Put the initial values x(0) = 0, KPi(0) =
KDi(0) = 0, i = 1, 2. We can observe that KP1(t), KP2(t), KD1(t), KD2(t) are on-line adjusted
and the asymptotic output tracking is achieved from simulation results at Fig. 3 .

6. Conclusions

We have proposed the new adaptive PID control and its parameter tuning method for the
MIMO system. In our method, the asymptotic output tracking can be guaranteed even if
the MIMO system is unstable and has unknown system parameters and unknown constant
disturbances. The effectiveness of the method is confirmed by numerical simulations. Our
future task is extending the controlled system to the nonlinear one.
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A. (Proof)

(7), (8) are rewritten as
[

ẋ∗(t)
yM(t)

]

=

[

A B
C 0

] [

x∗(t)
u∗(t)

]

+

[

di
do

]

. (45)

Now we prove that the above equation is hold under Assumption 1 by substituting (9), (10).
First, we calculate the right side of (45). Since (9), (10) are expressed as

[

x∗(t)
u∗(t)

]

=

[

T11 T12
T21 T22

] [

xM(t)
uM

]

−

[

M11 M12
M21 M22

] [

di
do

]

, (46)

substitute (46) into the right side of (45) to get

The right side of (45) =

[

A B
C 0

] [

T11 T12
T21 T22

] [

xM(t)
uM

]

(47)

by using the relation

[

M11 M12
M21 M22

]

=

[

A B
C 0

]

−1

(48)

from Assumption 1.

Then we calculate the left side of (45). Substituting ẋ∗(t) = T11 ẋM(t) which is the time
derivative of (9) and using the relation of (3), (4), we can get

The left side of (45) =

[

T11 AM T11BM

CM 0

] [

xM(t)
uM

]

. (49)
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Therefore from (47), (49), the equation obtained from substituting (9), (10) into (45) is

[

T11 AM T11BM

CM 0

] [

xM(t)
uM

]

=

[

A B
C 0

] [

T11 T12
T21 T22

] [

xM(t)
uM

]

. (50)

This equation is always hold for all xM(t) and uM if

[

T11 AM T11BM

CM 0

]

=

[

A B
C 0

] [

T11 T12
T21 T22

]

is hold. This is the matrix linear equation with variables T11.

Now we will show that this matrix equation is solvable. Multiplying both left side of above
equation by the nonsingular matrix (48), we have

[

M11 M12
M21 M22

] [

T11 AM T11BM

CM 0

]

=

[

T11 T12
T21 T22

]

.

Obviously, T11 is the solution to the linear matrix equation

T11 = M11T11 AM + M12CM, (51)

and there exists unique solution T11 under Assumption 1 (see (Kodama & Suda, 1995)).
Therefore rests of Tij exist uniquely as

T12 = M11T11BM, T22 = M21T11BM,

T21 = M21T11 AM + M22CM.

We have proved that (9), (10) satisfy the relation (7), (8) for all do, di, uM under Assumption 1.
�

B. (Proof)

Using (4), we can calculate (15) as

(T21 − S1CM − S2CM AM)xM(t) = 0.

This equation is always hold for all xM(t) if

T21 − S1CM − S2CM AM = 0

is satisfied, that is if

[S1 S2]

[

CM

CM AM

]

= T21

is solvable on S1, S2. In fact this equation is solvable from Assumption 2 (see (Kodama & Suda,
1995)), so there exist S1, S2 satisfying (15). �
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