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1. Introduction   

In general, wastewater treatment plant (WWTP) consists of several stages before it is 
released to a receiving water body. There are, preliminary and primary treatment 
(mechanical treatment), a secondary treatment (biological treatment) and a tertiary 
treatment (chemical treatment). In this chapter, since the work involve of identification and 
control design of activated sludge process to improve the performance of the system, and 
most of the control priorities are centred on the biological treatment process, only the 
secondary treatment will be highlighted.  
System modelling and identification of the activated sludge process has provided a wider 
understanding and a powerful tool to predict the behaviour of the system under different 
conditions. In control design, system modelling and identification are the most important 
parts which need be taken into account. Often, models developed for controller design have 
to be as simple as possible. The simplicity means models can be obtained directly from 
input-output (or experimental) data and used for control design of WWTP. This type of 
model is called black box or data-driven model, see for example Box Jenkins (El-Din et al., 
2002) and Artificial Neural Network (ANN) proposed by (Cote et al., 1995). It will be shown 
that the identified data-driven control model describes the activated sludge wastewater 
system well, at least around an operating point. One of the popular techniques used in the 
system identification is the subspace identification algorithm and this algorithm is used for 
the design of control in WWTP. Another approach to modelling is to use model reductions 
or simplifications. The reduced order (linear) model can be later used for controller design 
and/or stochastic simulation, see for example (Robertson and Cameron, 1996).  
The biochemical processes involved in the activated sludge wastewater treatment process 
are complex and their understanding was very limited. However, due to the importance of 
providing concise and efficient information in describing a complicated set of activated 
sludge system behaviours, several mathematical models have been developed for gaining a 
better understanding of a real system. In the late 80s, a more scientific perspective of this 
biotechnology process was achieved by the first development of International Association 
for Water Quality (IAWQ) Activated Sludge Model no.1(ASM1) proposed by (Henze et 
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al.,1987), followed by a series of mathematical models known as ASM2 and ASM3. Such 
advanced models of activated sludge processes, i.e. ASM1, have been developed over the 
years but have not been used for control design due to their high complexity.  
As previously mentioned, models developed for controller design have to be as simple as 
possible. This work attempts to identify simple data-driven control model of activated 
sludge system. The multivariable identification is performed into a wastewater system using 
subspace identification technique that provide multivariable model for designing of 
multivariable PID controller. PID controller is one of the popular conventional methods 
used from several decades ago. The implementation of this form of feedback controller have 
been  widely used in any industrial processes. Often, this controller is implemented as a 
local controller, whereby the PID controller is cascaded with the more advanced control 
method such as model predictive control (MPC). In that case, there are two different control 
loops in the system that is outer loop (MPC) and inner loop (PID). The outer loop will 
decide what is the setpoint to be given to the PID control loop.  In such cases, the response 
time of the control variable in the inner loop must be much faster than that given by the 
outer loop. In any process control such as wastewater treatment plant, scalar PID controller 
is extensively used to control the process variables of wastewater system. Unfortunately, 
this type of controller is of no longer sufficient due to the inherently multivariable nature of 
wastewater system.   
For highly multivariable process of wastewater treatment plant, multivariable control 
systems are therefore needed to handle the inevitable changes in the plant and its effluent 
characteristics. In literature, several control strategies of interest have been developed to 
improve effluent quality control of activated sludge wastewater treatment system given by 
(Chotkowski, W et. al, 2005), (Y. Ma et al., 2005), (Piotrowski, R. Et al., 2005), (A. 
Stare et al., 2007) and (E. Mats et al., 2006). (A. Stare et al., 2007) for example, 
reports that the application of advanced control becomes more cost effective despite the 
need for possible investment in purchasing additional sensors and actuators. This motivate 
to the use of data-driven control model for the activated sludge process using MPID 
controller. In multivariable PID control,  the control handles more than one input and 
output in the systems and hence there are usually a number of interacting control loops in 
the system. This process interaction is of importance issues need to be taken into 
consideration to ensure better performance of the closed loop plant as well as to meet the 
current and future demands on effluent water quality. The work of this chapter highlights 
the effectiveness of using multivariable PID (MPID) control design with the application to 
activated sludge wastewater treatment process. The design of  MPID controller is performed 
using data driven models developed from system identification techniques based on 
subspace approach.  

 
2. Activated sludge wastewater treatment systems 

The activated sludge process is a biological process in which an organic matter is oxidised 
and mineralised by microorganisms. Oxygen is used by microorganisms to oxidise organic 
matter. The influent of particulate inert matter and the growth of the microorganisms is 
removed from the plant as excess sludge to maintain a reasonable suspended solids 
concentration. A simple activated sludge is usually comprised of an aerator and a settler. 
The bioreactor  includes a secondary clarifier (or settler) that serves to retain the biomass in 

 

the system while producing a high quality effluent. Part of the settled biomass is recycled to 
allow the right concentration of microorganisms in the aerated tank. In practice, more 
than one reactors are commonly applied in the activated sludge process for 
simultaneous nitrification and denitrification such as one designed in the 
benchmark COST simulation. 
  
2.1 Benchmark COST simulation 
A schematic depicting the COST simulation benchmark model is shown in Fig. 1. There are 
five series biological reactors (or bioreactor) which contain two anoxic and three aerobic 
tanks and a 10-layer non-reactive secondary settling tank. A pre-denitrifying plant structure 
has been applied, whereby anoxic process is located at the beginning of the tank, as seen in 
Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Activated sludge with pre-denitrification 
 
Each unit of the bioreactor is modelled using IAWQ's ASM1 given by (Henze et al., 1987). 
The settler is modelled using a double-exponential settling velocity function by (Takács et 
al., 1991). The bioreactor of ASM1 model describes the removal of organic matter, 
nitrification and denitrification. To allow for consistent experiment evaluation, the model 
provides three dynamic data influent flow conditions (or disturbances) and each is meant to 
be a representative of a different weather condition: dry, rain and storm. For a detailed 
description of the COST simulation benchmark models, see (Copp, 2002). 

 
2.2 Control structures of activated sludge with pre-denitrification 
Two different control structures for the activated sludge process are studied. These 
structures of multivariable control are developed using subspace identification which later 
used for MPID controller design.  
 
Case 1 
The controller maintains the DO levels in the last three aerobic tanks as seen in Fig. 1, by 
manipulation of oxygen transfer coefficients (KLa).  Models are developed at three different 
operating conditions, i.e. constant influent flow, dry influent flow and rain influent flow 
conditions.  
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al.,1987), followed by a series of mathematical models known as ASM2 and ASM3. Such 
advanced models of activated sludge processes, i.e. ASM1, have been developed over the 
years but have not been used for control design due to their high complexity.  
As previously mentioned, models developed for controller design have to be as simple as 
possible. This work attempts to identify simple data-driven control model of activated 
sludge system. The multivariable identification is performed into a wastewater system using 
subspace identification technique that provide multivariable model for designing of 
multivariable PID controller. PID controller is one of the popular conventional methods 
used from several decades ago. The implementation of this form of feedback controller have 
been  widely used in any industrial processes. Often, this controller is implemented as a 
local controller, whereby the PID controller is cascaded with the more advanced control 
method such as model predictive control (MPC). In that case, there are two different control 
loops in the system that is outer loop (MPC) and inner loop (PID). The outer loop will 
decide what is the setpoint to be given to the PID control loop.  In such cases, the response 
time of the control variable in the inner loop must be much faster than that given by the 
outer loop. In any process control such as wastewater treatment plant, scalar PID controller 
is extensively used to control the process variables of wastewater system. Unfortunately, 
this type of controller is of no longer sufficient due to the inherently multivariable nature of 
wastewater system.   
For highly multivariable process of wastewater treatment plant, multivariable control 
systems are therefore needed to handle the inevitable changes in the plant and its effluent 
characteristics. In literature, several control strategies of interest have been developed to 
improve effluent quality control of activated sludge wastewater treatment system given by 
(Chotkowski, W et. al, 2005), (Y. Ma et al., 2005), (Piotrowski, R. Et al., 2005), (A. 
Stare et al., 2007) and (E. Mats et al., 2006). (A. Stare et al., 2007) for example, 
reports that the application of advanced control becomes more cost effective despite the 
need for possible investment in purchasing additional sensors and actuators. This motivate 
to the use of data-driven control model for the activated sludge process using MPID 
controller. In multivariable PID control,  the control handles more than one input and 
output in the systems and hence there are usually a number of interacting control loops in 
the system. This process interaction is of importance issues need to be taken into 
consideration to ensure better performance of the closed loop plant as well as to meet the 
current and future demands on effluent water quality. The work of this chapter highlights 
the effectiveness of using multivariable PID (MPID) control design with the application to 
activated sludge wastewater treatment process. The design of  MPID controller is performed 
using data driven models developed from system identification techniques based on 
subspace approach.  
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The activated sludge process is a biological process in which an organic matter is oxidised 
and mineralised by microorganisms. Oxygen is used by microorganisms to oxidise organic 
matter. The influent of particulate inert matter and the growth of the microorganisms is 
removed from the plant as excess sludge to maintain a reasonable suspended solids 
concentration. A simple activated sludge is usually comprised of an aerator and a settler. 
The bioreactor  includes a secondary clarifier (or settler) that serves to retain the biomass in 

 

the system while producing a high quality effluent. Part of the settled biomass is recycled to 
allow the right concentration of microorganisms in the aerated tank. In practice, more 
than one reactors are commonly applied in the activated sludge process for 
simultaneous nitrification and denitrification such as one designed in the 
benchmark COST simulation. 
  
2.1 Benchmark COST simulation 
A schematic depicting the COST simulation benchmark model is shown in Fig. 1. There are 
five series biological reactors (or bioreactor) which contain two anoxic and three aerobic 
tanks and a 10-layer non-reactive secondary settling tank. A pre-denitrifying plant structure 
has been applied, whereby anoxic process is located at the beginning of the tank, as seen in 
Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Activated sludge with pre-denitrification 
 
Each unit of the bioreactor is modelled using IAWQ's ASM1 given by (Henze et al., 1987). 
The settler is modelled using a double-exponential settling velocity function by (Takács et 
al., 1991). The bioreactor of ASM1 model describes the removal of organic matter, 
nitrification and denitrification. To allow for consistent experiment evaluation, the model 
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be a representative of a different weather condition: dry, rain and storm. For a detailed 
description of the COST simulation benchmark models, see (Copp, 2002). 

 
2.2 Control structures of activated sludge with pre-denitrification 
Two different control structures for the activated sludge process are studied. These 
structures of multivariable control are developed using subspace identification which later 
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Case 2 
In this case, the simultaneous control of DO level (DO5) in the last aerobic tank and the 
control of nitrate (SNO2) level in the second anoxic tank are considered by manipulation of 
oxygen transfer coefficient (KLa5) and internal recirculation rate (Qintrn).  Models are 
developed for two different operating conditions, i.e. constant influent flow and dry influent 
flow. 

 
3. Subspace method of System Identification 

Subspace identification techniques have been (more than 10 years old) developed and have 
attracted much attention due to their computational simplicity and effectiveness in 
identifying dynamic state space linear multivariable systems. The subspace identification 
technique was developed by (De Moor et al., 1988), (Moonen et al., 1989) and (Verhaegen, 
1994) and widely known as direct subspace state space system identification (4SID) 
methods. The advantage of a subspace method is that it is based on reliable numerical 
algorithms of the QR decomposition and the singular value decomposition (SVD). 
Moreover, this algorithm can easily be implemented for multi input multi output (MIMO) 
system identification. The subspace identification uses projection methods and SVD to 
obtain the model. The identified models in discrete time describe the activated sludge 
process around an operating point and have been converted to standard continuous linear 
time invariant state space system: 
 

       
   

+                                               (1)

                                                                          (2)
p dx t Ax t B u t B d t

y k Cx t

 




 

 
where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector and 
d(t) is the measurable disturbance vector. A, Bp, Bd and C are matrices of 
appropriate dimensions. Combining the inputs into a single vector gives the 
following: 
 

   ( )
( )

( )p d
u t

x Ax t B B
d t
 

   
 

  (4) 

 ( ) ( )y t Cx t              (5) 
 

The system transfer function is defined as:  
 

  1( ) ( ) p dG s C sI A B B   (6) 

 
The COST simulation benchmark is used as a data generator for multivariable identification 
in the activated sludge process. For a better identification result, the data is pre-processed. 
In this system which is running at steady state operating point different from zero and 
hence introducing some DC offsets, subtraction of the sample mean from the data set is 
done in order to remove these offsets. This is common operation in system identification, as 

 

given by (Söderström and Stoica, 1989). In this work, as the data set is generated from a 
simulation model, no data filtering is necessary. The data set is finally detrended to remove 
linear trends from input-output data before it can be later applied to the identification 
algorithm. The results of model identifications for Case 1 for dry and rain scenarios and for 
Case 2 for dry influent flow are shown in Fig. 2 (a-c). The sampling time were adjusted to 
0.001 days for Case 1 and 0.01 for Case 2. The figure shows only the model responses for 
aerated tank 4 (DO4).  
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Fig. 2. Response comparison of dynamic influent flows for Cases 1 and 2 - (a) Case 1- dry 
weather;  (b) Case 1- rain weather;  (c) Case 2- dry weather 
 
Almost similar results were obtained for the other two outputs (DO3 and DO5). In Case 2, 
the responses are presented for both outputs (SNO2 and DO5). In dry influent flow, the model 
identification uses 3/4 of the generated data and the other 1/4 are used for validation. As it 
can be observed, the identified model for a given operating conditions correctly reproduces 
the main dynamic characteristics of the activated sludge process. In both cases, the 
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Case 2 
In this case, the simultaneous control of DO level (DO5) in the last aerobic tank and the 
control of nitrate (SNO2) level in the second anoxic tank are considered by manipulation of 
oxygen transfer coefficient (KLa5) and internal recirculation rate (Qintrn).  Models are 
developed for two different operating conditions, i.e. constant influent flow and dry influent 
flow. 

 
3. Subspace method of System Identification 

Subspace identification techniques have been (more than 10 years old) developed and have 
attracted much attention due to their computational simplicity and effectiveness in 
identifying dynamic state space linear multivariable systems. The subspace identification 
technique was developed by (De Moor et al., 1988), (Moonen et al., 1989) and (Verhaegen, 
1994) and widely known as direct subspace state space system identification (4SID) 
methods. The advantage of a subspace method is that it is based on reliable numerical 
algorithms of the QR decomposition and the singular value decomposition (SVD). 
Moreover, this algorithm can easily be implemented for multi input multi output (MIMO) 
system identification. The subspace identification uses projection methods and SVD to 
obtain the model. The identified models in discrete time describe the activated sludge 
process around an operating point and have been converted to standard continuous linear 
time invariant state space system: 
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where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector and 
d(t) is the measurable disturbance vector. A, Bp, Bd and C are matrices of 
appropriate dimensions. Combining the inputs into a single vector gives the 
following: 
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hence introducing some DC offsets, subtraction of the sample mean from the data set is 
done in order to remove these offsets. This is common operation in system identification, as 
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simulation model, no data filtering is necessary. The data set is finally detrended to remove 
linear trends from input-output data before it can be later applied to the identification 
algorithm. The results of model identifications for Case 1 for dry and rain scenarios and for 
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0.001 days for Case 1 and 0.01 for Case 2. The figure shows only the model responses for 
aerated tank 4 (DO4).  
 

(a)                                                                       (b) 

0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

D
O

4 
(m

g/
l)

 

 

Time (days)

Measured Output model

0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

D
O

4 
(m

g/
l)

 

 

Time (days)

Measured Output model

(c) 

0 2 4 6 8 10 12 14
-4

-3

-2

-1

0

1

2

3

4

5

6

S
N

O
2 

[m
g/

l]

 

 

Time (days)

Measured Output model

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

D
O

5 
[m

g/
l]

Time (days)

 

 
Measured Output model

Fig. 2. Response comparison of dynamic influent flows for Cases 1 and 2 - (a) Case 1- dry 
weather;  (b) Case 1- rain weather;  (c) Case 2- dry weather 
 
Almost similar results were obtained for the other two outputs (DO3 and DO5). In Case 2, 
the responses are presented for both outputs (SNO2 and DO5). In dry influent flow, the model 
identification uses 3/4 of the generated data and the other 1/4 are used for validation. As it 
can be observed, the identified model for a given operating conditions correctly reproduces 
the main dynamic characteristics of the activated sludge process. In both cases, the 
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simulation started at zero initial conditions. The performance quality of the models are 
performed by measuring percentage Variance Accounted For (VAF) as follows:  
 

 ˆvar( )(%) 1 *100
var( )
y yVAF
y

 
  
 

 (7)  

 
where y and ŷ  are the measured outputs and predicted outputs, respectively. The best-
identified models are demonstrated by smaller deviations obtained between y  and ŷ  as 
shown in Tables 1 and 2.  
 

Model Order DO3 DO4 DO5 
Constant 6 96.65 96.05 91.4 

Dry 4 87.81 88.85 84.84 
Rain 4 87.28 89.41 82.83 

Table 1. Multivariable DO model identification (%VAF) validation results (Case 1) 
 

Model Order DO5 SNO2 
Constant 4 92.23 97.03 

Dry 4 88.42 85.63 
Table 2. Multivariable DO-Nitrate model identification (%VAF) validation results (Case 2) 
 
On average, good models were obtained from a given percentage of VAF at around 85% and 
above. The identified models obtained were controllable and observable. In both cases, the 
best responses were obtained for models of order 4 for dynamic influent (i.e. dry and rain) 
whilst models of order 6 and 4 for constant influent in Case 1 and Case 2, respectively. The 
poles (eigenvalues of A) shows that both cases the models are open-loop stable. The 
interaction measure using the Relative Gain Array (RGA) is studied in the following Section. 

 
3.1 Model analysis 
The interaction analysis is of importance when considering multivariable systems. The RGA 
analysis should not be interpreted as drawing specific conclusions about the control design 
but rather it is an indication of how inputs and outputs are interacting and hence the most 
appropriate control structure can be selected. The most widely used interaction measure for 
multivariable linear systems so far, is the RGA introduced by (Bristol, 1996).  

 
3.1.1 Steady state analysis 
The steady state RGA(0) can be calculated as follows: 
 
 1(0) pG CA B   (8) 

    1 1(0)
T

p pRGA CA B CA B
     (9) 

 

 

where G(0) is the steady state transfer function matrix and   denotes the Schur product (i.e. 
element-wise multiplication). It can be noted that the calculation for RGA is displayed with 
three decimal points.  
 
Case 1 
The steady state RGA, (0) was calculated for different operating points, i.e. constant, dry 
and rain influent data sets as follows: 
 

  
1.042 0.017 0.024

(0) 0.009 1.059 0.049
0.032 0.041 1.073

const

  
     
   

             (10)       

  
1.508 0.104 0.401

(0) 0.560 2.076 1.640
1.068 0.974 3.041

dry

  
    
   

                 (11)  

 
1.588 0.052 0.540

(0) 0.185 1.492 0.675
0.777 0.439 2.217

rain

  
    
   

              (12) 

 
Clearly, most of the off-diagonal elements in the RGA matrix corresponding to the above 
operating points are negative. For both dry and rain data sets, large values on the diagonal 
and some negative values on the off-diagonal means that the system is difficult to control 
using non-interacting control structure since the process exhibit strong and difficult 
interactions. Here, the RGA matrix represents a system with various extents of interactions: 
dry influent indicates the strongest interaction within control loops, following by a 
moderate interaction for rain condition. The lowest interaction is thereby illustrated by 
constant influent flow. 
 
Case 2 
The analysis of interaction for Case 2 is slightly different from Case 1 so as to allow 
investigations into the effect of nonlinearities. In this case, the simultaneous controls of 
nitrate (SNO2 ) level in the second anoxic tank and DO (DO5) level in the last aerobic tank is 
considered using the manipulation of internal recirculation rate and oxygen transfer 
coefficient, respectively. Models are developed for two different operating conditions, i.e. 
constant influent flow and dry influent flow. Under constant influent, three different 
operating points (refered 1 2,u u   and 3u ) are considered to cover a wider range of operating 

points, i.e. i.e.  1 57552 88 Tu  ;  2 58104 210 Tu  and  3 83007 84.84 Tu  . (0)   were 
obtained as follows: 
 

 1

1.031 0.031
(0)

0.031 1.031
const
u

 
    

             (13) 
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simulation started at zero initial conditions. The performance quality of the models are 
performed by measuring percentage Variance Accounted For (VAF) as follows:  
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where y and ŷ  are the measured outputs and predicted outputs, respectively. The best-
identified models are demonstrated by smaller deviations obtained between y  and ŷ  as 
shown in Tables 1 and 2.  
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Dry 4 87.81 88.85 84.84 
Rain 4 87.28 89.41 82.83 
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Model Order DO5 SNO2 
Constant 4 92.23 97.03 

Dry 4 88.42 85.63 
Table 2. Multivariable DO-Nitrate model identification (%VAF) validation results (Case 2) 
 
On average, good models were obtained from a given percentage of VAF at around 85% and 
above. The identified models obtained were controllable and observable. In both cases, the 
best responses were obtained for models of order 4 for dynamic influent (i.e. dry and rain) 
whilst models of order 6 and 4 for constant influent in Case 1 and Case 2, respectively. The 
poles (eigenvalues of A) shows that both cases the models are open-loop stable. The 
interaction measure using the Relative Gain Array (RGA) is studied in the following Section. 

 
3.1 Model analysis 
The interaction analysis is of importance when considering multivariable systems. The RGA 
analysis should not be interpreted as drawing specific conclusions about the control design 
but rather it is an indication of how inputs and outputs are interacting and hence the most 
appropriate control structure can be selected. The most widely used interaction measure for 
multivariable linear systems so far, is the RGA introduced by (Bristol, 1996).  

 
3.1.1 Steady state analysis 
The steady state RGA(0) can be calculated as follows: 
 
 1(0) pG CA B   (8) 

    1 1(0)
T

p pRGA CA B CA B
     (9) 

 

 

where G(0) is the steady state transfer function matrix and   denotes the Schur product (i.e. 
element-wise multiplication). It can be noted that the calculation for RGA is displayed with 
three decimal points.  
 
Case 1 
The steady state RGA, (0) was calculated for different operating points, i.e. constant, dry 
and rain influent data sets as follows: 
 

  
1.042 0.017 0.024

(0) 0.009 1.059 0.049
0.032 0.041 1.073

const

  
     
   

             (10)       

  
1.508 0.104 0.401

(0) 0.560 2.076 1.640
1.068 0.974 3.041

dry

  
    
   

                 (11)  

 
1.588 0.052 0.540

(0) 0.185 1.492 0.675
0.777 0.439 2.217

rain

  
    
   

              (12) 

 
Clearly, most of the off-diagonal elements in the RGA matrix corresponding to the above 
operating points are negative. For both dry and rain data sets, large values on the diagonal 
and some negative values on the off-diagonal means that the system is difficult to control 
using non-interacting control structure since the process exhibit strong and difficult 
interactions. Here, the RGA matrix represents a system with various extents of interactions: 
dry influent indicates the strongest interaction within control loops, following by a 
moderate interaction for rain condition. The lowest interaction is thereby illustrated by 
constant influent flow. 
 
Case 2 
The analysis of interaction for Case 2 is slightly different from Case 1 so as to allow 
investigations into the effect of nonlinearities. In this case, the simultaneous controls of 
nitrate (SNO2 ) level in the second anoxic tank and DO (DO5) level in the last aerobic tank is 
considered using the manipulation of internal recirculation rate and oxygen transfer 
coefficient, respectively. Models are developed for two different operating conditions, i.e. 
constant influent flow and dry influent flow. Under constant influent, three different 
operating points (refered 1 2,u u   and 3u ) are considered to cover a wider range of operating 

points, i.e. i.e.  1 57552 88 Tu  ;  2 58104 210 Tu  and  3 83007 84.84 Tu  . (0)   were 
obtained as follows: 
 

 1

1.031 0.031
(0)

0.031 1.031
const
u

 
    

             (13) 
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 2

0.682 0.318
(0)

0.318 0.682
const
u

 
   

 
              (14) 

 3

0.948 0.052
(0)

0.052 0.948
const
u

 
   

 
             (15) 

 
The off-diagonal elements in the RGA matrix corresponding to the first operating point are 
negative and the diagonal elements are close to one, the RGA in this case suggests a 
diagonal controller; that is, Qintrn should control nitrate concentration and, KLa5 should be 
used to control DO concentration. For the second operating point, the diagonal elements are 
quite far from one and a big value in the off-diagonal elements indicates strong interaction 
between the control loops. This indicates that a full multivariable control structure is 
required. The diagonal elements in RGA for the third operating point are also close to one 
with low interaction in control loops. In the following study, the second operating point will 
be considered for control design. In addition to that, (0)  for dry influent flow is as 
follows: 

 
1.558 0.558

(0)
0.558 1.558

dry  
    

            (16) 

 
The analysis for the dry influent flow shows almost identical results to constant flow 
whereby, the anti-diagonal elements in the RGA matrix are negative. 

 
3.1.2 Dynamic RGA analysis 
Effective control at nonzero frequencies can be studied using the dynamic RGA. Since the 
controller design methods investigated in this paper require system decoupling at specific 
frequencies, it is useful to examine dynamic RGA and use the resulting information to 
decouple the system at frequency points with highest interactions. In the dynamic RGA, the 
plant gain, G is allowed to be measured at any frequency, w. This dynamic version is the 
extension of the RGA and was proposed by (Kinnaert, 1995) (see reference for a more 
complete discussion). Not surprisingly, the dynamic version of RGA possesses the same 
properties as the steady state RGA and is defined as: 

 

        1 T
RGA G iw G iw G iw

              (17)  

 
In this case, this RGA version is also denoted by ( )G . It is advisory to study this dynamic 
RGA which can provide useful information about the behaviour of ( )G  in the interesting 
frequency range. The ( )G  has been evaluated in both cases of 1 and 2. 
 
Case 1 
The dynamic study of RGA is evaluated in this case for the three influent flow conditions: 
constant, dry and rain. Fig. 3 (a-b)  shows the behaviour of the real part of ( )G for  dry and 
rain respectively, over different frequency ranges. 
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Fig. 3. DRGA gains for dynamic influent flows- a) Case 1- dry weather and b) Case 1 - rain 
weather 
      
It can be clearly seen that for low and middle frequencies (between 10-1rad/d and 101rad/d) 
even higher frequencies the real part is very close to zero for constant influent flow. Hence, 
the RGA does not suggest a different pairing dynamically than statically. The real part of 
diagonal elements in both scenarios of dry and rain indicate the process exhibits strong and 
difficult interactions. For higher frequencies the two dynamic influent conditions (dry and 
rain) have a real part of ( )G  with a deep valley in some part of the off-diagonals. The 
curve corresponding to the constant influent flow does not have this property. Overall, 
dynamic analysis demonstrates that the interactions occur mainly at frequencies about a 
decade below the open loop bandwidth. Therefore, the low frequency decoupling is most 
likely to decentralise the control system and minimise the effect of interactions. 
 
Case 2 
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Fig. 4. DRGA gains for dynamic influent flow- a) Case 2- dry weather 
 
The dynamic behaviour of the real part is studied under dry influent flow condition as 
shown in Fig. 4. Nothing of interest happens for the relevant low and intermediate 
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The off-diagonal elements in the RGA matrix corresponding to the first operating point are 
negative and the diagonal elements are close to one, the RGA in this case suggests a 
diagonal controller; that is, Qintrn should control nitrate concentration and, KLa5 should be 
used to control DO concentration. For the second operating point, the diagonal elements are 
quite far from one and a big value in the off-diagonal elements indicates strong interaction 
between the control loops. This indicates that a full multivariable control structure is 
required. The diagonal elements in RGA for the third operating point are also close to one 
with low interaction in control loops. In the following study, the second operating point will 
be considered for control design. In addition to that, (0)  for dry influent flow is as 
follows: 

 
1.558 0.558

(0)
0.558 1.558

dry  
    

            (16) 

 
The analysis for the dry influent flow shows almost identical results to constant flow 
whereby, the anti-diagonal elements in the RGA matrix are negative. 

 
3.1.2 Dynamic RGA analysis 
Effective control at nonzero frequencies can be studied using the dynamic RGA. Since the 
controller design methods investigated in this paper require system decoupling at specific 
frequencies, it is useful to examine dynamic RGA and use the resulting information to 
decouple the system at frequency points with highest interactions. In the dynamic RGA, the 
plant gain, G is allowed to be measured at any frequency, w. This dynamic version is the 
extension of the RGA and was proposed by (Kinnaert, 1995) (see reference for a more 
complete discussion). Not surprisingly, the dynamic version of RGA possesses the same 
properties as the steady state RGA and is defined as: 

 

        1 T
RGA G iw G iw G iw

              (17)  

 
In this case, this RGA version is also denoted by ( )G . It is advisory to study this dynamic 
RGA which can provide useful information about the behaviour of ( )G  in the interesting 
frequency range. The ( )G  has been evaluated in both cases of 1 and 2. 
 
Case 1 
The dynamic study of RGA is evaluated in this case for the three influent flow conditions: 
constant, dry and rain. Fig. 3 (a-b)  shows the behaviour of the real part of ( )G for  dry and 
rain respectively, over different frequency ranges. 
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Fig. 3. DRGA gains for dynamic influent flows- a) Case 1- dry weather and b) Case 1 - rain 
weather 
      
It can be clearly seen that for low and middle frequencies (between 10-1rad/d and 101rad/d) 
even higher frequencies the real part is very close to zero for constant influent flow. Hence, 
the RGA does not suggest a different pairing dynamically than statically. The real part of 
diagonal elements in both scenarios of dry and rain indicate the process exhibits strong and 
difficult interactions. For higher frequencies the two dynamic influent conditions (dry and 
rain) have a real part of ( )G  with a deep valley in some part of the off-diagonals. The 
curve corresponding to the constant influent flow does not have this property. Overall, 
dynamic analysis demonstrates that the interactions occur mainly at frequencies about a 
decade below the open loop bandwidth. Therefore, the low frequency decoupling is most 
likely to decentralise the control system and minimise the effect of interactions. 
 
Case 2 
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Fig. 4. DRGA gains for dynamic influent flow- a) Case 2- dry weather 
 
The dynamic behaviour of the real part is studied under dry influent flow condition as 
shown in Fig. 4. Nothing of interest happens for the relevant low and intermediate 
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frequency parts for both conditions in this case and it can be conclude that the plots 
demonstrate the interactions occur mainly at frequencies about a decade below the open 
loop bandwidth. The low frequency decoupling is therefore most likely to decentralize the 
control system and to minimise the effect of interactions. 

 
4. MPID Control Design  

In an attempt to improve the industry acceptance of multivariable control techniques, this 
study investigates three existing multivariable tuning methods and proposes a new one. 
These methods require only simple data-driven model of step or frequency response type. 
Most of the existing controller on WWTPs are not designed or tuned effectively. Hence, a 
systematic control design method is proposed, which reduces the controller commissioning 
time as well as the tuning efforts. The methods considered are those suggested in (Davison, 
1976), (Penttinen and Koivo, 1980) and (Maciejowski, 1989) and these are compared with a 
new proposed method.  
The design of MPID controllers is best carried out using simple linear models which can be 
derived from step or frequency tests. These models are usually valid for a single operating 
point and the procedure should be repeated for other points of interest. Linear models can 
also be derived by linearising the ASM model around a desired operating point but the 
resulting model requires to be reduced in size and validated using real data. Hence, the use 
of data-driven model is preferred. The motivation for using data-driven model is to gain 
additional insight into the dynamic behaviour of the WWTP and to allow for a more precise 
determination of the best tuning parameters for each control technique investigated, where 
the latter will subsequently enable a more objective comparison of the control techniques. 
Disturbances, in the form of variations of the influent flow rate, Qin, influent ammonium 
concentration, SNH and influent substrate SS are considered in this study. The loop 
interactions are taken into account to determine suitable controller structures for a more 
effective decoupling.  

 
4.1 Tuning methods 
This section study tuning of control structures for multivariable systems. For controller 
tuning, simplicity, as well as optimality, is important. Our intention is to present a 
framework for multivariable PID controller design which is simple to understand and 
implement. The control structures and tuning methods investigated in this study are briefly 
described below. 

 
4.1.1 Davison method 
The Davison method uses only integral action. The control law is given by: 

 1( ) ( )iu s K e s
s

           (18)     

where 1(0)iK G   is the integral feedback gain, G(0) is the zero frequency gain of the open 
loop transfer function matrix, G(s), and e(s) denote the output error. The scalar parameter   
is the tuning parameter. Since the integral gain is proportional to the inverse of the plant 

 

dynamics at zero frequency, this method is expected to provide good decoupling 
characteristics at low frequencies.  

 
4.1.2 Penttinen – Koivo method  
The Penttinen- Koivo is slightly more advanced than the Davison method. A proportional 
term has been added to the control law, giving:                  
 
 1( ) ( ) ( )c iu s K e s K e s

s
                      (19) 

 

 where,   1

c pK CB


  and 1 (0)iK G  . The Davison and Penttinen are similar in the sense 

that the integral gains of both controllers are linearly related to the inverse of the plant 
dynamics at zero frequency, and both controllers are therefore expected to provide good 
control-loop decoupling characteristics at low frequencies. Unlike the Davison, the 
Penttinen controller also includes proportional control action, where the feedback gain is 
linearly related to the inverse of the plant dynamics at high frequencies. Therefore, by 
following the same line of reasoning as above, the latter controller is expected to exhibit 
good decoupling characteristics at high frequencies. The term CBp represents the initial slope 
of the step output response, i.e.: 

 
1,1 1,

,1 ,

m

p

m m m

y y
CB

y y

 
 

  
 
 

 
  

 

                              (20) 

 
where m is the system order and ,i jy  is the initial slope of output, i, in response to a step at 

input, j. It can be shown that CGp is the inverse of the plant dynamics at high frequencies by 
writing the Laurent series expansion of the transfer function G(s) as follows: 

 
2

2 3( ) ...p p pCG CFG CF G
G s

s s s
                 (21) 

 

A good approximation of G(s) at high frequencies is ( ) pG s CB s is given by (21). As /iK s  
terms are also negligible at high frequencies compared to Kc, so it can be concluded that 

( ) /cG s K I s , thus giving the following closed-loop transfer function: 
 

 
1

1

( ) 0
( )   for large 

0 ( )n

H s
I GK GK s

H s



 
    
  


  


                    (22) 

The tuning parameters,  and   can be used to tune the proportional and integral gains. 

 
4.1.3 Maciejowski method  
M3 extends M2 to non-zero frequencies and hence the controller gains are linearly related to 
the inverse of the plant dynamics at a particular design frequency, wb, i.e. 
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frequency parts for both conditions in this case and it can be conclude that the plots 
demonstrate the interactions occur mainly at frequencies about a decade below the open 
loop bandwidth. The low frequency decoupling is therefore most likely to decentralize the 
control system and to minimise the effect of interactions. 

 
4. MPID Control Design  

In an attempt to improve the industry acceptance of multivariable control techniques, this 
study investigates three existing multivariable tuning methods and proposes a new one. 
These methods require only simple data-driven model of step or frequency response type. 
Most of the existing controller on WWTPs are not designed or tuned effectively. Hence, a 
systematic control design method is proposed, which reduces the controller commissioning 
time as well as the tuning efforts. The methods considered are those suggested in (Davison, 
1976), (Penttinen and Koivo, 1980) and (Maciejowski, 1989) and these are compared with a 
new proposed method.  
The design of MPID controllers is best carried out using simple linear models which can be 
derived from step or frequency tests. These models are usually valid for a single operating 
point and the procedure should be repeated for other points of interest. Linear models can 
also be derived by linearising the ASM model around a desired operating point but the 
resulting model requires to be reduced in size and validated using real data. Hence, the use 
of data-driven model is preferred. The motivation for using data-driven model is to gain 
additional insight into the dynamic behaviour of the WWTP and to allow for a more precise 
determination of the best tuning parameters for each control technique investigated, where 
the latter will subsequently enable a more objective comparison of the control techniques. 
Disturbances, in the form of variations of the influent flow rate, Qin, influent ammonium 
concentration, SNH and influent substrate SS are considered in this study. The loop 
interactions are taken into account to determine suitable controller structures for a more 
effective decoupling.  

 
4.1 Tuning methods 
This section study tuning of control structures for multivariable systems. For controller 
tuning, simplicity, as well as optimality, is important. Our intention is to present a 
framework for multivariable PID controller design which is simple to understand and 
implement. The control structures and tuning methods investigated in this study are briefly 
described below. 

 
4.1.1 Davison method 
The Davison method uses only integral action. The control law is given by: 
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           (18)     

where 1(0)iK G   is the integral feedback gain, G(0) is the zero frequency gain of the open 
loop transfer function matrix, G(s), and e(s) denote the output error. The scalar parameter   
is the tuning parameter. Since the integral gain is proportional to the inverse of the plant 

 

dynamics at zero frequency, this method is expected to provide good decoupling 
characteristics at low frequencies.  

 
4.1.2 Penttinen – Koivo method  
The Penttinen- Koivo is slightly more advanced than the Davison method. A proportional 
term has been added to the control law, giving:                  
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s
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 where,   1
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

  and 1 (0)iK G  . The Davison and Penttinen are similar in the sense 

that the integral gains of both controllers are linearly related to the inverse of the plant 
dynamics at zero frequency, and both controllers are therefore expected to provide good 
control-loop decoupling characteristics at low frequencies. Unlike the Davison, the 
Penttinen controller also includes proportional control action, where the feedback gain is 
linearly related to the inverse of the plant dynamics at high frequencies. Therefore, by 
following the same line of reasoning as above, the latter controller is expected to exhibit 
good decoupling characteristics at high frequencies. The term CBp represents the initial slope 
of the step output response, i.e.: 
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where m is the system order and ,i jy  is the initial slope of output, i, in response to a step at 

input, j. It can be shown that CGp is the inverse of the plant dynamics at high frequencies by 
writing the Laurent series expansion of the transfer function G(s) as follows: 

 
2

2 3( ) ...p p pCG CFG CF G
G s

s s s
                 (21) 

 

A good approximation of G(s) at high frequencies is ( ) pG s CB s is given by (21). As /iK s  
terms are also negligible at high frequencies compared to Kc, so it can be concluded that 

( ) /cG s K I s , thus giving the following closed-loop transfer function: 
 

 
1

1

( ) 0
( )   for large 

0 ( )n

H s
I GK GK s
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
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
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The tuning parameters,  and   can be used to tune the proportional and integral gains. 

 
4.1.3 Maciejowski method  
M3 extends M2 to non-zero frequencies and hence the controller gains are linearly related to 
the inverse of the plant dynamics at a particular design frequency, wb, i.e. 
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1( ),c bK G jw  and 1 ( )i bK G jw  . The calculation 1( )bG jw will typically lead to a complex 
matrix, and hence a real approximation of 1( )bG jw  is required. This can be achieved by 
solving the following optimisation problem:  
 

 ( , ) ( ) ( ) ,

( 1,..., )

Tj j
b bJ K G jw K e G jw K e

diag n 

          
 

             (23) 

 
By appropriately selecting the matrix K to minimise J the product of ( )bG jw  and K will be 
close to the identity matrix at the design frequency, and therefore this will provide good 
control-loop decoupling characteristics around this frequency. This method suffers from a 
non-trivial frequency analysis.   

 
4.1.4 A proposed new method  
Before entering the method description, a short remark on the relevance of the problem is 
presented. Nowadays many wastewater treatment plants use very simple control 
technologies such as PID control. To this point, the study presented herein is then an 
attempt to give a quantitative basis, as rigorously as possible, to a practice that is widely 
adopted in industrial process. The initial benchmark result indicates that a multivariable 
PID controller was very effective for the control problem posed by the WWTP benchmark 
problem. The studied control design strategies presented a reasonable performance of 
system. Since the main characteristic of the proposed approach is to improve control 
performance while retaining the simplicity of the multiloop strategy, it will involve 
enhancements to the PID control calculations; such that, we try to combine some 
specification of different existing methods to obtain both a good performance of control as 
well as disturbance rejection, also to minimise the interaction. To devise the proposed 
method, some quantities useful to characterise an existing tuning method is discussed. The 
Davison is of no use where integrators are present in the process. Penttinen-Koivo requires 
the system that have a high frequency motion. The design technique proposed by 
Maciejowski approximates decoupling at a selected frequency. It has many tractable 
properties and an intuitive control structure. Initial results also indicated that the controller 
was effective only for the control problem where all the loops have similar bandwidth 
frequencies and it also requires a rigorous frequency analysis. This work therefore proposes 
a new control design technique that retains some of the properties that makes the 
Maciejowski controller tractable, but eliminates the need for frequency analysis and it is 
more effective for systems which have control loops of different bandwidths. The proposed 
control design technique assumes the following control structure: 
 

 1( ) ( )u s e s K K
s

    
 

                          (24) 

where,  

 1
(0) (1 ) pK G CG 


                   (25) 

 

The proportional and integral feedback gain of the proposed controller is a blend between 
the inverse of the plant dynamics at zero frequency and the inverse of the plant dynamics at 
high frequency. Thus, provided the plant have low-pass frequency characteristics, a good 
approximation of 1( )bG jw  can be obtained by appropriately selecting the additional 
controller tuning parameter, 0 1    . 

 
4.2 Optimal tuning of MPID controller 
To allow for an objective comparison of the performance achieved by the MPID controllers, 
the tuning parameters for each controller has been adjusted such that the following penalty 
function, J is minimised:  

    
0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t


                (26) 

 
where (26) minimises the energy corresponds in some sense to keep the state and the control 

close to zero.  ( ) ( ) ( ) Tx k x k v k  denotes the controller integrator states. The weighting 
matrices, Q and R, are non-negative definite symmetric matrices; tuned in such a way that a 
satisfactory closed loop performance is obtained. In this case, we obtain Q = diag (106, 106, 
106) and R = 0.001I that produces good performance. It was assumed that the process 
dynamics and controller states could be described using: 
 
  ( ) ( ) ( )x t Ax t Bu t             (27) 
 ( ) ( )y t Cx t       (28)   
 
Under these assumptions the MPID control laws could be expressed as:     
 
 ( ) ( )u t Kx t             (29) 

  ( ) ( ) ( ) ( )u t Kx t K Ax t Bu t                  (30) 
 
where K = [Kc Ki]. The penalty function may be expressed in terms of K as: 

  
0

( ) ( ) ( ) ( )T T TJ x t Q K RK x t x t Px t


                  (31) 

 
By assuming that the closed loop system is asymtotically stable so that J becomes: 

 (0) (0)TJ x Px            (32) 
 
 where P denotes the solution to the following steady state Lyapunov equation: 

 0T T
c cA P PA Q K RK              (33)  
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1( ),c bK G jw  and 1 ( )i bK G jw  . The calculation 1( )bG jw will typically lead to a complex 
matrix, and hence a real approximation of 1( )bG jw  is required. This can be achieved by 
solving the following optimisation problem:  
 

 ( , ) ( ) ( ) ,

( 1,..., )

Tj j
b bJ K G jw K e G jw K e

diag n 

          
 

             (23) 

 
By appropriately selecting the matrix K to minimise J the product of ( )bG jw  and K will be 
close to the identity matrix at the design frequency, and therefore this will provide good 
control-loop decoupling characteristics around this frequency. This method suffers from a 
non-trivial frequency analysis.   

 
4.1.4 A proposed new method  
Before entering the method description, a short remark on the relevance of the problem is 
presented. Nowadays many wastewater treatment plants use very simple control 
technologies such as PID control. To this point, the study presented herein is then an 
attempt to give a quantitative basis, as rigorously as possible, to a practice that is widely 
adopted in industrial process. The initial benchmark result indicates that a multivariable 
PID controller was very effective for the control problem posed by the WWTP benchmark 
problem. The studied control design strategies presented a reasonable performance of 
system. Since the main characteristic of the proposed approach is to improve control 
performance while retaining the simplicity of the multiloop strategy, it will involve 
enhancements to the PID control calculations; such that, we try to combine some 
specification of different existing methods to obtain both a good performance of control as 
well as disturbance rejection, also to minimise the interaction. To devise the proposed 
method, some quantities useful to characterise an existing tuning method is discussed. The 
Davison is of no use where integrators are present in the process. Penttinen-Koivo requires 
the system that have a high frequency motion. The design technique proposed by 
Maciejowski approximates decoupling at a selected frequency. It has many tractable 
properties and an intuitive control structure. Initial results also indicated that the controller 
was effective only for the control problem where all the loops have similar bandwidth 
frequencies and it also requires a rigorous frequency analysis. This work therefore proposes 
a new control design technique that retains some of the properties that makes the 
Maciejowski controller tractable, but eliminates the need for frequency analysis and it is 
more effective for systems which have control loops of different bandwidths. The proposed 
control design technique assumes the following control structure: 
 

 1( ) ( )u s e s K K
s

    
 

                          (24) 

where,  

 1
(0) (1 ) pK G CG 


                   (25) 

 

The proportional and integral feedback gain of the proposed controller is a blend between 
the inverse of the plant dynamics at zero frequency and the inverse of the plant dynamics at 
high frequency. Thus, provided the plant have low-pass frequency characteristics, a good 
approximation of 1( )bG jw  can be obtained by appropriately selecting the additional 
controller tuning parameter, 0 1    . 

 
4.2 Optimal tuning of MPID controller 
To allow for an objective comparison of the performance achieved by the MPID controllers, 
the tuning parameters for each controller has been adjusted such that the following penalty 
function, J is minimised:  

    
0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t


                (26) 

 
where (26) minimises the energy corresponds in some sense to keep the state and the control 

close to zero.  ( ) ( ) ( ) Tx k x k v k  denotes the controller integrator states. The weighting 
matrices, Q and R, are non-negative definite symmetric matrices; tuned in such a way that a 
satisfactory closed loop performance is obtained. In this case, we obtain Q = diag (106, 106, 
106) and R = 0.001I that produces good performance. It was assumed that the process 
dynamics and controller states could be described using: 
 
  ( ) ( ) ( )x t Ax t Bu t             (27) 
 ( ) ( )y t Cx t       (28)   
 
Under these assumptions the MPID control laws could be expressed as:     
 
 ( ) ( )u t Kx t             (29) 

  ( ) ( ) ( ) ( )u t Kx t K Ax t Bu t                  (30) 
 
where K = [Kc Ki]. The penalty function may be expressed in terms of K as: 

  
0

( ) ( ) ( ) ( )T T TJ x t Q K RK x t x t Px t


                  (31) 

 
By assuming that the closed loop system is asymtotically stable so that J becomes: 

 (0) (0)TJ x Px            (32) 
 
 where P denotes the solution to the following steady state Lyapunov equation: 

 0T T
c cA P PA Q K RK              (33)  
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where cA A BK  . Thus, for each MPID control scheme, the controller parameters,   is 
selected such that the matrix norm of P is minimised, i.e.: 

 min P


,             (34) 

 

where   is given in Table 3 and Table 4 for both Cases 1 and 2, respectively.  
                       

 Constant Dry Rain 

M1 68.11 0.238 6.30
18.7 64.95 16.63
5.09 11.7 62.33

iK
 

    
   

 

126   

59.14 26.06 40.77
37.30 124.33 65.83
9.23 23.39 28.20

iK
 

    
   

 

195   

75.294 13.37 41.365
18.162 80.695 39.243
20.946 19.925 38.292

iK
 

    
   

 

239   

M2 0.164 0.004 0.01
0.0 0.183 0.003

0.003 0.002 0.144
cK

 
   
  

 

68.11 0.238 6.30
18.7 64.95 16.63
5.09 11.7 62.33

iK
 

    
   

 

283     545   

0.201 0.04 0.02
0.009 0.127 0.232
0.019 0.014 0.297

cK
  

   
   

 

59.14 26.06 40.77
37.30 124.33 65.83
9.23 23.39 28.20

iK
 

    
   

 

166    510   

0.159 0.088 0.185
0.063 0.113 0.002
0.041 0.043 0.131

cK
 

   
   

 

75.294 13.37 41.365
18.162 80.695 39.243
20.946 19.925 38.292

iK
 

    
   

 

500  784   

M3 0.013 0.0 0.001
0.001 0.013 0.0
0.0 0.001 0.011

K
  

   
  

 

4800  2581800  53   

0.014 0.0 0.0
0.003 0.015 0.002
0.001 0.002 0.014

K
 
   
  

 

4000  1326700  50   

0.013 0.002 0.004
0.001 0.016 0.0

0.003 0.011 0.031
K

 
    
  

 

9300  1733700  100   

M4 37.029 0.165 0.860
6.271 37.464 0.004
1.665 3.497 32.878

K
 

   
   

 

2  1250  0.98   

25.530 2.595 8.371
0.097 21.744 17.936
5.620 2.438 12.232

K
  

   
   

 

2  8669  0.95   

25.849 4.399 1.839
9.249 21.571 5.454
6.849 5.581 14.655

K
 

    
   

 

13.8  4914  0.96   

Table 3. Parameters for MPID controllers for different Methods (Case 1) 
 

 Constant Dry 
M2 181.673 29.368

1.627 0.511
Kc

 
  
 

3427 5302
3.5 36.9iK

 
  
 

 

63.266  170.561   

        283.386 494.794
0.058 0.635cK

 
  
 

 

5642.8 6996
2.2 7.5iK

 
  
 

 

31.038  117.231   

M3 0.002 0.013
0.0 0.008

K  
   

 

4800  2581800  0.027   

0.001 0.03
0.0 0.025

K
 

  
 

 

4000  1326700  0.002   
M4 1694.5 564.1

11.3 8.7
K

 
 
 

 

3.798  518.408  , 0.988   

4483.1 4624.4
1.7 6.2

K  
  
 

 

25  3183  , 0.985   

Table 4. Parameters for MPID controllers for different Methods (Case 2) 
 

 

Therefore, the controller parameters   are optimal in the sense of minimising the cost 
function J for specific Q and R. For each method, the above problem was solved using the 
Matlab numerical optimisation function. This approach is justified when the process 
interaction is strong and the trial-and-error tuning approach would be time consuming. The 
optimal tuning matrices for all MPID controllers for Cases of 1 and 2 at various operating 
points are evaluated. The input and output weights in the cost function may be tuned in 
such a way that satisfactory closed loop performance, as well as effluent quality 
performance e.g. nitrogen removal improvement could be achieved. 

 
4.3 Evaluation criteria 
The MPID control strategies are tested using the nonlinear ASM1 model and the controller 
performance is evaluated using an index of the Aeration Energy (AE) as described in (Copp,  
2002): 

 
514 2

7
1

24 0.4032 ( ) 7.8408 ( )
t d

Lai Lait d
i

AE K t K t dt
T






                             (35) 

 
where iLaK  is the oxygen transfer coefficient (d-1) in each reactor. d is the unit of time (a 
day). The average AE (kWh/d) is calculated for the last 7 days of the dynamic data (T).  

 
5. Simulation Results  

The MPID controller was evaluated in a simulation study where the full ASM1 was used to 
model the process. The nonlinear ASM1 was used for simulating the process. The constant 
influent flow has been utilised first to assess the controllers' ability to respond to set point 
changes, whilst the varying influent flow (dry and rain weather conditions) are used to 
provide a statistical evaluation of the controllers' performance with respect to disturbance 
rejection. Note that the time constants for DO and SNO are of the order of minutes (DO) and 
hours (SNO), respectively. The aim of the controller in Case 1 is to maintain the DO levels in 
the last three aerobic tanks at DO3=1.5mg/l, DO4=3mg/l and DO5=2mg/l. In Case 2, the set 
points for DO and the nitrate were set at 2mg/l and 1mg/l, respectively. Notice that, for 
simplification, each method of tuning is denoted as M1, M2, M3 and M4 methods for 
Davison, Penttinen-Koivo, Maciejowski and proposed new method, respectively. For the 
first operating condition (constant influent flow), for both cases of 1 and 2, M4 clearly gives 
a promising result for compensating the changes in setpoints and better performance for 
disturbance rejection. This can be first revealed from Table 5 that summarise the results 
obtained for each control strategy for Case 1. The simulation result for Case 2 is plotted in 
Fig. 5(a-b). 
The result demonstrates that M4 gives a better performance compared to the others for both 
setpoint tracking and disturbance rejection. M4 exhibits somewhat faster responses than the 
other controllers. The overshoots to setpoint changes are small and the settling time is about 
10-15 minutes as shown in Table 5. The closed loop response for a setpoint change in M2 is 
satisfactory. The average settling time for DOs given by all control strategies is about 20 
minutes which seems reasonable, except for DO5 given by M1 which takes much longer to 
settle. M3 needs to be fairly tuned in order to obtain a good tracking and disturbance 
rejection performance. M2 tends to make the system unstable as the controller gain is 

www.intechopen.com



Multivariable PID control of an Activated Sludge Wastewater Treatment Process 17

 

where cA A BK  . Thus, for each MPID control scheme, the controller parameters,   is 
selected such that the matrix norm of P is minimised, i.e.: 

 min P


,             (34) 

 

where   is given in Table 3 and Table 4 for both Cases 1 and 2, respectively.  
                       

 Constant Dry Rain 

M1 68.11 0.238 6.30
18.7 64.95 16.63
5.09 11.7 62.33

iK
 

    
   

 

126   

59.14 26.06 40.77
37.30 124.33 65.83
9.23 23.39 28.20

iK
 

    
   

 

195   

75.294 13.37 41.365
18.162 80.695 39.243
20.946 19.925 38.292

iK
 

    
   

 

239   

M2 0.164 0.004 0.01
0.0 0.183 0.003

0.003 0.002 0.144
cK

 
   
  

 

68.11 0.238 6.30
18.7 64.95 16.63
5.09 11.7 62.33

iK
 

    
   

 

283     545   

0.201 0.04 0.02
0.009 0.127 0.232
0.019 0.014 0.297

cK
  

   
   

 

59.14 26.06 40.77
37.30 124.33 65.83
9.23 23.39 28.20

iK
 

    
   

 

166    510   

0.159 0.088 0.185
0.063 0.113 0.002
0.041 0.043 0.131

cK
 

   
   

 

75.294 13.37 41.365
18.162 80.695 39.243
20.946 19.925 38.292

iK
 

    
   

 

500  784   

M3 0.013 0.0 0.001
0.001 0.013 0.0
0.0 0.001 0.011

K
  

   
  

 

4800  2581800  53   

0.014 0.0 0.0
0.003 0.015 0.002
0.001 0.002 0.014

K
 
   
  

 

4000  1326700  50   

0.013 0.002 0.004
0.001 0.016 0.0

0.003 0.011 0.031
K

 
    
  

 

9300  1733700  100   

M4 37.029 0.165 0.860
6.271 37.464 0.004
1.665 3.497 32.878

K
 

   
   

 

2  1250  0.98   

25.530 2.595 8.371
0.097 21.744 17.936
5.620 2.438 12.232

K
  

   
   

 

2  8669  0.95   

25.849 4.399 1.839
9.249 21.571 5.454
6.849 5.581 14.655

K
 

    
   

 

13.8  4914  0.96   

Table 3. Parameters for MPID controllers for different Methods (Case 1) 
 

 Constant Dry 
M2 181.673 29.368

1.627 0.511
Kc

 
  
 

3427 5302
3.5 36.9iK

 
  
 

 

63.266  170.561   

        283.386 494.794
0.058 0.635cK

 
  
 

 

5642.8 6996
2.2 7.5iK

 
  
 

 

31.038  117.231   

M3 0.002 0.013
0.0 0.008

K  
   

 

4800  2581800  0.027   

0.001 0.03
0.0 0.025

K
 

  
 

 

4000  1326700  0.002   
M4 1694.5 564.1

11.3 8.7
K

 
 
 

 

3.798  518.408  , 0.988   

4483.1 4624.4
1.7 6.2

K  
  
 

 

25  3183  , 0.985   

Table 4. Parameters for MPID controllers for different Methods (Case 2) 
 

 

Therefore, the controller parameters   are optimal in the sense of minimising the cost 
function J for specific Q and R. For each method, the above problem was solved using the 
Matlab numerical optimisation function. This approach is justified when the process 
interaction is strong and the trial-and-error tuning approach would be time consuming. The 
optimal tuning matrices for all MPID controllers for Cases of 1 and 2 at various operating 
points are evaluated. The input and output weights in the cost function may be tuned in 
such a way that satisfactory closed loop performance, as well as effluent quality 
performance e.g. nitrogen removal improvement could be achieved. 

 
4.3 Evaluation criteria 
The MPID control strategies are tested using the nonlinear ASM1 model and the controller 
performance is evaluated using an index of the Aeration Energy (AE) as described in (Copp,  
2002): 

 
514 2

7
1

24 0.4032 ( ) 7.8408 ( )
t d

Lai Lait d
i

AE K t K t dt
T






                             (35) 

 
where iLaK  is the oxygen transfer coefficient (d-1) in each reactor. d is the unit of time (a 
day). The average AE (kWh/d) is calculated for the last 7 days of the dynamic data (T).  

 
5. Simulation Results  

The MPID controller was evaluated in a simulation study where the full ASM1 was used to 
model the process. The nonlinear ASM1 was used for simulating the process. The constant 
influent flow has been utilised first to assess the controllers' ability to respond to set point 
changes, whilst the varying influent flow (dry and rain weather conditions) are used to 
provide a statistical evaluation of the controllers' performance with respect to disturbance 
rejection. Note that the time constants for DO and SNO are of the order of minutes (DO) and 
hours (SNO), respectively. The aim of the controller in Case 1 is to maintain the DO levels in 
the last three aerobic tanks at DO3=1.5mg/l, DO4=3mg/l and DO5=2mg/l. In Case 2, the set 
points for DO and the nitrate were set at 2mg/l and 1mg/l, respectively. Notice that, for 
simplification, each method of tuning is denoted as M1, M2, M3 and M4 methods for 
Davison, Penttinen-Koivo, Maciejowski and proposed new method, respectively. For the 
first operating condition (constant influent flow), for both cases of 1 and 2, M4 clearly gives 
a promising result for compensating the changes in setpoints and better performance for 
disturbance rejection. This can be first revealed from Table 5 that summarise the results 
obtained for each control strategy for Case 1. The simulation result for Case 2 is plotted in 
Fig. 5(a-b). 
The result demonstrates that M4 gives a better performance compared to the others for both 
setpoint tracking and disturbance rejection. M4 exhibits somewhat faster responses than the 
other controllers. The overshoots to setpoint changes are small and the settling time is about 
10-15 minutes as shown in Table 5. The closed loop response for a setpoint change in M2 is 
satisfactory. The average settling time for DOs given by all control strategies is about 20 
minutes which seems reasonable, except for DO5 given by M1 which takes much longer to 
settle. M3 needs to be fairly tuned in order to obtain a good tracking and disturbance 
rejection performance. M2 tends to make the system unstable as the controller gain is 
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increased. M3 has better performance than M1 or M2, but it has slightly bigger overshoot 
than M4. Although the performance of M3 is satisfactory in some outputs, it uses the more 
time-consuming “sequential” identification procedure for obtaining the tuning constant. The 
performance of M1 is worst with the slowest response and large overshoot, as seen in Table 
5. This method is not applicable in Case 2. 
 

 OS(%) Ts (min) SSQ 

DO3M1 6.7 28 4.18e-5 
DO4 M1 8.3 43.2 3.08e-4 
DO5 M1 25 57.6 9.8e-4 
DO3 M2 0.7 7.2 3.28e-5 
DO4 M2 2 8.64 2.19e-4 
DO5 M2 15 5.76 9.76e-4 
DO3 M3 0.2 8.64 3.28e-5 
DO4 M3 1.8 8.65 1.65e-4 
DO5 M3 10 8.64 9.59e-4 
DO3 M4 0.3 2.85 9.97e-6 
DO4 M4 2 2.88 7.10e-5 
DO5 M4 6 2.80 4.26e-4 

Table 5. Dynamic performance comparison of MPID controllers (Case 1)- (OS: Overshoot, Ts: 
Settling time, SSQ: the residual sum of squares) 
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Fig. 5. Dynamic performance comparison of MPID controllers (Case 2)- a) set point tracking; 
b) disturbance rejection 
 
It is also of great interest to study how the controllers perform under different operating 
conditions (dynamic influent flows). The statistical evaluation of the performance for Case 1 
for each control strategy under dry and rain condition is depicted in Fig. 6, whilst Fig. 7 
reveals the performance (Case 2) of disturbance rejection under dry condition.  
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Fig. 6. Dynamic influent statistics (Case 1)- a) Dry weather; b) Rain weather 
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Fig. 7. Disturbance rejection under dry influent flow (Case 2) 
 
Due to high nonlinearities in Case 2, only dry influent flow has been investigated and an 
adaptive controller is required to design the controller for rain condition. In all cases the 
result from the statistical evaluation of the performance (Fig. 6) shows lower output error 
for M4. The result of simulation from the 8th to the 10th day of influent data is shown in Fig. 
7. These results will also confirm that M4 has the best performance. M3 shows good tracking 
properties and compensates the disturbances for DO5, but it has no control on SNO2 as it is 
evident from the low value of Qintrn. M4 is also more flexible and the tuning parameter, α 
makes the plant frequency analysis easier to handle. In addition, M2 performs better than 
M3, but not as good as the M4. 

 
5.1 Robustness performance analysis 
The control design strategy is also analysed in term of robustness performance requirement 
and in this case, constant influent condition is applied. Fig. 8 shows the open loop singular 
values for Cases 1 and 2 
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increased. M3 has better performance than M1 or M2, but it has slightly bigger overshoot 
than M4. Although the performance of M3 is satisfactory in some outputs, it uses the more 
time-consuming “sequential” identification procedure for obtaining the tuning constant. The 
performance of M1 is worst with the slowest response and large overshoot, as seen in Table 
5. This method is not applicable in Case 2. 
 

 OS(%) Ts (min) SSQ 

DO3M1 6.7 28 4.18e-5 
DO4 M1 8.3 43.2 3.08e-4 
DO5 M1 25 57.6 9.8e-4 
DO3 M2 0.7 7.2 3.28e-5 
DO4 M2 2 8.64 2.19e-4 
DO5 M2 15 5.76 9.76e-4 
DO3 M3 0.2 8.64 3.28e-5 
DO4 M3 1.8 8.65 1.65e-4 
DO5 M3 10 8.64 9.59e-4 
DO3 M4 0.3 2.85 9.97e-6 
DO4 M4 2 2.88 7.10e-5 
DO5 M4 6 2.80 4.26e-4 

Table 5. Dynamic performance comparison of MPID controllers (Case 1)- (OS: Overshoot, Ts: 
Settling time, SSQ: the residual sum of squares) 
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Fig. 5. Dynamic performance comparison of MPID controllers (Case 2)- a) set point tracking; 
b) disturbance rejection 
 
It is also of great interest to study how the controllers perform under different operating 
conditions (dynamic influent flows). The statistical evaluation of the performance for Case 1 
for each control strategy under dry and rain condition is depicted in Fig. 6, whilst Fig. 7 
reveals the performance (Case 2) of disturbance rejection under dry condition.  
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Fig. 7. Disturbance rejection under dry influent flow (Case 2) 
 
Due to high nonlinearities in Case 2, only dry influent flow has been investigated and an 
adaptive controller is required to design the controller for rain condition. In all cases the 
result from the statistical evaluation of the performance (Fig. 6) shows lower output error 
for M4. The result of simulation from the 8th to the 10th day of influent data is shown in Fig. 
7. These results will also confirm that M4 has the best performance. M3 shows good tracking 
properties and compensates the disturbances for DO5, but it has no control on SNO2 as it is 
evident from the low value of Qintrn. M4 is also more flexible and the tuning parameter, α 
makes the plant frequency analysis easier to handle. In addition, M2 performs better than 
M3, but not as good as the M4. 

 
5.1 Robustness performance analysis 
The control design strategy is also analysed in term of robustness performance requirement 
and in this case, constant influent condition is applied. Fig. 8 shows the open loop singular 
values for Cases 1 and 2 
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Fig. 8. Open loop singular values - a) Case 1; b) Case 2 
 
The singular values are relatively small at low frequencies in both cases indicating that 
controlling the variables of interest are not an easy task. Moreover, there is a significant 
difference in magnitude in each loop for design case 2 indicating that controlling the 
variables are therefore more difficult. The ability of multivariable PID controller to deal with 
this difficulty is especially of importance since its closed loop performance is dictacted by 
low frequency gains of the variable of interest. The open loop bandwidth of 0.02rad/min is 
given by Case 1 whilst Case 2 shows a significant difference of bandwidth frequency in each 
control loop. 
Fig. 9  compares  the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 1. It can be seen that the magnitudes of 
sensitivity for the three variables (DOs) at low frequency are higher for M1 compared to 
other control strategies. This implies that performance of M1 in rejecting disturbance is 
worst. The magnitude of (I + GK)-1 for M2 is lowest followed by M4 and M3. This means 
that M2 is less susceptible to disturbances. Note that although the closed loop sensitivity 
resulting from M2 is superior to that with the other three control strategies (M1, M3 and 
M4), the worst-case gain behaviour is much worse as can be seen in Fig. 9. This is also leads 
to a lower stability margin provided by M2 controller design. For robustness, we also need 
to keep GK (I + GK)-1 small. Although M1 gives the best result in terms of noise immunity, it 
is however the lowest performance in terms of closed loop bandwidth and in rejecting 
disturbance. The methods of M3 and M4 give satisfactory results, being particularly 
effective for a given frequency range. However, M4 gives slightly better results compared to 
M3 especially the closed loop bandwidth and disturbance rejection. Considering the overall 
performance characteristics given by all different control strategies, the method M4 is the 
most reliable. 
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Fig. 9. Performance robustness analysis of Case 1 - sensitivity-  a) Davison method; b) 
Penttinen method; c) Maciejowski method; d) Proposed new method 
 
Fig. 10 compares the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 2. Method M1 is not applicable, therefore it 
is not applied in this case. In this case, we have two different frequency bandwidth in the 
control loops. This leads to challenges in control tuning to obtain simulataneously a good 
performance in both of loops. It can be seen that the measurement noise is being amplified 
over a smaller range of frequencies in method M2. However, M2 considers the worst 
performance in term of disturbance rejection, i.e. highest magnitude of (I + GK)-1 at low 
frequency. As previously discussed in Case 1, M3 and M4 also give better performance in 
disturbance rejection in Case 2. Fig. 10 shows that, although M3 gives the best result in 
rejecting disturbance of loop 2 (DO5), i.e. lowest magnitude of (I + GK)-1 at low frequency, it 
is however the worst in noise suppression, i.e. highest magnitude of GK (I + GK)-1 for loop 1 
(SNO;2) at high frequency. Moreover, M3 has lower stability margin compared to M4 and 
M2. Overall, M4 provides satisfactory results in the simultaneous multiloop control tuning. 
It shows good performance in both loops in terms of closed loop bandwidth and can 
suppress noise better. 
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Fig. 8. Open loop singular values - a) Case 1; b) Case 2 
 
The singular values are relatively small at low frequencies in both cases indicating that 
controlling the variables of interest are not an easy task. Moreover, there is a significant 
difference in magnitude in each loop for design case 2 indicating that controlling the 
variables are therefore more difficult. The ability of multivariable PID controller to deal with 
this difficulty is especially of importance since its closed loop performance is dictacted by 
low frequency gains of the variable of interest. The open loop bandwidth of 0.02rad/min is 
given by Case 1 whilst Case 2 shows a significant difference of bandwidth frequency in each 
control loop. 
Fig. 9  compares  the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 1. It can be seen that the magnitudes of 
sensitivity for the three variables (DOs) at low frequency are higher for M1 compared to 
other control strategies. This implies that performance of M1 in rejecting disturbance is 
worst. The magnitude of (I + GK)-1 for M2 is lowest followed by M4 and M3. This means 
that M2 is less susceptible to disturbances. Note that although the closed loop sensitivity 
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to keep GK (I + GK)-1 small. Although M1 gives the best result in terms of noise immunity, it 
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M3 especially the closed loop bandwidth and disturbance rejection. Considering the overall 
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Fig. 10 compares the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 2. Method M1 is not applicable, therefore it 
is not applied in this case. In this case, we have two different frequency bandwidth in the 
control loops. This leads to challenges in control tuning to obtain simulataneously a good 
performance in both of loops. It can be seen that the measurement noise is being amplified 
over a smaller range of frequencies in method M2. However, M2 considers the worst 
performance in term of disturbance rejection, i.e. highest magnitude of (I + GK)-1 at low 
frequency. As previously discussed in Case 1, M3 and M4 also give better performance in 
disturbance rejection in Case 2. Fig. 10 shows that, although M3 gives the best result in 
rejecting disturbance of loop 2 (DO5), i.e. lowest magnitude of (I + GK)-1 at low frequency, it 
is however the worst in noise suppression, i.e. highest magnitude of GK (I + GK)-1 for loop 1 
(SNO;2) at high frequency. Moreover, M3 has lower stability margin compared to M4 and 
M2. Overall, M4 provides satisfactory results in the simultaneous multiloop control tuning. 
It shows good performance in both loops in terms of closed loop bandwidth and can 
suppress noise better. 
 
 

www.intechopen.com



PID Control, Implementation and Tuning22

 

(a)                                                                                     (b) 

 
(c) 

 
Fig. 10. Performance robustness analysis of Case 2 - sensitivity-  a) Penttinen method; b) 
Maciejowski method; c) Proposed new method 
 
Fig. 11 shows the plots of input disturbance,   1I GK G 

  for both cases of 1 and 2. In this 
case, the variables of control should prevail in zero steady state errors subject to input 
disturbances and/or changes in setpoint, i.e. changes in the oxygen transfer coefficients or 
internal recirculation flow. This can be clearly observed from the positive gradients at low 
frequency regions of the plots given by all control strategies. It can also be seen from Fig. 11 
that the magnitude of   1I GK G 

  is relatively higher for M2 (50-55 dB at 10-2 rad/min) 
compared with M4 (40-45 dB at 10-2 rad/min), M3 (30-35 dB at 10-2 rad/min rad/min) and 
M1 (15-20 dB at 10-2 rad/min rad/min). Though M2 shows a good performance to input 
disturbance in Case 1, it appears to be the worst performance due to input disturbance in 
Case 2. Since the performance measure given by M4 is satisfactory in both cases, the method 
is proven to be useful for different frequency bandwidth. 
 
 
 

 

(a)                                                                          (b)         

Fig. 11. Performance robustness analysis - input disturbance-  a) Case 1; b) Case 2 

 
5.2 Performance evaluation 
Here, the performance of the plant is presented for Cases 1 and 2. In Case 1, the effect of 
controlling three dissolved oxygen in the last three aerated tanks is shown in Fig. 12. As 
seen in Fig. 12, the DO in reactor 1 and reactor 2 are not controlled. Clearly, the same output 
of DO, both in the effluent and under flow are demonstrated, as the ones given by the DO in 
the last aerated tank (reactor), both for dry and rain flow conditions. Control strategies were 
also evaluated against the criteria described in (35) for Case 2 as shown in Table 6. 
 

 Aeration energy 
(kWh/d) 

Average NH4-
Neff(mg/l) 

Average NO3-
Neff(mg/l) 

Benchmark 7241.27 2.528 12.439 
M2     6532.14 (-9.8%) 3.029 (+19.8%) 12.489 (+0.4%) 
M3 6387.12 (-11.7%) 2.267 (-10.3%) 14.53 (+16.8%) 
M4 6376.11(-11.9%) 2.411 (-4.6%) 12.045 (-3.2%) 

Table 6.  Evaluation criteria for different control tuning strategies for dry influent case. 
 
The basic control strategy in benchmark simulation study, proposed by (Copp, 2002) is used 
as a reference case for comparison. The evaluation criteria considered are aeration energy, 
effluent ammonia nitrogen and effluent nitrate nitrogen. The MPID control strategies were 
evaluated for DO-Nitrate dry weather model against single loop PI controllers used in the 
COST benchmark. A lower aeration cost (AE) is achieved with MPID. These are about 9.8%, 
11.7% and 11.9%, for M2, M3 and M4, respectively. The average effluent ammonia (NH4-
Neff) was reduced by 10.3% and 4.6%, for M3 and M4, respectively. M2 gave slightly higher 
average effluent ammonia but still below the discharge limit (4mg/l). Better total nitrogen 
removal is achieved using M4 for both ammonia and nitrate in the effluent. 
 
 
 
 

www.intechopen.com



Multivariable PID control of an Activated Sludge Wastewater Treatment Process 23

 

(a)                                                                                     (b) 

 
(c) 

 
Fig. 10. Performance robustness analysis of Case 2 - sensitivity-  a) Penttinen method; b) 
Maciejowski method; c) Proposed new method 
 
Fig. 11 shows the plots of input disturbance,   1I GK G 

  for both cases of 1 and 2. In this 
case, the variables of control should prevail in zero steady state errors subject to input 
disturbances and/or changes in setpoint, i.e. changes in the oxygen transfer coefficients or 
internal recirculation flow. This can be clearly observed from the positive gradients at low 
frequency regions of the plots given by all control strategies. It can also be seen from Fig. 11 
that the magnitude of   1I GK G 

  is relatively higher for M2 (50-55 dB at 10-2 rad/min) 
compared with M4 (40-45 dB at 10-2 rad/min), M3 (30-35 dB at 10-2 rad/min rad/min) and 
M1 (15-20 dB at 10-2 rad/min rad/min). Though M2 shows a good performance to input 
disturbance in Case 1, it appears to be the worst performance due to input disturbance in 
Case 2. Since the performance measure given by M4 is satisfactory in both cases, the method 
is proven to be useful for different frequency bandwidth. 
 
 
 

 

(a)                                                                          (b)         

Fig. 11. Performance robustness analysis - input disturbance-  a) Case 1; b) Case 2 

 
5.2 Performance evaluation 
Here, the performance of the plant is presented for Cases 1 and 2. In Case 1, the effect of 
controlling three dissolved oxygen in the last three aerated tanks is shown in Fig. 12. As 
seen in Fig. 12, the DO in reactor 1 and reactor 2 are not controlled. Clearly, the same output 
of DO, both in the effluent and under flow are demonstrated, as the ones given by the DO in 
the last aerated tank (reactor), both for dry and rain flow conditions. Control strategies were 
also evaluated against the criteria described in (35) for Case 2 as shown in Table 6. 
 

 Aeration energy 
(kWh/d) 

Average NH4-
Neff(mg/l) 

Average NO3-
Neff(mg/l) 

Benchmark 7241.27 2.528 12.439 
M2     6532.14 (-9.8%) 3.029 (+19.8%) 12.489 (+0.4%) 
M3 6387.12 (-11.7%) 2.267 (-10.3%) 14.53 (+16.8%) 
M4 6376.11(-11.9%) 2.411 (-4.6%) 12.045 (-3.2%) 

Table 6.  Evaluation criteria for different control tuning strategies for dry influent case. 
 
The basic control strategy in benchmark simulation study, proposed by (Copp, 2002) is used 
as a reference case for comparison. The evaluation criteria considered are aeration energy, 
effluent ammonia nitrogen and effluent nitrate nitrogen. The MPID control strategies were 
evaluated for DO-Nitrate dry weather model against single loop PI controllers used in the 
COST benchmark. A lower aeration cost (AE) is achieved with MPID. These are about 9.8%, 
11.7% and 11.9%, for M2, M3 and M4, respectively. The average effluent ammonia (NH4-
Neff) was reduced by 10.3% and 4.6%, for M3 and M4, respectively. M2 gave slightly higher 
average effluent ammonia but still below the discharge limit (4mg/l). Better total nitrogen 
removal is achieved using M4 for both ammonia and nitrate in the effluent. 
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Fig. 12. Plant performance of DO for Case 1, (a) dry influent condition; (b) rain influent 
condition 

 
6. Conclusion 

The objective of the study was to use MPID controllers to improve closed loop performance 
and reduce loop interactions. Three tuning strategies were compared and a new one was 
introduced. All methods require information only from simple step or frequency tests. The 
methods are based on decoupling the system at different frequency points. To identify the 
most effective control strategy, RGA analysis were performed. It was proposed to use 
DRGA to find the best frequency point for decoupling. A procedure was also developed to 
fine-tune the controllers using an optimisation procedure. Extensive simulation studies on a 
nonlinear ASM1 model demonstrated that the proposed method performed significantly 
better in setpoint tracking properties and disturbance rejection and gave the best 
performance with respect to decoupling capabilities. The results suggest considerable 
improvement can be achieved in terms of energy savings and nitrogen removal with a 
properly tuned MPID controller. The methods demonstrate that the controller tuning 
influences multiloop system performance. 
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Fig. 12. Plant performance of DO for Case 1, (a) dry influent condition; (b) rain influent 
condition 
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The objective of the study was to use MPID controllers to improve closed loop performance 
and reduce loop interactions. Three tuning strategies were compared and a new one was 
introduced. All methods require information only from simple step or frequency tests. The 
methods are based on decoupling the system at different frequency points. To identify the 
most effective control strategy, RGA analysis were performed. It was proposed to use 
DRGA to find the best frequency point for decoupling. A procedure was also developed to 
fine-tune the controllers using an optimisation procedure. Extensive simulation studies on a 
nonlinear ASM1 model demonstrated that the proposed method performed significantly 
better in setpoint tracking properties and disturbance rejection and gave the best 
performance with respect to decoupling capabilities. The results suggest considerable 
improvement can be achieved in terms of energy savings and nitrogen removal with a 
properly tuned MPID controller. The methods demonstrate that the controller tuning 
influences multiloop system performance. 
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