
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 241

0

Low-Complexity and High-Speed

Constant Multiplications for Digital
Filters Using Carry-Save Arithmetic

Oscar Gustafsson and Lars Wanhammar
Linköping University

Sweden

1. Introduction

In many digital filter implementations the filter coefficients are known beforehand. Based on
this fact, the problem of constant multiplications, replacing general multipliers with shifts and
adders1, has been an active research topic for a few decades. Much work has been done on
finding algorithms and filter coefficients where the filter coefficients can be represented using
few signed-power-of-two (SPT) terms (Lim, 1990; Yli-Kaakinen & Saramäki, 2007). Further-
more, there has been work on realizing constant multipliers using few adders (Dempster &
Macleod, 1994; Gustafsson et al., 2006; Thong & Nicolici, 2009). Additionally, mainly moti-
vated by transposed direct form FIR filters, as shown in Fig. 1, several algorithms have been
proposed for utilizing redundancies when a single data is multiplied with several constant co-
efficients, known as multiple constant multiplication (Aksoy et al., 2010; Dempster & Macleod,
1995; Gustafsson, 2007; Hartley, 1996; Potkonjak et al., 1996; Voronenko & Püschel, 2007).
Most of this previous work has considered carry-propagation adders (CPAs), i.e., adders with
two inputs and one output, as shown in Fig. 2. Even though there has been many different
techniques proposed to accelerate the carry-propagation, these typically lead to an increased
area and power consumption. For high-speed implementations, an alternative is to use carry-
save adders (CSAs). These adders do not propagate the carry, but instead have two outputs,
one for the sum and one for the carry. Furthermore, as no carries are propagated, the adder
can use the carry-input as a third input. A carry-save adder is illustrated in Fig. 3.
The mapping between CPAs and CSAs is not consistent (Gustafsson, 2008). Hence, there is
a need to solve the CSA constant multiplications using specialized algorithms. The inconsis-
tency is illustrated in Fig. 4, where a multiple constant multiplication for the coefficients 3, 11,

Fig. 1. Transposed direct form FIR filter.

1 Adders refers to both adders and subtractors.

10

www.intechopen.com

Digital Filters242

Fig. 2. Carry-propagation adder.

Fig. 3. Carry-save adder.

and 27 is shown. In Fig. 4, << n denotes a left-shift by n, i.e., a multiplication by 2n. The CPA
solution in Fig. 4(a) is optimal in terms of adders. However, when the three CPAs are mapped
to CSAs, as shown in Fig. 4(b) it is clear that a CPA can result in zero, one, or two CSAs. The
different cases are summarized in Table 1.
In this chapter we consider the realization of constant multiplications using CSAs. Primarily,
we will consider the case where the input is in non-redundant format, typically two’s com-
plement, and the output is in carry-save format. In most application one would eventually
convert the carry-save format back to non-redundant form using a CPA. However, it should
be noted that it is possible to use CSAs throughout the application and that stability can be
retained in wave digital filters (Kleine & Noll, 1987). As such we also consider single constant
multiplication with carry-save input. In general, it is possible to use algorithms for CPAs as
one CPA results in two CSAs when both inputs are in carry-save format, see Table 1. How-
ever, the number of cascaded adders does not follow directly, as the CSAs can be arranged
in different structures. The work presented in this chapter originates from (Gustafsson et al.,
2004; 2001; Gustafsson & Wanhammar, 2007). Related work has later on been presented in
(Aksoy & Güneş, 2008; Hosangadi et al., 2006; Jaccottet et al., 2010).

2. Carry-Save Arithmetic

A carry-save adder as that in Fig. 3 can add three two’s complement numbers and produce
the result as two two’s complement numbers, where the sum of the two outputs is the sum of
the three inputs. The weights of the carry-bits are one higher than those of the sum-bits. This
leads to two things: the least significant carry-bit is always zero and the MSB of the sum and

CPA input 1 CPA input 2 Number of CSAs

multiplier input multiplier input 0
multiplier input adder output 1

adder output adder output 2

Table 1. Possible cases of mapping a CPA to CSA.

www.intechopen.com

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 243

(a) (b)

Fig. 4. Multiple constant multiplication for {3, 11, 27}. (a) Optimal CPA solution. (b) Mapped
CSA solution.

carry have different weights. The latter causes problems when adding these in later stages as
all two’s complement vectors should have the same length for addition to work.

2.1 Subtraction in carry-save arithmetic

To subtract a two’s complement number using CPAs, the standard way is to negate the num-
ber to be subtracted and add a one to the carry-input of the least significant full adder, indi-
cated by cin in Fig. 2. However, for a carry-save adder there is no such “free” input. Instead
one can utilize the least significant carry-bit and set that to one in case of a subtraction. This
clearly only works if one of the three inputs should be subtracted. For cases where two inputs
should be subtracted it is often possible to change the sign of the output such that the initially
positive term is now subtracted. This will be further illustrated in the example in Section 3.2.

2.2 Handling of sign-bits in carry-save arithmetic

Consider the addition of the three numbers 0, 0.5, and −0.5 in two’s complement representa-
tion with a CSA as shown in Fig. 3. The inputs, {A, B, D}, and outputs, {C, S} are

A 0.0 0.010

B 0.1 0.510

D 1.1 −0.510

C 01.
S 1.0

Now, as the result, 0, is within the valid range of the number representation used we can
without any problems remove the leading carry bit and obtain the result in a carry save repre-
sentation as C = 1.0, S = 1.0. Adding these gives the expected result C + S = 0.0 = 010, after
removing the carry out of the carry propagation addition. However, now shift the results right
one position to obtain C = 1.10, S = 1.10. If we add these vectors we get C + S = 1.00 = −110.

www.intechopen.com

Digital Filters244

� �

��

��

��

��

���

Fig. 5. Graph representation of the shift-and-add network in Fig. 4(b). The graph is directed
from left to right.

Obviously, we can not straightforwardly shift the carry and the sum vector after a carry-
save addition, despite the fact that they are both in two’s complement representation and
the shifted result for each vector separately is correct.
Shifting of carry-save data is crucial in the realization of CSA-based constant multiplication,
and, hence, a shiftable representation is required.
In (Noll, 1991) this erroneous behavior was named carry overflow. A solution for a single CSA
was proposed as replacing the most significant carry and sum bits with

c′0 = cout (1)

s′0 = s0 ⊕ c0 ⊕ cout (2)

where c′0 and s′0 are the corrected sign-bits. For the simple example above we would obtain the
corrected vectors C = 0.0, S = 0.0 which clearly can be shifted arbitrarily and still resulting in
a correct sum.
For the general case that we have two vectors C and S and want to truncate them to a given
number of bits the sign-bits can be computed as

c′i = ci ⊕ ci+1 ⊕ si+1 (3)

s′i = si ⊕ ci+1 ⊕ si+1 (4)

Hence, it is possible to add an arbitrary number of words using only one guard bit and obtain
a valid two’s complement representation with correct sign-bits that can be shifted arbitrarily,
given that we know that the final result is within the given range.
An alternative technique is of course to sign-extend the sum-output. However, this would
lead to an increasing wordlength compared to the corresponding non-redundant wordlength.
Furthermore, that approach can not be used in recursive algorithms.

3. Carry-Save Arithmetic Constant Multipliers with Non-Redundant Input

It is in many cased practical to represent the shift-and-add networks as graphs, where the
edges corresponds to shifts and the vertices corresponds to additions. Typically, the sign of
the operation is represented on the edges. As an example, the network in Fig. 4(b) has a
graph-representation as in Fig. 5, where the thin lines correspond to data in non-redundant
format, while the bold lines corresponds to data in carry-save format. Each node has a value,
called a fundamental, which is the ratio between the output of the adder and the input, i.e., the
multiplier coefficient. The fundamentals are indicated with a bold font. The adder graphs are
directed. However, for clarity, the arrows are neglected.
It is possible to define graphs corresponding to all possible interconnections of N adders. They
have the following properties (Gustafsson & Wanhammar, 2007):

• Each edge can either be in non-redundant or in carry-save representation.

www.intechopen.com

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 245

������

�

�

���������������

�

�

�

�

�

������

������

������

������

�

������

������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

���������������

Fig. 6. Possible carry-save adder graphs with non-redundant input generating different coef-
ficient sets for 0 to 6 carry-save adders. The graphs are directed from left to right.

• The cost of a vertex is the number of incoming edges corresponding to non-redundant
words plus two times the number of incoming edges corresponding to carry-save words
minus two.

• The output edge(s) of a vertex is in carry-save representation, except for the initial ver-
tex.

All possible combinations of edge values for the given graphs can be searched and the
minimum-adder solution can easily be found. In Fig. 6 all possible graphs generating dif-
ferent sets of coefficients using up to six carry-save adders is shown. As in Fig. 5 the thin
lines represent data in a non-redundant format, while the bold lines represent carry-save for-
mat. Note that cost-0 graph 1 has a non-redundant output. The first graphs for each nonzero
cost corresponds to the CSD multiplier. Hence, this case is always covered by the proposed
approach.
It is worth noting that when four or more carry-save adders are required in a vertex it is
possible to re-arrange the adders into, e.g., a Wallace tree (Wallace, 1964). This will reduce the
adder depth of the multiplier.

3.1 Results

Exhaustive searches have been performed for multipliers containing up to six adders. This has
been done by searching all different combinations of possible shifts and signs for all graphs
up to six adders and saving the minimum number of adders in a table. The result is that all
integer numbers between 1 and 2k for wordlength k up to 19 can be obtained using six adders.
The maximum number of adders required for a given wordlength is shown in Fig. 7 for both
CSD multipliers and the proposed approach.

www.intechopen.com

Digital Filters246

Number of adders Graph number Maximum nonzero digits Minimum adder depth

0 1 1 0
2 2 0

1 1 3 1

2 1 4 2

3 1 5 3
2 6 3

4 1 6 3
2 7 4
3 8 4

5 1 7 4
2 8 4
3 9 5
4 12 5
5 9 4
6 10 5

6 1 8 4
2 9 4
3 10 5
4 13 6
5 10 5
6 11 6
7 12 5
8 14 6
9 12 5

10 16 6
11 11 5

Table 2. Maximum number of nonzero digits and minimum adder depth for the CSA multi-
plier graphs in Fig. 6 with non-redundant input data.

The average number of adders required for a given wordlength is shown in Fig. 8. It is clear
that savings only occurs when the coefficient wordlength is larger than nine bits. Figure 9
shows the average savings using the proposed approach. For 19 coefficient bits the savings
are just over 10%.
The maximum number of nonzero digits and minimum depth for each graph is shown in
Table 2. It can be seen that the graph 1 for each nonzero cost, the CSD multiplier graph, has the
smallest adder depth, but also the lowest number of maximum nonzero digits. Furthermore,
the graph with the highest number of maximum nonzero digits also is one of the multipliers
with the largest depth. Based on the observations in Fig. 6 and Table 2 we can conclude that
the maximum number of non-zero digits for K > 0 carry-save adders is

3 · 2
K−1

2 (5)

for odd K and
2

K+1
2 (6)

for even K.

0 5 10 15
0

2

4

6

8

10

M
ax

im
um

 n
um

be
r o

f a
dd

er
s

Wordlength [bits]

Graph−based multiplier
CSD multiplier

0 5 10 15
0

1

2

3

4

5

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Wordlength [bits]

Graph−based multiplier
CSD multiplier

www.intechopen.com

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 247

0 5 10 15
0

2

4

6

8

10

M
ax

im
um

 n
um

be
r o

f a
dd

er
s

Wordlength [bits]

Graph−based multiplier
CSD multiplier

Fig. 7. Maximum number of CSAs as a function of coefficient wordlength for CSD multipliers
and proposed optimal multipliers.

0 5 10 15
0

1

2

3

4

5

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Wordlength [bits]

Graph−based multiplier
CSD multiplier

Fig. 8. Average number of CSAs as a function of coefficient wordlength for CSD multipliers
and proposed optimal multipliers.

www.intechopen.com

Digital Filters248

0 5 10 15
0

2

4

6

8

10

12
A

ve
ra

ge
 sa

vi
ng

s o
ve

r C
SD

 [%
]

Wordlength [bits]
Fig. 9. Average percentage savings of CSAs for the proposed optimal multipliers over CSD
multipliers as a function of coefficient wordlength.

3.2 Example

Consider the coefficient 693 = (101̄01̄01̄0101)CSD. To implement a multiplication with 693
using a CSD multiplier requires four CSAs. However, using graph-based multiplier 2 of cost
3 in Fig. 6 only three CSAs are required. The resulting graph and implementation is shown in
Fig. 10, where << n denotes a left-shift of n bits.
For the example it can be noted that the first fundamental is −11 instead of 11 to avoid two
negative input terms2. This is compensated for in the second adder stage.

���

� �

��

���

���

���

���

�
�
�

�
�
�

�
�
�

��� ���

���

���

Fig. 10. Optimal CSA-based multiplication with 693: (a) graph representation directed form
left to right and (b) structure.

2 In this particular case it could also have been possible to use the representation 11 = 1 + 2 + 8 to avoid
subtractions.

www.intechopen.com

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 249

0 5 10 15
0

2

4

6

8

10

12

A
ve

ra
ge

 sa
vi

ng
s o

ve
r C

SD
 [%

]

Wordlength [bits] ������

�

��

�

��

�

��

��

�

��

�

��

�

�

��

�

�

�

�

�

������

������

������

������

�

��

�

��

�

�

�

�

��

�������

�����������
���

��

��

���

���

���

���

���

��

��

���

���

���

��

��

���

��

���

���

���

���

��

���

���

���

���

����������
���
 �����������
���

Fig. 11. Possible carry-save adder graphs with carry-save input generating different coefficient
sets for 0 to 10 carry-save adders. The graphs are directed from left to right.

4. Carry-Save Arithmetic Constant Multipliers with Carry-Save Representation In-

put

When the input data is in carry-save representation it is possible to use the same graphs as
in (Gustafsson et al., 2006). Now all words are in carry-save representation, and, hence, the
number of carry-save adders is two times the number of incoming edges minus two. The
possible graphs with up to ten adders are shown in Fig. 11.

4.1 Results

The possible savings in number of adders are similar to those in (Gustafsson et al., 2006) and
the average number of adders is shown in Fig. 12. The average savings of the graph-based
multipliers over CSD multipliers are shown in Fig. 13. Here, it can be seen that the average
savings are about 25% for 19-bits coefficients. Also, the maximum number of CSAs required
is reduced from 18 CSAs for a worst-case 19-bit CSD multiplier to 10 CSAs for a graph-based
multiplier.

www.intechopen.com

Digital Filters250

0 5 10 15
0

2

4

6

8

10

12

Wordlength [bits]

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Graph−based multiplier
CSD multiplier

Fig. 12. Average number of CSAs as a function of coefficient wordlength for CSD multipliers
and proposed optimal multipliers with carry-save input.

0 5 10 15
0

5

10

15

20

25

30

Wordlength [bits]

A
ve

ra
ge

 sa
vi

ng
s o

ve
r C

SD
 [%

]

Fig. 13. Average percentage savings of CSAs for the proposed optimal multipliers over CSD
multipliers as a function of coefficient wordlength with carry-save input.

www.intechopen.com

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 251

0 5 10 15
0

2

4

6

8

10

12

Wordlength [bits]

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Graph−based multiplier
CSD multiplier

0 5 10 15
0

5

10

15

20

25

30

Wordlength [bits]

A
ve

ra
ge

 sa
vi

ng
s o

ve
r C

SD
 [%

]

The adder depth for the CSA-based graphs can not be easily computed based on results from
the CPA-based graphs. The maximum number of nonzero digits and minimum depth for each
graph is shown in Table 3. Using a similar reasoning as in (Gustafsson et al., 2006) we get that
the maximum number of nonzero digits for a coefficient realized with K carry-save adders is
(K is always even)

2K/2 (7)

5. Multiple Constant Multiplication

For the case where several coefficients are multiplied with the same input a different approach
can be used. Here, it is beneficial to be able to share partial results among the different coef-
ficients to be able to reduce the total number of adders. It can be noted that the minimum
number of adders per coefficient is simply one. Ideally, one would just need one extra adder
for each unique3 result. This is clearly the case for transposed direct form FIR filters, where the
additions between the delay elements in Fig. 1, called structural additions, can be replaced by
subtractions for negative coefficients. It may be beneficial to use CSA-based structural adders
to obtain a high-speed implementation (Jain et al., 1991).

5.1 Proposed Algorithm

The proposed algorithm can be divided into an optimal part and a suboptimal part. The
optimal part of the algorithm is described as:

1. The algorithm only considers positive odd fundamentals. Hence, negative fundamen-
tals should be negated and even fundamentals should be divided by a suitable power
of two to obtain an odd fundamental.

2. The fundamental one and fundamentals on the form 2n ± 1 are removed as no CSAs
are required to obtain these fundamentals. The remaining fundamentals form a set of
unrealized fundamentals.

3. From the set of unrealized fundamentals add to the realized fundamental set all fun-
damentals, if any, that can be realized using one CSA, i.e., fundamentals on the form
2m ± 2n ± 1, where m > n > 1.

4. Form all possible combinations of the fundamentals in the realized set times a power
of two and a power of two, i.e., fundamentals on the form 2ma ± 1 and |a ± 2m|, where
a is an already realized fundamental. If any of these fundamentals are found in the
unrealized set, move these to the realized set. If any fundamental has been realized and
there are unrealized fundamentals remaining go to 4.

Each fundamental, added in steps 3 and 4, costs one adder. If all fundamentals are realized
after this stage, the realization is known to be optimal in terms of adders. If not, at least two
adders must be used to obtain one of the remaining fundamentals.
There are three different ways to obtain new fundamentals using two adders: fundamentals
that requires two adders to be realized on its own, adding two powers of two to a power of two
of an already realized fundamental, and a combination of two already realized fundamentals.
As the two first ways realizes yet another fundamental, these two have preference over the
combination of realized fundamentals. When two adders are required it is no longer certain
that the solution is optimal. The possibly suboptimal part of the algorithm is described as:

3 As shifts are free and sign often can be compensated for at some other part of the algorithm, all coeffi-
cients are normalized to be odd and positive.

www.intechopen.com

Digital Filters252

Number of adders Graph number Maximum nonzero digits Minimum adder depth
2 1 2 2
4 1 3 3

2 4 4
6 1 4 4

2 5 5
3 6 5
4 8 6

8 1 5 5
2 6 6
3 7 6
4 9 7
5 8 6
6 12 7
7 10 7
8 16 8
9 12 7
10 9 6
11 8 7

10 1 6 5
2 13 8
3 11 8
4 9 8
5 17 9
6 7 7
7 8 7
8 9 7
9 10 8
10 13 8
11 10 7
12 8 6
13 16 9
14 18 9
15 14 8
16 12 8
17 16 8
18 20 9
19 12 8
20 10 7
21 32 10
22 20 9
23 16 8
24 18 8
25 24 9
26 24 8
27 15 8
28 12 7
29 18 8
30 12 8
31 11 8
32 14 9
33 10 8
34 13 9

Table 3. Maximum number of nonzero digits and minimum adder depth for the CSA multi-
plier graphs in Fig. 11 with carry-save input data.

www.intechopen.com

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 253

5. From the set of unrealized fundamentals find all fundamentals that can be realized us-
ing two CSAs, i.e., fundamentals on the form 2m ± 2n ± 2p ± 1, where m > n > p > 1.
These fundamental can be derived from one and up to ten different fundamentals of
cost-1. Find the cost-1 fundamental that is common to most unrealized fundamentals
and add that fundamental to the realized set. Also move all fundamentals that can be
realized from that cost-1 fundamental to the realized set. If there are more than one
cost-1 fundamental that can realize the maximal number of fundamentals chose the
minimum one. If there are unrealized fundamentals remaining and any fundamental
was added go to 4.

6. If there are unrealized fundamentals remaining, form the set of all fundamentals that
can be realized from one previously realized fundamental and two powers of two, i.e.,
on the form |a ± 2m ± 2n| or |2ma ± 2n ± 1|. If any fundamental in the unrealized set
is present in the generated set, move one of the fundamentals to the generated set.
One intermediate fundamental is also generated, select the one (out of two) with the
lowest magnitude to add to the set of realized fundamentals. If there are unrealized
fundamentals remaining and any fundamental was added go to 4.

7. If there are unrealized fundamentals remaining, form a set of combinations of previ-
ously realized fundamentals times a power of two, i.e., on the form |2ma ± b|. If any
fundamental in the unrealized set is present in the generated set, move one of the fun-
damentals to the generated set. If there are unrealized fundamentals remaining and any
fundamental was added go to 4.

8. If there are unrealized fundamentals remaining, it is necessary to add a complete coef-
ficient to the realized fundamental set. Complete coefficients with minimum number
of adders can be generated using the work described in Section 3. Select the coefficient
with the smallest sum of all its fundamentals (Dempster & Macleod, 1995). If there are
there are unrealized fundamentals remaining go to 4.

5.2 Results

We compare our algorithm with the RAGn algorithm (Dempster & Macleod, 1995), where the
resulting multiplier block is transformed to CSAs. Furthermore, we compare it to a modified
version of the algorithm in (Pasko et al., 1999). In the original algorithm all subexpressions
down to two bits were identified. As subexpressions with two bits are not useful when using
CSAs, the algorithm is modified so that it only identifies subexpressions with at least three
bits.
For sets of 25 coefficient with varying number of coefficient bits the average number of adders
are shown in Fig. 14. For comparison the results using carry-propagation adders and the
RAGn algorithm is included. Figure 14 shows that the proposed algorithm is better than both
the modified algorithm from (Pasko et al., 1999) and design using CPAs. However, if only the
actual number of adders is considered the CPA approach is better for nine coefficient bits and
above. This is due to the greater flexibility in using intermediate fundamentals for CPAs.
The average number of adders for different sized coefficient sets with 12-bits coefficients is
shown in Fig. 15. Again, the proposed algorithm is better compared to other algorithms. The
multiplier block based on CPAs requires fewer adders for all sizes of the coefficient set with
12-bits coefficients.
It is clear that when CSAs are required the proposed algorithm is better than both the modified
algorithm from (Pasko et al., 1999), which is based on subexpression sharing, and using the
RAGn algorithm for CPAs. However, it is also clear that if only the number of adders, i.e., the

www.intechopen.com

Digital Filters254

6 8 10 12 14 16
10

20

30

40

50

60

70

Wordlength (bits)

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Proposed approach
Modified Pasko et al.
Transformed RAGn
CPA RAGn

Fig. 14. Average number of adders for sets of 25 random coefficients.

10 20 30 40 50
10

20

30

40

50

60

70

80

90

Number of coefficients

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Proposed approach
Modified Pasko et al.
Transformed RAGn
CPA RAGn

Fig. 15. Average number of adders for sets with 12-bits coefficients.

www.intechopen.com

Low-Complexity and High-Speed Constant
Multiplications for Digital Filters Using Carry-Save Arithmetic 255

6 8 10 12 14 16
10

20

30

40

50

60

70

Wordlength (bits)

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Proposed approach
Modified Pasko et al.
Transformed RAGn
CPA RAGn

10 20 30 40 50
10

20

30

40

50

60

70

80

90

Number of coefficients

A
ve

ra
ge

 n
um

be
r o

f a
dd

er
s

Proposed approach
Modified Pasko et al.
Transformed RAGn
CPA RAGn

chip area, is of interest the RAGn algorithm with CPAs is the best choice. It should be noted
that for the CSA multiplier block each coefficient requires a CPA to convert the carry-save
representation to a non-redundant form, unless the redundant representation is used in later
processing such as when carry-save structural adders are used.

6. Conclusions

Carry-save adders are useful to obtain high-speed implementation as carry-propagation can
be avoided. However, when designing constant multipliers special care must be taken where
the properties of the CSAs are considered. In this chapter we described the optimal design of
single constant multipliers for coefficients with up to 19 bits wordlength. Both the cases with
non-redundant representation as well as carry-save representation of the input was consid-
ered.
An algorithm for the multiple constant multiplication problem, suitable for transposed direct
form FIR filters using carry-save representation of intermediate results but non-redundant
input, was also presented.
For the non-redundant input cases, the results show that the number of CSAs is higher than
the corresponding number of CPAs. Hence, from a complexity point of view, CPAs are ad-
vantageous. As such, the proposed techniques are useful when a high-speed realization is
required.

7. References

Aksoy, L. & Güneş, E. O. (2008). Area optimization algorithms in high-speed digital FIR filter
synthesis, Proc. Symp. Integrated Circuits System Design, pp. 64–69.

Aksoy, L., Güneş, E. O. & Flores, P. (2010). Search algorithms for the multiple constant
multiplications problem: Exact and approximate, Microprocessors and Microsystems
34(5): 151–162.

Dempster, A. G. & Macleod, M. D. (1994). Constant integer multiplication using minimum
adders, IEE Proc. Circuits Devices Systems, Vol. 141, pp. 407–413.

Dempster, A. G. & Macleod, M. D. (1995). Use of minimum-adder multiplier blocks in FIR
digital filters, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing
42(9): 569–577.

Gustafsson, O. (2007). Lower bounds for constant multiplication problems, IEEE Transactions
on Circuits and Systems II: Express Briefs 54(11): 974–978.

Gustafsson, O. (2008). Comments on’A 70 MHz Multiplierless FIR Hilbert Transformer in 0.35
µm Standard CMOS Library’, IEICE Trans. Fundamentals 91(3): 899–900.

Gustafsson, O., Dempster, A. G., Johansson, K., Macleod, M. D. & Wanhammar, L. (2006).
Simplified design of constant coefficient multipliers, Circuits Systems Signal Processing
25(2): 225–251.

Gustafsson, O., Dempster, A. G. & Wanhammar, L. (2004). Multiplier blocks using carry-save
adders, Proc. IEEE Int. Symp. Circuits Systems, Vol. 2, pp. 473–476.

Gustafsson, O., Ohlsson, H. & Wanhammar, L. (2001). Minimum-adder integer multipliers
using carry-save adders, Proc. IEEE Int. Symp. Circuits Systems, pp. 709–712.

Gustafsson, O. & Wanhammar, L. (2007). Low-complexity constant multiplication using carry-
save arithmetic for high-speed digital filters, Proc. Int. Symp. Image and Signal Process-
ing and Analysis, pp. 212–217.

www.intechopen.com

Digital Filters256

Hartley, R. I. (1996). Subexpression sharing in filters using canonic signed digit multipliers,
IEEE Trans. Circuits Systems II: Analog and Digital Signal Processing 43(10): 677–688.

Hosangadi, A., Fallah, F. & Kastner, R. (2006). Optimizing high speed arithmetic circuits using
three-term extraction, Proc. Conf. Design Automation Test in Europe, pp. 1294–1299.

Jaccottet, D., Costa, E., Aksoy, L., Flores, P. & Monteiro, J. (2010). Design of low-complexity
and high-speed digital finite impulse response filters, Proc. IEEE/IFIP Int. Conf. VLSI
System-on-Chip, pp. 292–297.

Jain, R., Yang, P. & Yoshino, T. (1991). FIRGEN: A computer-aided design system for high
performance FIR filter integrated circuits, IEEE Trans. Signal Processing 39(7): 1655–
1668.

Kleine, U. & Noll, T. (1987). On the forced response stability of wave digital filters using carry-
save arithmetic, AEU, Archiv für Elektronik und Übertragungstechnik 41(6): 321–324.

Lim, Y. C. (1990). Design of discrete-coefficient-value linear phase FIR filters with optimum
normalized peak ripple magnitude, IEEE Trans. Circuits Systems 37(12): 1480–1486.

Noll, T. (1991). Carry-save architectures for high-speed digital signal processing, J. VLSI Signal
Processing 3(1): 121–140.

Pasko, R., Schaumont, P., Derudder, V., Vernalde, S. & Durackova, D. (1999). A new algo-
rithm for elimination of common subexpressions, IEEE Trans. Computer-Aided Design
Integrated Circuits Systems 18(1): 58–68.

Potkonjak, M., Srivastava, M. B. & Chandrakasan, A. P. (1996). Multiple constant multiplica-
tions: efficient and versatile framework and algorithms for exploring common subex-
pression elimination, IEEE Trans. Computer-Aided Design Integrated Circuits Systems
15(2): 151–165.

Thong, J. & Nicolici, N. (2009). Time-efficient single constant multiplication based on overlap-
ping digit patterns, IEEE Trans. VLSI Systems 17(9): 1353–1357.

Voronenko, Y. & Püschel, M. (2007). Multiplierless multiple constant multiplication, ACM
Trans. Algorithms 3.
URL: http://doi.acm.org/10.1145/1240233.1240234

Wallace, C. (1964). A suggestion for a fast multiplier, IEEE Trans. Electronic Computers (1): 14–
17.

Yli-Kaakinen, J. & Saramäki, T. (2007). A systematic algorithm for the design of lattice wave
digital filters with short-coefficient wordlength, IEEE Trans. Circuits Systems I: Regular
Papers 54(8): 1838–1851.

www.intechopen.com

Digital Filters

Edited by Prof. Fausto Pedro GarcÃa MÃ¡rquez

ISBN 978-953-307-190-9

Hard cover, 290 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The new technology advances provide that a great number of system signals can be easily measured with a

low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for

example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc.

Digital filters are the most versatile, practical and effective methods for extracting the information necessary

from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and

internal conditions. Presented in this book are the most advanced digital filters including different case studies

and the most relevant literature.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Oscar Gustafsson and Lars Wanhammar (2011). Low-Complexity and High-Speed Constant Multiplications for

Digital Filters Using Carry-Save Arithmetic, Digital Filters, Prof. Fausto Pedro GarcÃa MÃ¡rquez (Ed.), ISBN:

978-953-307-190-9, InTech, Available from: http://www.intechopen.com/books/digital-filters/low-complexity-

and-high-speed-constant-multiplications-for-digital-filters-using-carry-save-arithmet

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

