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1. Introduction     

Digital filters (Hamming, 1998; Chen, 2001) are versatile, practical and effective. They can be 
used in most computerized applications of modern technology and science. Nearly every 
person in technologically developed regions daily encounter digital filters in cars, dvd-
recorders, computers, telecommunication systems etc. Usually, digital filters are designed 
and optimized by signal processing experts for standardized tasks in specific systems. 
Extensive work may result in advanced and complex filters. This is motivated by massive 
duplication. The marginal production cost for a filter is practically zero and the 
development cost per unit is negligible. The advantages of using digital instead of analogue 
filters are often profound. Not only are the costs negligible, their flexibility makes it possible 
to achieve superior results. Even unstable operations can be realized by means of reversed 
filtering. The limitations of digital filters are mainly mathematical, rather than physical as 
for analogue filters. 
Dynamic measurements condense observations into quantitative representations 
(Hessling, 2010a). Dynamic methods for improving, interpreting and assessing the quality of 
measurements are relatively scarce. These methods can be formulated in terms of ideal 
prototype systems acting on physical signals to produce the desired information. A dynamic 
calibration procedure is usually required to find the model from which such prototypes are 
determined. Ideal prototypes are approximated and optimized into realizable prototypes 
which can be cast into digital filters by means of sampling. These filters differ from most 
common filters of today. They are dedicated filters with a high level of adaptation and 
flexibility, designed to improve or simplify the evaluation of a wide range of measurements 
for many different purposes. The common denominator of all filters is that they are 
intended to provide a supporting link of standardized dynamic analysis between the ‘raw’ 
measurements and an inexperienced destined user. The digital filters and the measurement 
devices are preferably seamlessly integrated in the final application, which most often 
already has a computer program for administrating the measurement. 
The motivation for making any measurement is to extract information. The desired 
information is rarely identical to measured signals. Measured signals need to be processed 
or analyzed. Signals may be corrected. To determine how wrong the result might be, the 
uncertainty needs to be estimated. The measurement system may be one part of a complex 
dynamic system, for instance, an accelerometer attached to a vibrating vehicle. Sometimes 
transformations between various points in space, or electrical quantities etc. are required. 
We might be interested in the consequences of measured signals. The impact of interest is 
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often quantified in scalar measures or features like peak loads in crash testing, average 
power in electrical systems, or accumulated risk of injury. 
The analysis is based on how dynamic systems are modeled with differential equations, 
rather than any specific system which can be electrical, mechanical, etc. To illustrate the 
design, or synthesis and application of digital filters, mechanical systems will be used. There 
are two reasons for this choice: Mechanical systems are widely understood and digital filters 
have not yet been utilized in this field to any significant extent. The applications will be split 
into two categories, analysis of measured signals (section 3) and feature extraction 
(section 4). For analyzing measured signals the same mechanical transducer system as well 
as triangular input signal will be used. This example represents the simplest possible non-
trivial dynamic measurement system, which is good for illustration of principles rather than 
details. Two examples of feature extraction are given, the analysis of road humps 
(section 4.1) and the determination of road surface roughness, or texture (section 4.2). Both 
examples relate to traffic and the structure of road surface, and both address potential health 
risks. The geometric scales differ: A speed limiting road hump is a 3-20 m long intentionally 
modified part of the road. The texture relates to unevenness of 5-50 mm wavelength. The 
road hump profile is translated to a time-dependent excitation signal of a bandwidth 
varying with the speed of passage. The surface texture example illustrates that digital filters 
are not limited to the time domain but work perfectly well also for space domain analysis. 
The digital filters will be expressed on a standard linear-in-response finite/infinite impulse 
response (FIR/IIR) form for direct implementation. It will be indicated how any filter may 
be transferred to a state-space form for generalization into a Kalman filter (Simon, 2006). 

 
2. Synthesis of digital filters from prototypes 

2.1 General framework 
The real world of observable physical quantities are almost exclusively continuous in time 
as well as amplitude. The world of information we are interested in may contain anything 
we can imagine. The link between the two is the world of computers which is discrete in 
time as well as amplitude. Our interest may be expressed in prototype systems. These hybrid 
systems are not generally physical, but are formulated as if they would. The prototypes for 
dynamic correction in section 3.2 and the sensitivity systems in section 3.3.1 are two 
examples. The prototypes will specify the desired filter operation completely. No 
conventional filter specification in terms of pass-band, stop-band and allowed ripple etc. 
will be used. Prototypes are widely used in filter synthesis. The concept is here further 
generalized to describe virtually anything we might be interested in. 
The major part of this chapter will be devoted to derivation of realizable dynamic prototype 
systems continuous in time (CT). These prototypes are sampled to convert them into systems 
discrete in time (DT), for direct interpretation as digital filters. The translation of any 
continuous formulation to a discrete formulation will be denoted sampling. The terminology 
is here generalized to reflect symmetries: Signals, systems as well as statistical information 
may be sampled. The methods of sampling are rather different though. Sampling of signals 
is unique. Sampling of systems necessarily adds distortion and there is a multitude of 
different well-known methods. Random sampling of statistical information is practiced in 
Monte Carlo simulations (Metropolis, 1949; Rubenstein & Kroese, 2007) but there are other 
recent and more effective methods of deterministic sampling (Julier & Uhlmann, 2004). 

 

Sampling is here lifted to a more abstract level since statistical information is neither 
physical, nor directly observable. Statistical dynamic models may be sampled twice: The 
statistical information is first sampled to obtain a finite set of CT prototype systems. Each 
prototype system is then sampled to find a corresponding digital filter. Sampling of CT 
systems will always render systematic model errors. These will be called discretization time 
errors (DTE) (Hessling, 2008a). The DTE is different for different input signals and may thus 
be visualized in various ways, depending on the chosen measure of signal error. If the DTE 
is given as a function of system bandwidth, the utilization of a mapping expresses how much 
of the maximum (DTE=0) bandwidth that may be used for acceptable DTE. The theoretical 
limit is set by the sampling rate 1 SS Tf  which results in a maximum bandwidth given by 
the Nyquist frequency 2SN ff  . For many prototypes though there may be other lower 
bandwidth limits, for instance the limit of unacceptable noise amplification. Reversed or 
backward digital filtering is an allowed luxury for analyzing measurements. It simplifies 
many tasks like stabilization and elimination of phase distortion tremendously and will be 
used extensively. Reversed filtering is implemented in three steps: 1. The beginning and the 
end of the signal are exchanged to ‘reverse direction’. 2. Forward filtering 3. Repetition of 
step 1. Symmetric forward and reverse filtering (Gustafsson, 1996) is in its simplest form 
(Hamming, 1998) implemented as repeated filtering in both directions. The fall-off rate as 
well as the attenuation at the nominal cross-over frequency is doubled compared to forward 
filtering. The total phase response vanishes identically (at all frequencies). 
The methods for sampling of prototype systems fall into two categories, numerical sampling 
and mapping techniques. Numerical sampling minimizes the discrepancy between 
characterizations of the CT prototype and the sampled DT model (Elster et. al., 2007). The 
characterizations may be given in any representation, for instance in the time or frequency 
domain. The deviation is often quantified with a weighted least square error (Bjork, 1996). 
Splitting system identification of CT models (Pintelon & Schoukens, 2001) and numeral 
sampling into successive steps of analysis is strongly discouraged: The two operations are 
comparable and better optimized jointly, as is conventional (Ljung, 1999). Mapping 
techniques are based on universal relations between CT and DT models and it is simple to 
switch sampling rate. Robustness and simplicity are paid with a minor reduction of 
accuracy due to lack of optimality of the mapping rule. The accuracy is determined by the 
calculated DTE, and controlled by the selection of mapping. A brief recapitulation of some 
mappings and their properties are given in the next section. 

 
2.2 Mappings for sampling of prototypes 
A common class of mappings samples the response of the CT prototype system to an input 
signal of particular interest. The calculated CT response is sampled like any signal to yield a 
DT system which does not distort, or is invariant with respect to the selected input signal. 
The impulse invariance method (IMP) (Chen, 2001) samples the impulse response  th . The 
calculation is facilitated by expansion in residues kr  and poles kp , 
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often quantified in scalar measures or features like peak loads in crash testing, average 
power in electrical systems, or accumulated risk of injury. 
The analysis is based on how dynamic systems are modeled with differential equations, 
rather than any specific system which can be electrical, mechanical, etc. To illustrate the 
design, or synthesis and application of digital filters, mechanical systems will be used. There 
are two reasons for this choice: Mechanical systems are widely understood and digital filters 
have not yet been utilized in this field to any significant extent. The applications will be split 
into two categories, analysis of measured signals (section 3) and feature extraction 
(section 4). For analyzing measured signals the same mechanical transducer system as well 
as triangular input signal will be used. This example represents the simplest possible non-
trivial dynamic measurement system, which is good for illustration of principles rather than 
details. Two examples of feature extraction are given, the analysis of road humps 
(section 4.1) and the determination of road surface roughness, or texture (section 4.2). Both 
examples relate to traffic and the structure of road surface, and both address potential health 
risks. The geometric scales differ: A speed limiting road hump is a 3-20 m long intentionally 
modified part of the road. The texture relates to unevenness of 5-50 mm wavelength. The 
road hump profile is translated to a time-dependent excitation signal of a bandwidth 
varying with the speed of passage. The surface texture example illustrates that digital filters 
are not limited to the time domain but work perfectly well also for space domain analysis. 
The digital filters will be expressed on a standard linear-in-response finite/infinite impulse 
response (FIR/IIR) form for direct implementation. It will be indicated how any filter may 
be transferred to a state-space form for generalization into a Kalman filter (Simon, 2006). 

 
2. Synthesis of digital filters from prototypes 

2.1 General framework 
The real world of observable physical quantities are almost exclusively continuous in time 
as well as amplitude. The world of information we are interested in may contain anything 
we can imagine. The link between the two is the world of computers which is discrete in 
time as well as amplitude. Our interest may be expressed in prototype systems. These hybrid 
systems are not generally physical, but are formulated as if they would. The prototypes for 
dynamic correction in section 3.2 and the sensitivity systems in section 3.3.1 are two 
examples. The prototypes will specify the desired filter operation completely. No 
conventional filter specification in terms of pass-band, stop-band and allowed ripple etc. 
will be used. Prototypes are widely used in filter synthesis. The concept is here further 
generalized to describe virtually anything we might be interested in. 
The major part of this chapter will be devoted to derivation of realizable dynamic prototype 
systems continuous in time (CT). These prototypes are sampled to convert them into systems 
discrete in time (DT), for direct interpretation as digital filters. The translation of any 
continuous formulation to a discrete formulation will be denoted sampling. The terminology 
is here generalized to reflect symmetries: Signals, systems as well as statistical information 
may be sampled. The methods of sampling are rather different though. Sampling of signals 
is unique. Sampling of systems necessarily adds distortion and there is a multitude of 
different well-known methods. Random sampling of statistical information is practiced in 
Monte Carlo simulations (Metropolis, 1949; Rubenstein & Kroese, 2007) but there are other 
recent and more effective methods of deterministic sampling (Julier & Uhlmann, 2004). 

 

Sampling is here lifted to a more abstract level since statistical information is neither 
physical, nor directly observable. Statistical dynamic models may be sampled twice: The 
statistical information is first sampled to obtain a finite set of CT prototype systems. Each 
prototype system is then sampled to find a corresponding digital filter. Sampling of CT 
systems will always render systematic model errors. These will be called discretization time 
errors (DTE) (Hessling, 2008a). The DTE is different for different input signals and may thus 
be visualized in various ways, depending on the chosen measure of signal error. If the DTE 
is given as a function of system bandwidth, the utilization of a mapping expresses how much 
of the maximum (DTE=0) bandwidth that may be used for acceptable DTE. The theoretical 
limit is set by the sampling rate 1 SS Tf  which results in a maximum bandwidth given by 
the Nyquist frequency 2SN ff  . For many prototypes though there may be other lower 
bandwidth limits, for instance the limit of unacceptable noise amplification. Reversed or 
backward digital filtering is an allowed luxury for analyzing measurements. It simplifies 
many tasks like stabilization and elimination of phase distortion tremendously and will be 
used extensively. Reversed filtering is implemented in three steps: 1. The beginning and the 
end of the signal are exchanged to ‘reverse direction’. 2. Forward filtering 3. Repetition of 
step 1. Symmetric forward and reverse filtering (Gustafsson, 1996) is in its simplest form 
(Hamming, 1998) implemented as repeated filtering in both directions. The fall-off rate as 
well as the attenuation at the nominal cross-over frequency is doubled compared to forward 
filtering. The total phase response vanishes identically (at all frequencies). 
The methods for sampling of prototype systems fall into two categories, numerical sampling 
and mapping techniques. Numerical sampling minimizes the discrepancy between 
characterizations of the CT prototype and the sampled DT model (Elster et. al., 2007). The 
characterizations may be given in any representation, for instance in the time or frequency 
domain. The deviation is often quantified with a weighted least square error (Bjork, 1996). 
Splitting system identification of CT models (Pintelon & Schoukens, 2001) and numeral 
sampling into successive steps of analysis is strongly discouraged: The two operations are 
comparable and better optimized jointly, as is conventional (Ljung, 1999). Mapping 
techniques are based on universal relations between CT and DT models and it is simple to 
switch sampling rate. Robustness and simplicity are paid with a minor reduction of 
accuracy due to lack of optimality of the mapping rule. The accuracy is determined by the 
calculated DTE, and controlled by the selection of mapping. A brief recapitulation of some 
mappings and their properties are given in the next section. 

 
2.2 Mappings for sampling of prototypes 
A common class of mappings samples the response of the CT prototype system to an input 
signal of particular interest. The calculated CT response is sampled like any signal to yield a 
DT system which does not distort, or is invariant with respect to the selected input signal. 
The impulse invariance method (IMP) (Chen, 2001) samples the impulse response  th . The 
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Sampling with sampling time interval 1 SS fT  results in the DT impulse response ng   and 
transfer function  zG , 
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The IMP method requires a decaying frequency response   SfiH   ,0  to avoid 
aliasing. Thus it can only be used if the number of poles of the CT prototype exceeds its 
number of zeros. The static amplification is not preserved, see Fig. 1 (left). Poles of the CT 
system are mapped to poles of the sampled DT system with an exponential mapping 

 Skk Tpp exp . The zeros of the two systems have no simple relation, not even their 
number is preserved. If instead also zeros are mapped like the poles of the IMP method, the 
exponential pole-zero mapping (EXP) results (Chen, 2001; Hessling, 2008a), 
 
   kkkSkk pzqTqq ,,exp  . (3) 
 
This simple mapping preserves the static amplification, the numbers of poles and zeros as 
well as the stability properties. The high frequency amplification is bounded. Its major 
drawback is a fairly low utilization. The mapping is transparent as the underlying CT model 
in the s-plane can be discerned in the z-plane. This will be the default mapping. 
‘Functional’ mappings are described by substitution rules  zs  . The DT transfer 
function  zG  is found from the CT transfer function  sH  as     zHzG  . It is important 
to compensate for the time delays HG  ,  of the DT and CT systems, respectively. The delays 
should conform to the measure of the DTE. If the DTE H  is expressed in the frequency 
domain,     exp( ) exp exp( )G S HH i G i T i H i      . The standard bi-linear mapping 
(BIL) (Chen, 2001) is a functional mapping, 
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The BIL mapping unfortunately introduces singularities at the Nyquist frequency  1z . It 
also results in a non-linear mapping of the frequency axis called frequency warping 
(Chen, 2001). 
Since  zs   is the differential operator and z  the translation operator, the mapping 
function is nothing else than a discrete time approximation of a simple derivative expressed 
in translations. The symmetric difference quotient approximation 

       SSSt TTtfTtftf 2  directly renders the mapping   STzzs 21 . A novel 
thn  order symmetric approximation is obtained by expanding in symmetric difference 

quotients of various integer steps k , 
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The coefficients  n
kc  may be found by minimizing the DTE over the whole frequency axis up 

to the Nyquist frequency using linear regression for the approximation, 
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A low-frequency approximation is found by expanding the sine-function and matching as 
many powers as allowed by the order n . This yields a whole sequence of difference 
quotient mappings  nDQ . The DTE decreases rapidly with n , but the number of poles and 
zeros increases with a factor of n2 . 
The choice of method for sampling prototypes is in practice influenced by many aspects. It 
should be stressed that the DTE seldom is the only relevant issue. The discussion of various 
mappings for sampling of prototype systems is concluded with an illustration of the DTE 
(Fig. 1), for the example model described in section 3.1.1. 
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Fig. 1. The normalized DTE for the transducer model (Eq. 11) and various mappings 
(notation is given in the text). The mappings  nDQ  are rescaled for comparison (right). 

 
2.3 State space formulation for Kalman filter 
Kalman filters are popular tools for optimal estimation of signals in noisy measurements 
(Simon, 2006). Conventional digital filters are closely related to Kalman filtering. In this 
section it will be briefly indicated how any digital filter can be converted into the 
formulation used for Kalman filters. 
Kalman filters utilize DT state-space equations, which are equivalent to transfer functions. 
State-space equations exist for both CT and DT and are not uniquely specified by the 
system. Their main feature is linearity in the differential t  (CT) or displacement operator 
  (DT). State-space equations are convenient for analyzing large and complex multiple-
input multiple-output systems, like finding the response of vehicles (section 4.1.2), using 
linear algebra. Sampling of CT state-space equations can be made by transformation to 
transfer functions, sample (section 2.2) and transform to DT state-space equations.  
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Sampling with sampling time interval 1 SS fT  results in the DT impulse response ng   and 
transfer function  zG , 
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The IMP method requires a decaying frequency response   SfiH   ,0  to avoid 
aliasing. Thus it can only be used if the number of poles of the CT prototype exceeds its 
number of zeros. The static amplification is not preserved, see Fig. 1 (left). Poles of the CT 
system are mapped to poles of the sampled DT system with an exponential mapping 

 Skk Tpp exp . The zeros of the two systems have no simple relation, not even their 
number is preserved. If instead also zeros are mapped like the poles of the IMP method, the 
exponential pole-zero mapping (EXP) results (Chen, 2001; Hessling, 2008a), 
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A low-frequency approximation is found by expanding the sine-function and matching as 
many powers as allowed by the order n . This yields a whole sequence of difference 
quotient mappings  nDQ . The DTE decreases rapidly with n , but the number of poles and 
zeros increases with a factor of n2 . 
The choice of method for sampling prototypes is in practice influenced by many aspects. It 
should be stressed that the DTE seldom is the only relevant issue. The discussion of various 
mappings for sampling of prototype systems is concluded with an illustration of the DTE 
(Fig. 1), for the example model described in section 3.1.1. 
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Fig. 1. The normalized DTE for the transducer model (Eq. 11) and various mappings 
(notation is given in the text). The mappings  nDQ  are rescaled for comparison (right). 

 
2.3 State space formulation for Kalman filter 
Kalman filters are popular tools for optimal estimation of signals in noisy measurements 
(Simon, 2006). Conventional digital filters are closely related to Kalman filtering. In this 
section it will be briefly indicated how any digital filter can be converted into the 
formulation used for Kalman filters. 
Kalman filters utilize DT state-space equations, which are equivalent to transfer functions. 
State-space equations exist for both CT and DT and are not uniquely specified by the 
system. Their main feature is linearity in the differential t  (CT) or displacement operator 
  (DT). State-space equations are convenient for analyzing large and complex multiple-
input multiple-output systems, like finding the response of vehicles (section 4.1.2), using 
linear algebra. Sampling of CT state-space equations can be made by transformation to 
transfer functions, sample (section 2.2) and transform to DT state-space equations.  
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A state-space formulation contains two equations, a dynamic state-space equation and a 
static measurement equation. The state-space equation is the ‘engine’ that drives the system 
in response to its input. The measurement equation describes how our quantity of interest is 
related to the state-space variables and the input. This separation makes it possible to use 
virtually any set of [state-space] variables. They may be physical quantities but often are not. 
The key aspect of all sets of variables is that they split the model into several equations 
linear in the differential t  (CT) or displacement   (DT) operator. In CT, 
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The input x , the output y  and the state-space variables u  are all column vectors. Applying 
the La-place transform, the transfer function is obtained by matrix inversion, 
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This transformation from any linear state-space formulation to the corresponding transfer 
function non-linear in s  is unique. The set of canonical state-space variables is one of many 
choices of transformation in the opposite direction. This choice must however be extended 
to allow for prototypes with 1 nm  (subscripts indicate sizes of sub-matrices), 
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The transformations are similar for DT, essentially let  t  and zs . The noise enters 
as process noise  w  in state variables as well as measurement noise  v  in the measured 
quantity. The process noise effectively corresponds to the uncertainty of our model 
(section 3.3), but is expressed differently. Depending on the state variables it may be 
difficult to assign a reasonable model of process noise in any other way than studying the 
result. The measurement noise is physical and observable and therefore much easier to 
estimate. Adding noise in the DT state-space model we finally arrive at the Kalman filter 
equations, 
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3. Applications related to calibration 

The result of a dynamic calibration of a measurement system is difficult to use directly 
(Hessling, 2010a). The performance of the system depends strongly on the variation of the 
signal and has to be calculated for every measured signal. Parts of this calculation can be 
formulated as digital filtering of measured signals. The time-invariant unique filters are then 
synthesized from the calibration result. The filter coefficients represent the calibration result. 
Digital filters are already used in some measurement systems. The novel aspect here is to 
use digital filtering as a method to formulate the calibration result for every measured 
signal. Digital filters will here be used for dynamic correction (section 3.2) and for 
estimating the model uncertainty of this correction (section 3.3). 
The measured signal results from the specific combination of input signal and measurement 
system. The statistical dynamic model of the measurement system will be assumed time-
invariant and linear-in-response, but non-linear-in-parameters. The variable performance is 
due to the time-dependence of the signal and not the system. Of primary interest is to 
correct the measured signal to resemble the physical input of the measurement system as 
much as possible. That is an inverse problem, as it requires the construction of a prototype 
for the inverse system. The uncertainty of the model is transferred to uncertainty of this 
prototype of correction. When applying the correction filter, the uncertainty of the corrected 
signal increases further due to measurement noise. Thus there are two principal sources of 
uncertainty for corrected signals, model uncertainty and noise. For the addressed linear-in-
response systems the measurement noise and the measured signal propagate identically 
through the correction filter. Propagation of measurement noise will not be addressed here 
as it only relates to the correction filter and is elementary (Hessling, 2009). The model 
uncertainty propagates very differently – a perturbation of a dynamic model leads to a non-
trivial perturbation of the corrected signal. 
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First principles often suggest structures of the model while the values of the parameters are 
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A state-space formulation contains two equations, a dynamic state-space equation and a 
static measurement equation. The state-space equation is the ‘engine’ that drives the system 
in response to its input. The measurement equation describes how our quantity of interest is 
related to the state-space variables and the input. This separation makes it possible to use 
virtually any set of [state-space] variables. They may be physical quantities but often are not. 
The key aspect of all sets of variables is that they split the model into several equations 
linear in the differential t  (CT) or displacement   (DT) operator. In CT, 
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The mean   and the covariance matrix for the parameters are given in Table 1. The 
complex-valued frequency response is given by  iH . The first parameterization is made 
in K  and the roots, or poles  p  of the denominator polynomial, rather than its coefficients. 
This factorization makes the models less non-linear-in-parameters. The high sensitivity to 
variations in coefficients would make the estimation of measurement uncertainty 
(section 3.3) more difficult. These problems increase rapidly with the order of the model. 
The second parameterization is made in residues  r  and poles. All models are linear in 
residues. Exploring different parameterizations is strongly encouraged as that may improve 
and simplify the analysis significantly. Since the input as well as output signal of the 
measurement system is real-valued, poles and zeros are either real, or complex-conjugated 
in pairs. This physical constraint must be fully respected in all steps of the analysis. The 
simple transducer model has only one complex-conjugated pole pair but that is sufficient for 
illustrating the various methods. The general case with an arbitrary number of poles and 
zeros is discussed in recent publications (Hessling, 2008a; 2009). 
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Table 1. Mean values and covariance matrix of the parameters of the dynamic model 
(Eq. 11), signal-to-noise ratio S/N  at zero frequency, and chosen sampling rate Sf . 

 
3.1.2 Input and output signal 
The performance of the measurement system is different for different physical input signals. 
For illustration it is sufficient to study only one input signal. In order to obtain visible 
effects, its bandwidth is chosen high. Its regularity or differentiability should also be low as 
that implies a high sensitivity to the proposed filtering. The triangular pulse in Fig. 2 fulfills 
these requirements. The distortion is due to both amplitude and phase imperfections of the 
frequency response of the system within its bandwidth, as well as a limited bandwidth. 
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Fig. 2. Input and output signal of the measurement system (left) and magnitudes of their 
spectra (right). The arrow (right) indicates the signal-to-noise ratio  NS  of the input signal. 
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3.2 Dynamic correction 
Correction of measured signals using knowledge of the measurement system (Pintelon 
et. al., 1990; Hessling, 2010a) is practiced in many fields of science and engineering. 
Surprisingly, dynamic correction is not yet generally offered in the context of calibrations, 
despite that static corrections in principle are required (ISO GUM, 1993). Dynamic correction 
will here refer to reduction of all kinds of dynamic imperfections of the measurement. The 
digital correction filter essentially propagates measured signals backwards through a 
mathematical model of the system to their physical origin. Backwards propagation can be 
viewed as either an inverse or reversed propagation. Not surprisingly, reversed filtering is 
sometimes useful when realizing correction filters (Hessling, 2008a). 
Correction requires an estimate of the inverse model of the measurement. In the time 
domain, it is a fairly complex operation to find the inverse differential equation. For a model 
parameterized in poles and zeros of a transfer function it is trivial. The inverse is then found 
by exchanging poles and zeros. A pole (zero) of the measurement system is then eliminated 
or annihilated with its ‘conjugate’ zero (pole) of the correction filter. 
A generic and unavoidable problem for all methods of dynamic correction is due to the 
finite bandwidth of the measurement system. The bandwidth of the system and the level of 
measurement noise set a definite limit to which extent any signal may be corrected. The high 
frequency amplification of the inverse system is virtually without bound. Therefore, some 
kind of low-pass ‘noise’ filters must always be included in a correction. These reduce the 
total gain and hence the level of noise to a predefined acceptable level. Incidentally, if the 
sampling rate is low enough, the bandwidth set by the Nyquist frequency may be sufficient 
to limit the gain of the correction filter. The noise filter is preferably chosen ‘optimal’ to 
balance measurement error and noise in the most relevant way. To determine the degree of 
optimality requires a measure of the error, or the deviation between the corrected signal and 
the input signal of the measurement system. The time delay and the dynamic error are 
usually distinguished as different causes for deviations between signals (study Fig. 2, left). 
A unique definition of the time delay is therefore also required (Hessling, 2006). Since the 
error is different for different measured signals, so is also the optimal correction. 
When dynamic correction fails it is usually either due to neglect of noise amplification, or 
insufficient model quality. On one hand, the required model quality may be 
underestimated. A model with almost perfect match of only the amplitude  iH  of the 
frequency response may result in a ‘correction’ which increases the error! The phase 

 iHarg  is equally important as the magnitude (Ekstrom, 1972; Hessling, 2006): A 
correction applied with the wrong sign doubles instead of eliminates the error. On the other 
hand, the required model quality should not be overestimated. As long as the error is 
mainly due to bandwidth limitations, the model quality within the band is irrelevant. The 
best strategy is then to optimize the noise filter or regularization technique to be able to dig 
up the last piece of high frequency information from the measured signal 
(Hale & Dienstfrey, 2010). 
The proposed pragmatic design (Hessling, 2008a) inspired by Wiener de-convolution 
(Wiener, 1949) will here be applied for determining the noise filter. To develop the method 
further, the noise filter will be determined for the actual input signal (Fig. 2). The correction 
filter is then not only applied to but also uniquely synthesized for every measured signal. The 
proposed optimal noise filter has a cross-over frequency Nf  determined from the frequency 
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The mean   and the covariance matrix for the parameters are given in Table 1. The 
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and simplify the analysis significantly. Since the input as well as output signal of the 
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(Eq. 11), signal-to-noise ratio S/N  at zero frequency, and chosen sampling rate Sf . 
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Fig. 2. Input and output signal of the measurement system (left) and magnitudes of their 
spectra (right). The arrow (right) indicates the signal-to-noise ratio  NS  of the input signal. 
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3.2 Dynamic correction 
Correction of measured signals using knowledge of the measurement system (Pintelon 
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sometimes useful when realizing correction filters (Hessling, 2008a). 
Correction requires an estimate of the inverse model of the measurement. In the time 
domain, it is a fairly complex operation to find the inverse differential equation. For a model 
parameterized in poles and zeros of a transfer function it is trivial. The inverse is then found 
by exchanging poles and zeros. A pole (zero) of the measurement system is then eliminated 
or annihilated with its ‘conjugate’ zero (pole) of the correction filter. 
A generic and unavoidable problem for all methods of dynamic correction is due to the 
finite bandwidth of the measurement system. The bandwidth of the system and the level of 
measurement noise set a definite limit to which extent any signal may be corrected. The high 
frequency amplification of the inverse system is virtually without bound. Therefore, some 
kind of low-pass ‘noise’ filters must always be included in a correction. These reduce the 
total gain and hence the level of noise to a predefined acceptable level. Incidentally, if the 
sampling rate is low enough, the bandwidth set by the Nyquist frequency may be sufficient 
to limit the gain of the correction filter. The noise filter is preferably chosen ‘optimal’ to 
balance measurement error and noise in the most relevant way. To determine the degree of 
optimality requires a measure of the error, or the deviation between the corrected signal and 
the input signal of the measurement system. The time delay and the dynamic error are 
usually distinguished as different causes for deviations between signals (study Fig. 2, left). 
A unique definition of the time delay is therefore also required (Hessling, 2006). Since the 
error is different for different measured signals, so is also the optimal correction. 
When dynamic correction fails it is usually either due to neglect of noise amplification, or 
insufficient model quality. On one hand, the required model quality may be 
underestimated. A model with almost perfect match of only the amplitude  iH  of the 
frequency response may result in a ‘correction’ which increases the error! The phase 

 iHarg  is equally important as the magnitude (Ekstrom, 1972; Hessling, 2006): A 
correction applied with the wrong sign doubles instead of eliminates the error. On the other 
hand, the required model quality should not be overestimated. As long as the error is 
mainly due to bandwidth limitations, the model quality within the band is irrelevant. The 
best strategy is then to optimize the noise filter or regularization technique to be able to dig 
up the last piece of high frequency information from the measured signal 
(Hale & Dienstfrey, 2010). 
The proposed pragmatic design (Hessling, 2008a) inspired by Wiener de-convolution 
(Wiener, 1949) will here be applied for determining the noise filter. To develop the method 
further, the noise filter will be determined for the actual input signal (Fig. 2). The correction 
filter is then not only applied to but also uniquely synthesized for every measured signal. The 
proposed optimal noise filter has a cross-over frequency Nf  determined from the frequency 
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where the system amplification has decayed to the inverse of the signal-to-noise ratio  NS . 
The ratio-NS  oscillates for the triangular input signal. To find the desired cross-over it is 
thus necessary to estimate the envelope of the ratio-NS , as shown in Fig. 3 (left) below. A 
property of the noise filter which is equally important as the cross-over is the asymptotic 
fall-off rate in the frequency domain (Hessling, 2006). The proposed noise filter is suggested 
to be applied symmetrically in both directions of time to cancel its phase. In that case, the 
fall-off rate of the noise filter and the measurement system should be the same. The fall-off 
rates of the correction filter with the noise filter applied twice and the measurement system 
are then the same. For the transducer, the noise filter should be of second order. Other 
details of the amplitude fall-off were ignored, as they are beyond reach for optimal 
correction in practice. 
The prototype for correction was constructed by annihilating the poles of the model (Eq. 11) 
with zeros. This CT prototype was then sampled to DT using the simple exponential 
mapping (section 2.2). The poles and zeros of the correction filter are shown in Fig. 5 (top 
left). The impulse response (Fig. 5, bottom left) of the correction filter is non-causal since 
time-reversed noise filtering was adopted. The correction was carried out by filtering the 
output signal of the measurement system to find the corrected signal Cx  in Fig. 3 (right). 
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Fig. 3. Left: Signal to noise ratio  NS  for the input signal (Fig. 2) and amplification H  of 
the measurement system, for determining the cut-off frequency Nf  of the noise filter. Right: 
The output and the corrected output. The input signal is indicated (displaced for clarity). 

 
3.3 Measurement uncertainty 
The primary indicator of measurement quality is measurement uncertainty. It is usually 
expressed as a confidence interval for the measurement result. How to find the confidence 
interval from a probability density function (pdf) of the uncertain parameters that influence 
the quantity of interest is suggested in the Guide to the Expression of Uncertainty 
(ISO GUM, 1993). It is formulated for static measurements with a time-independent 
measurement equation. The dynamic measurements of interest here is beyond its original 
scope. Nevertheless, the guide is based on a standard perturbation analysis of first order 
which may be generalized to dynamic conditions. The instantaneous analysis is then 
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translated into filtering operations. The uncertainty of the parameters of the dynamic model 
and the measurement noise contribute to the dynamic measurement uncertainty. Only 
propagation of model uncertainty will be discussed here. 
The linearity of a measurement system is a common source of misunderstanding. Any 
dynamic system h  may be linear-in-response (LR), or linear-in-parameters (LP). LR does not 
imply that the output signal is proportional to the input signal. Instead it means that the 
response to a sum of signals 21, yy  equals the sum of the responses of the signals, or 
     qyhqyhqyyh ,,, 2121   , for all  , . Analogously, a model LP would imply 

that      2121 ,,, qyhqyhqqyh   . A model h  equal to a sum of LP models kh , 

 khh , would then not be classified LP. Nevertheless, such models are normally 
considered LP as they are linear expansions. Therefore, any model that can be expressed as a 
sum of LP models will be considered LP. 
To be a useful measurement system we normally require high linearity in response. 
Conventional linear digital filtering requires LR. A lot of effort is therefore made by 
manufacturers to fulfill this expectation and by calibrating parties to verify it. LR is a 
physical property of the system completely beyond control for the user, as well as the 
calibrator. In contrast, LP is determined by the model, which is partly chosen with the 
parameterization. It is for instance possible to exchange non-linearity in zeros with linearity 
in residues (section 3.1.1). 
The non-linear propagation of measurement uncertainty by means of linear digital filtering 
in section 3.3.2 refers to measurement systems non-linear-in-parameters but linear-in-
response. The presented method is an alternative to the non-degenerate unscented method 
(Hessling et. al., 2010b). At present there is no other published or established and consistent 
method used in calibrations for this type of non-linear propagation of measurement 
uncertainty, beyond inefficient Monte-Carlo simulations. For linear propagation of dynamic 
measurement uncertainty with digital filters, there is only one original publication 
(Hessling, 2009). In this reference, a complete description of estimation of measurement 
uncertainty is given. 

 
3.3.1 Linear propagation using sensitivities 
The established calculation of uncertainty (ISO GUM, 1993) follows the standard procedure 
of first order perturbation analysis adopted in most fields of science and engineering. 
Consistent application of the guide is strictly limited to linearization of the model equation 
(Hessling et. al., 2010b). Here, the analysis translates into linearization of the transfer 
function or impulse response in uncertain parameters. The derivation will closely follow a 
recent presentation (Hessling, 2010a). For correction of the mechanical transducer, 
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The pole pair *, pp   of the original measurement system (section 3.1.1) is here a pair of zeros 
of the CT prototype 1H  of correction (section 3.2). The variations *, pp   are completely 
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Fig. 3. Left: Signal to noise ratio  NS  for the input signal (Fig. 2) and amplification H  of 
the measurement system, for determining the cut-off frequency Nf  of the noise filter. Right: 
The output and the corrected output. The input signal is indicated (displaced for clarity). 

 
3.3 Measurement uncertainty 
The primary indicator of measurement quality is measurement uncertainty. It is usually 
expressed as a confidence interval for the measurement result. How to find the confidence 
interval from a probability density function (pdf) of the uncertain parameters that influence 
the quantity of interest is suggested in the Guide to the Expression of Uncertainty 
(ISO GUM, 1993). It is formulated for static measurements with a time-independent 
measurement equation. The dynamic measurements of interest here is beyond its original 
scope. Nevertheless, the guide is based on a standard perturbation analysis of first order 
which may be generalized to dynamic conditions. The instantaneous analysis is then 

−1 0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

t*f
C

Output  y
Corrected  x

C
Input  x−0.2

 

translated into filtering operations. The uncertainty of the parameters of the dynamic model 
and the measurement noise contribute to the dynamic measurement uncertainty. Only 
propagation of model uncertainty will be discussed here. 
The linearity of a measurement system is a common source of misunderstanding. Any 
dynamic system h  may be linear-in-response (LR), or linear-in-parameters (LP). LR does not 
imply that the output signal is proportional to the input signal. Instead it means that the 
response to a sum of signals 21, yy  equals the sum of the responses of the signals, or 
     qyhqyhqyyh ,,, 2121   , for all  , . Analogously, a model LP would imply 

that      2121 ,,, qyhqyhqqyh   . A model h  equal to a sum of LP models kh , 

 khh , would then not be classified LP. Nevertheless, such models are normally 
considered LP as they are linear expansions. Therefore, any model that can be expressed as a 
sum of LP models will be considered LP. 
To be a useful measurement system we normally require high linearity in response. 
Conventional linear digital filtering requires LR. A lot of effort is therefore made by 
manufacturers to fulfill this expectation and by calibrating parties to verify it. LR is a 
physical property of the system completely beyond control for the user, as well as the 
calibrator. In contrast, LP is determined by the model, which is partly chosen with the 
parameterization. It is for instance possible to exchange non-linearity in zeros with linearity 
in residues (section 3.1.1). 
The non-linear propagation of measurement uncertainty by means of linear digital filtering 
in section 3.3.2 refers to measurement systems non-linear-in-parameters but linear-in-
response. The presented method is an alternative to the non-degenerate unscented method 
(Hessling et. al., 2010b). At present there is no other published or established and consistent 
method used in calibrations for this type of non-linear propagation of measurement 
uncertainty, beyond inefficient Monte-Carlo simulations. For linear propagation of dynamic 
measurement uncertainty with digital filters, there is only one original publication 
(Hessling, 2009). In this reference, a complete description of estimation of measurement 
uncertainty is given. 

 
3.3.1 Linear propagation using sensitivities 
The established calculation of uncertainty (ISO GUM, 1993) follows the standard procedure 
of first order perturbation analysis adopted in most fields of science and engineering. 
Consistent application of the guide is strictly limited to linearization of the model equation 
(Hessling et. al., 2010b). Here, the analysis translates into linearization of the transfer 
function or impulse response in uncertain parameters. The derivation will closely follow a 
recent presentation (Hessling, 2010a). For correction of the mechanical transducer, 
 

   *

1
*

11
1

p
Hp

p
Hp

K
HKsH
















  . (12) 

 
The pole pair *, pp   of the original measurement system (section 3.1.1) is here a pair of zeros 
of the CT prototype 1H  of correction (section 3.2). The variations *, pp   are completely 

www.intechopen.com



Digital Filters134

 

correlated. Rather than modeling this correlation it is simpler to change variables. 
Evaluating the derivatives (Hessling, 2009), 
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If the dynamic sensitivity systems      sEsEE ppK

1222 ,,  operate on the corrected signal  txC  

it will result in three time-dependent sensitivity signals        ttt ppK
1222 ,,   describing the 

sensitivity to the stochastic quantities 21,,  KK . The latter quantities are written as 
vector scalar products or projections in the complex s-plane between the relative fluctuation 

pp   and powers of the normalized pole vector pp , as illustrated in Fig. 4. 
 

 
Fig. 4. Illustration of the relative variation   and associated projections 21,  in the s-plane. 
 
If the sensitivity signals        ttt ppK

1222 ,,   are organized in rows of a m3  matrix  , the 

variation of the correction will be given by  TT KK 21,   . The auto-
correlation function of the signal   resulting from the uncertainty of the model is found by 
squaring and calculating the statistical expectation   over the variations of the parameters, 
 

   21,,cov KTTTT  . (14) 
 

The matrix T  of expectation values of squared parameter variations is usually referred 

to as the covariance matrix  21,,cov K . In Table 1 it was given in the parameters 
   ppK Im,Re, . In Table 2 it is translated to parameters 21,, K  with a linear but non-

unitary transformation T   1TTT  (Hessling, 2009),  
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Table 2. Covariance matrix for the static amplification and the two projections,  21,, K , 
and transformation matrix T . The covariance     ppK Im,Re,cov  is given in Table 1. 
 
The measurement uncertainty is given by the half-width Px  of the confidence interval of the 
measurement. This width can be calculated as the standard deviation at each time instant, 
multiplied by an estimated coverage factor Pk  (ISO GUM, 1993). This coverage factor is 
difficult to determine accurately for dynamic measurements, since the type of distribution 
varies with time. The standard deviation is obtained as the square root of the variance, i.e. 
the square root of the auto-correlation for zero lag, 
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The sensitivity signals   can be calculated with digital filtering. Sensitivity filters are found 
by sampling the CT sensitivity systems      sEsEE ppK

1222 ,, . The noise filter is a necessity 
rather than a part of the actual correction and gives rise to a systematic error. The 
uncertainty of the noise filtering is thus the same as the uncertainty of this systematic error. 
That is of no interest without an accurate estimate of the systematic error. Estimating this 
error is very difficult since much of the required information is unconditionally lost in the 
measurement due to bandwidth limitations. No method has been presented other than a 
very rough universal conservative estimate (Hessling, 2006). The uncertainty of the error is 
much less than the accuracy of this estimate and therefore completely irrelevant. 
The gain of the sensitivity filters is bounded at all frequencies and no additional noise filters 
are required. The sensitivity filters differ from the correction filter in numerous ways: As the 
complexity of the model increases, the types of sensitivity filter remain but their number 
increases. There are only three types of sensitivity filters, one for real-valued and the same 
pair for complex-valued poles and zeros. For the transducer, the correction filter and the two 
sensitivity filters were sampled with the same exponential mapping (section 2.2). The 
resulting impulse responses and z-plane plots of all filters are shown in Fig. 5.  
Filtering the corrected signal with the sensitivity filters      zEzEE ppK

1222 ,,  resulted in the 

sensitivities        ttt ppK
1222 ,,   in Fig. 6 (left). The time-dependent half-width of the 

confidence interval for the correction in Fig. 6 (right) was then found from Eq. 15, using the 
covariance matrix in Table 2 and 2Pk  for an assumed normal distributed correction. 
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Table 2. Covariance matrix for the static amplification and the two projections,  21,, K , 
and transformation matrix T . The covariance     ppK Im,Re,cov  is given in Table 1. 
 
The measurement uncertainty is given by the half-width Px  of the confidence interval of the 
measurement. This width can be calculated as the standard deviation at each time instant, 
multiplied by an estimated coverage factor Pk  (ISO GUM, 1993). This coverage factor is 
difficult to determine accurately for dynamic measurements, since the type of distribution 
varies with time. The standard deviation is obtained as the square root of the variance, i.e. 
the square root of the auto-correlation for zero lag, 
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The sensitivity signals   can be calculated with digital filtering. Sensitivity filters are found 
by sampling the CT sensitivity systems      sEsEE ppK

1222 ,, . The noise filter is a necessity 
rather than a part of the actual correction and gives rise to a systematic error. The 
uncertainty of the noise filtering is thus the same as the uncertainty of this systematic error. 
That is of no interest without an accurate estimate of the systematic error. Estimating this 
error is very difficult since much of the required information is unconditionally lost in the 
measurement due to bandwidth limitations. No method has been presented other than a 
very rough universal conservative estimate (Hessling, 2006). The uncertainty of the error is 
much less than the accuracy of this estimate and therefore completely irrelevant. 
The gain of the sensitivity filters is bounded at all frequencies and no additional noise filters 
are required. The sensitivity filters differ from the correction filter in numerous ways: As the 
complexity of the model increases, the types of sensitivity filter remain but their number 
increases. There are only three types of sensitivity filters, one for real-valued and the same 
pair for complex-valued poles and zeros. For the transducer, the correction filter and the two 
sensitivity filters were sampled with the same exponential mapping (section 2.2). The 
resulting impulse responses and z-plane plots of all filters are shown in Fig. 5.  
Filtering the corrected signal with the sensitivity filters      zEzEE ppK

1222 ,,  resulted in the 

sensitivities        ttt ppK
1222 ,,   in Fig. 6 (left). The time-dependent half-width of the 

confidence interval for the correction in Fig. 6 (right) was then found from Eq. 15, using the 
covariance matrix in Table 2 and 2Pk  for an assumed normal distributed correction. 
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Fig. 5. Poles (x) and zeros (o) (top) and impulse responses (bottom) of the correction  zg 1  
(left) and digital sensitivity filters   zE p

22  (middle) and   zE p
12  (right) for the two 

projections 1  and 2 , respectively. 
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Fig. 6. Left: Sensitivity signals   for the amplification K  and the two pole projections 

21, , obtained by digital filtering of the corrected output shown in Fig. 3 (right).  
Right: Resulting confidence interval half-width Px . For comparison, the rescaled input 
signal is shown (dotted). 
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3.3.2 Non-linear propagation utilizing unscented binary sampling  
The uncertainty of the correction can be estimated by simulating a representative set or 
ensemble of different corrections of the same measured signal. The probability density 
function (pdf) of the parameters is then sampled to form a finite number of ’typical’ sets of 
parameters: The multivariate pdf   kqf  for all parameters  kq  is substituted with an 

ensemble of m  sets of n  samples   vkq̂ , where mv ,2,1  denotes the different members 
of the ensemble and nk 2,1  the different parameters of the model. To be most relevant, 
these sets should preserve as many statistical moments as possible. Expressed in deviations 

     v
k

v
k

v
k qqq ˆˆˆ   from the first moment, 

 

 

    

      

     





























ˆ

ˆˆˆ1ˆ

ˆˆ1ˆ

ˆ1ˆ0

1

1
21

1
21

m

v

v
k

v
j

v
ikji

m

v

v
j

v
inkjiji

m

v

v
inkii

qqq
m

qqq

qq
m

dqdqdqqfqqqq

q
m

dqdqdqqfqq







. (16) 

 

The sampling of the pdf is indicated by ̂ . In contrast to signals and systems, pdfs are not 
physical and not observable. That makes sampling of pdfs even less evident than sampling 
of systems (section 2.2). Only a few of many possible methods have so far been proposed. 
Perhaps the most common way to generate an ensemble   vkq̂  is to employ random 
generators with the same statistical properties as the pdf to be sampled. With a sufficiently 
large ensemble, typically 610~m , all relevant moments of pdfs of independent parameters 
may be accurately represented. This random sampling technique is the well known Monte 
Carlo (MC) simulation method (Metropolis, 1949; Rubenstein, 2007). It has been extensively 
used for many decades in virtually all fields of science where statistical models are used. 
The efficiency of MC is low: Its outstanding simplicity of application is paid with an equally 
outstanding excess of numerical simulations. It thus relies heavily upon technological 
achievements in computing and synthesis of good random generators. Modeling of 
dependent parameters provides a challenge though. With a linear change of variables, 
ensembles with any second moment or covariance may be generated from independent 
generators. It is generally difficult to include any higher order moment in the MC method in 
any other way than directly construct random generators with relevant dependences. 
Another constraint is that the models must not be numerically demanding as the number of 
simulations is just as large as the size of the ensemble  m . For dynamic measurements this 
is an essential limitation since every realized measurement requires a full dynamic 
simulation of a differential equation over the entire time epoch. For a calibration service the 
limitation is even stronger as the computers for evaluation belongs to the customer and not 
the calibrator. A fairly low computing power must therefore be allowed. There are thus 
many reasons to search for more effective sampling strategies.  
An alternative to random sampling is to construct the set   vkq̂  from the given statistical 
moments (Eq. 16) with a deterministic method. The first versions of this type of unscented 
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Fig. 6. Left: Sensitivity signals   for the amplification K  and the two pole projections 
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signal is shown (dotted). 
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3.3.2 Non-linear propagation utilizing unscented binary sampling  
The uncertainty of the correction can be estimated by simulating a representative set or 
ensemble of different corrections of the same measured signal. The probability density 
function (pdf) of the parameters is then sampled to form a finite number of ’typical’ sets of 
parameters: The multivariate pdf   kqf  for all parameters  kq  is substituted with an 

ensemble of m  sets of n  samples   vkq̂ , where mv ,2,1  denotes the different members 
of the ensemble and nk 2,1  the different parameters of the model. To be most relevant, 
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The sampling of the pdf is indicated by ̂ . In contrast to signals and systems, pdfs are not 
physical and not observable. That makes sampling of pdfs even less evident than sampling 
of systems (section 2.2). Only a few of many possible methods have so far been proposed. 
Perhaps the most common way to generate an ensemble   vkq̂  is to employ random 
generators with the same statistical properties as the pdf to be sampled. With a sufficiently 
large ensemble, typically 610~m , all relevant moments of pdfs of independent parameters 
may be accurately represented. This random sampling technique is the well known Monte 
Carlo (MC) simulation method (Metropolis, 1949; Rubenstein, 2007). It has been extensively 
used for many decades in virtually all fields of science where statistical models are used. 
The efficiency of MC is low: Its outstanding simplicity of application is paid with an equally 
outstanding excess of numerical simulations. It thus relies heavily upon technological 
achievements in computing and synthesis of good random generators. Modeling of 
dependent parameters provides a challenge though. With a linear change of variables, 
ensembles with any second moment or covariance may be generated from independent 
generators. It is generally difficult to include any higher order moment in the MC method in 
any other way than directly construct random generators with relevant dependences. 
Another constraint is that the models must not be numerically demanding as the number of 
simulations is just as large as the size of the ensemble  m . For dynamic measurements this 
is an essential limitation since every realized measurement requires a full dynamic 
simulation of a differential equation over the entire time epoch. For a calibration service the 
limitation is even stronger as the computers for evaluation belongs to the customer and not 
the calibrator. A fairly low computing power must therefore be allowed. There are thus 
many reasons to search for more effective sampling strategies.  
An alternative to random sampling is to construct the set   vkq̂  from the given statistical 
moments (Eq. 16) with a deterministic method. The first versions of this type of unscented 
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sampling techniques appeared around 15 years ago and was proposed by Simon Julier and 
Jeffrey Uhlmann (Julier, 1995) for use in Kalman filters (Julier, 2004). The name unscented 
means without smell or bias and refers to the fact that no approximation of the deterministic 
model is made. The number of realizations is much lower and the efficiency correspondingly 
higher for unscented than for random sampling. The unavoidable cost is a lower statistical 
accuracy as fewer moments are correctly described. The realized vectors of parameters 

      vnvv qqq ˆˆˆ 21   were called sigma-points since they were constructed to correctly 
reproduce the second moments. The required minimum number of such points, or samples 
depends on how many moments one wants to correctly describe. The actual number of 
samples is often larger and depends on the sampling strategy. There is no general approach 
for deterministic sampling of pdf corresponding to the use of random generators for random 
sampling. The class of unscented sampling techniques is very large. It is all up to your 
creativity to find a method which reproduce as many moments as possible with an acceptable 
number of sigma-points. For correct reproduction of the first and second moment, the simplex 
set of sigma-points (Julier, 2004, App. III) utilizes the minimum number of 1n  samples 
while the standard unscented Kalman filter use n2  samples (Simon, 2006). The minimum 
number of samples is given by the number of degrees-of-freedom (NDOF). For the first and 
second moment, n1NDOF . The sampling method that will be presented here is close to 
the standard UKF, apart from a few important differences: 

 The amplification of the standard deviation with 1n  in the standard UKF (see 
below) is strongly undesirable since parameters may be sampled outside their 
region of possible variation, which is prohibited. For instance, poles must remain in 
the left hand side of the s-plane to preserve stability. The factor n  may violate 
such critical physical constraints.  

 The confidence interval of the measurement is of primary interest in calibrations, 
rather than the covariance as in the UKF. For non-linear propagation of uncertainty 
it is crucial to expand the sampled parameters to the desired confidence level, and 
not the result of the simulation. Expanded sigma-points will be denoted 
lambda-points. This expansion makes the first aspect even more critical. 

 
The standard UKF samples sigma-points by calculating a square root of the covariance 
matrix. A square root is easily found if the covariance matrix first is transformed to become 
diagonal. To simplify notation, let  Tnqqqq 21 . It is a widely practiced standard 
method (Matlab, m-function ‘eig’) to determine a unitary transformation U , which makes 
the covariance matrix diagonal, 
 

      2 2 2
1 2 ncov cov diag , 1T T TU q U q U UU U U       . (17) 

 

The first moments (Eq. 16) will vanish if the lambda-points    svvq ,ˆ   are sampled 
symmetrically around the mean q . Expressing the sampled variations  vq̂  in the 

diagonal basis and expanding with coverage factors  v
Pk , 

 

        smvqUksq vTv
P

sv ,22,1,ˆ,  . (18) 
 

 

The column vectors  vq̂  of variations are for convenience collected into columns of a 
matrix  . The condition to reproduce the second moment in Eq. 16 then reads, 
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Clearly,  nm  21diag2    nm 2  is a valid but as will be discussed, not a 
unique solution. Except for the unitary transformation, that corresponds to the standard 
UKF (Simon, 2006, chapter 14.2). The factor 2m  may result in prohibited lambda-points 
and appeared as a consequence of normalization. This square root is by no means unique:  
Any ‘half’-unitary1 transformation 1,~

 TVVV  yields an equally acceptable square root 

matrix since TTTT VV 
~~ . This degree of freedom will be utilized to eliminate the 

factor 2m . Note that 1TVV  does not imply that V  must be a square matrix, or nm 2 . 
To arrive at an arbitrary covariance matrix though, the rank of V  must be at least the same 
as for  qUcov , or nm 2 . Since the ‘excitation’ of the different parameters is controlled by 
the matrix V  it will be called the excitation matrix. The lambda-points are given by, 
 

               VUmUUqUUksq TmvTTv
P

sv 2,cov 221,   .     (20) 

 

Here,  v  is column v  of the scaled excitation matrix, expressed in the original basis of 
correlated coordinates q . The main purpose of applying the unitary transformation or 
rotation U  as well as using the excitation matrix V  is to find physically allowed lambda-
points in a simple way. 
After the pdf has been sampled into lambda-points   , the confidence interval 

        txtxtxtx PCPC  ,  of the corrected signal  tx̂  is evaluated as, 
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The impulse response of the digital correction filter is here denoted  tg ,1   and y  is the 
measured signal, while the filtering operation is described by the convolution   
(section 3.2). The auto-correlation function of the measurement may be similarly obtained 
from the associated sigma-points (let   1v

Pk  and   in Eqs. 20-21), 
 

              


  txtxtxtxtxtx CC ,ˆ,ˆ . (22) 
 
 

                                                                 
1 The matrix is not unitary since that also requires 1VV T . 
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Jeffrey Uhlmann (Julier, 1995) for use in Kalman filters (Julier, 2004). The name unscented 
means without smell or bias and refers to the fact that no approximation of the deterministic 
model is made. The number of realizations is much lower and the efficiency correspondingly 
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matrix. A square root is easily found if the covariance matrix first is transformed to become 
diagonal. To simplify notation, let  Tnqqqq 21 . It is a widely practiced standard 
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UKF (Simon, 2006, chapter 14.2). The factor 2m  may result in prohibited lambda-points 
and appeared as a consequence of normalization. This square root is by no means unique:  
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factor 2m . Note that 1TVV  does not imply that V  must be a square matrix, or nm 2 . 
To arrive at an arbitrary covariance matrix though, the rank of V  must be at least the same 
as for  qUcov , or nm 2 . Since the ‘excitation’ of the different parameters is controlled by 
the matrix V  it will be called the excitation matrix. The lambda-points are given by, 
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Here,  v  is column v  of the scaled excitation matrix, expressed in the original basis of 
correlated coordinates q . The main purpose of applying the unitary transformation or 
rotation U  as well as using the excitation matrix V  is to find physically allowed lambda-
points in a simple way. 
After the pdf has been sampled into lambda-points   , the confidence interval 
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The impulse response of the digital correction filter is here denoted  tg ,1   and y  is the 
measured signal, while the filtering operation is described by the convolution   
(section 3.2). The auto-correlation function of the measurement may be similarly obtained 
from the associated sigma-points (let   1v

Pk  and   in Eqs. 20-21), 
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1 The matrix is not unitary since that also requires 1VV T . 
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As a matter of fact, it is simple to evaluate all statistical moments of the correction, 
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Consistency however, requires at least as many moments of the sampled parameters to 
agree with the underlying pdf (Eq. 16). It is no coincidence that for propagating the 
covariance of the parameters to the correction, the mean and the covariance of the sampled 
parameters were correctly described. Thus, to propagate higher order moments the 
sampling strategy needs to be further improved. 
The factor 2m  may be extinguished by exciting all uncertain parameters, i.e. filling all 
entries of V  with elements of unit magnitude, but with different signs chosen to obtain 
orthogonal rows. This will lead to nm 2  lambda-points instead of nm 2 . Since the 
lambda-points will represent all binary combinations, this sampling algorithm will be called 
the method of unscented binary sampling (Hessling, 2010c). All lambda-points will be allowed 
since the scaling factor 2m  will disappear with the normalization of V . The combined 
excitation of several parameters may nevertheless not be statistically allowed. This subtlety 
is not applicable within the current second moment approximation of sampling and can be 
ignored. The rapid increase in the number of lambda-points for large n  is indeed a high 
price to pay. For dynamic measurements this is worth paying for as prohibited lambda-
points may even result in unstable and/or un-physical simulations! In practice, the number 
of parameters is usually rather low. It may also be possible to remove a significant number 
of samples. The only requirements are that the rank of V  is sufficient  nm 2 , and that the 
half-unitary condition  1TVV  can be met. 
For the mechanical transducer, there are three uncertain parameters, the amplification and 
the real and imaginary parts of the pole pair (    ppK Im,Re, ). The full binary excitation 
matrix is for three parameters given by, 
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Unscented binary sampling thus resulted in 823 m  ‘binary’ lambda-points, or digital 
correction filters illustrated in Fig. 7 (top left). Applying these filters to the measured signal 
yielded eight corrected signals, see Fig. 7 (top right). The statistical evaluation at every 
instant of time (Eq. 21) resulted in the confidence interval of the correction displayed in 
Fig. 7 (bottom). The coverage factors were assumed to be equal and represent normal 
distributed parameters  2Pk . 
The simplicity of unscented propagation is striking. The uncertainty of correction is found 
by filtering measured signals with a ‘typical’ set of correction filter(-s). An already 
implemented dynamic correction (Bruel&Kjaer, 2006) can thus easily be parallelized to also 
find its time-dependent uncertainty, which is unique for every measured signal. 
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Fig. 7. Top left: Poles and zeros of the eight sampled digital correction filters, excluding the 
fixed noise filter. The static gains    are displayed on the real z-axis (close to 1z ). 
Top right: The variation of all corrections from their mean. Bottom: Center Cx  (left) and 
half-width Px  (right) of the confidence interval for the correction. The (rescaled/displaced) 
input signal of the measurement system is shown (dotted) for comparison. 

 
3.3.3 Comparison of methods 
The two proposed methods in sections 3.3.1 and 3.3.2 for estimating the model uncertainty 
are equivalent and may be compared. The correct confidence interval is not known but can 
be estimated by means of computationally expensive random sampling or Monte Carlo 
simulations (Rubenstein, 2007). The lambda-points are then substituted with a much larger 
ensemble generated by random sampling. The errors of the estimated confidence interval of 
the correction were found to be different for the two methods, see Fig. 8. 
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As a matter of fact, it is simple to evaluate all statistical moments of the correction, 
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Consistency however, requires at least as many moments of the sampled parameters to 
agree with the underlying pdf (Eq. 16). It is no coincidence that for propagating the 
covariance of the parameters to the correction, the mean and the covariance of the sampled 
parameters were correctly described. Thus, to propagate higher order moments the 
sampling strategy needs to be further improved. 
The factor 2m  may be extinguished by exciting all uncertain parameters, i.e. filling all 
entries of V  with elements of unit magnitude, but with different signs chosen to obtain 
orthogonal rows. This will lead to nm 2  lambda-points instead of nm 2 . Since the 
lambda-points will represent all binary combinations, this sampling algorithm will be called 
the method of unscented binary sampling (Hessling, 2010c). All lambda-points will be allowed 
since the scaling factor 2m  will disappear with the normalization of V . The combined 
excitation of several parameters may nevertheless not be statistically allowed. This subtlety 
is not applicable within the current second moment approximation of sampling and can be 
ignored. The rapid increase in the number of lambda-points for large n  is indeed a high 
price to pay. For dynamic measurements this is worth paying for as prohibited lambda-
points may even result in unstable and/or un-physical simulations! In practice, the number 
of parameters is usually rather low. It may also be possible to remove a significant number 
of samples. The only requirements are that the rank of V  is sufficient  nm 2 , and that the 
half-unitary condition  1TVV  can be met. 
For the mechanical transducer, there are three uncertain parameters, the amplification and 
the real and imaginary parts of the pole pair (    ppK Im,Re, ). The full binary excitation 
matrix is for three parameters given by, 
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Unscented binary sampling thus resulted in 823 m  ‘binary’ lambda-points, or digital 
correction filters illustrated in Fig. 7 (top left). Applying these filters to the measured signal 
yielded eight corrected signals, see Fig. 7 (top right). The statistical evaluation at every 
instant of time (Eq. 21) resulted in the confidence interval of the correction displayed in 
Fig. 7 (bottom). The coverage factors were assumed to be equal and represent normal 
distributed parameters  2Pk . 
The simplicity of unscented propagation is striking. The uncertainty of correction is found 
by filtering measured signals with a ‘typical’ set of correction filter(-s). An already 
implemented dynamic correction (Bruel&Kjaer, 2006) can thus easily be parallelized to also 
find its time-dependent uncertainty, which is unique for every measured signal. 
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Fig. 7. Top left: Poles and zeros of the eight sampled digital correction filters, excluding the 
fixed noise filter. The static gains    are displayed on the real z-axis (close to 1z ). 
Top right: The variation of all corrections from their mean. Bottom: Center Cx  (left) and 
half-width Px  (right) of the confidence interval for the correction. The (rescaled/displaced) 
input signal of the measurement system is shown (dotted) for comparison. 

 
3.3.3 Comparison of methods 
The two proposed methods in sections 3.3.1 and 3.3.2 for estimating the model uncertainty 
are equivalent and may be compared. The correct confidence interval is not known but can 
be estimated by means of computationally expensive random sampling or Monte Carlo 
simulations (Rubenstein, 2007). The lambda-points are then substituted with a much larger 
ensemble generated by random sampling. The errors of the estimated confidence interval of 
the correction were found to be different for the two methods, see Fig. 8. 
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Fig. 8. The errors of the center Cx  (left) and the half-width Px  (right) of the confidence 
interval of the correction, for the sensitivity analysis (section 3.3.1) and the method of 
unscented binary sampling (section 3.3.2). The errors are estimated with random sampling 
of 610  correction filters. For comparison, the rescaled input signal is shown (dotted). 
 
The center (Fig. 8, left) as well as the width (Fig. 8, right) is best determined with the 
unscented binary method, in agreement with the performance of extended (based on 
sensitivity) and unscented Kalman filters (Julier, 2004). The errors of the sensitivity 
analysis are small which indicate minor non-linear effects. The half-width of the 
confidence interval, or measurement uncertainty changes much less  43  e  due to non-
linear effects, than the center  48  e  of the interval. That is typical for non-linear 
propagation of uncertainty. Hence it is inconsistent to include non-linear contributions in 
the estimate of the measurement uncertainty but not in the estimate of the mean correction 
(Hessling, 2010b). The unscented method might be superior in performance but its 
simplicity is perhaps a greater advantage. The calculation of time-dependent sensitivities 
is also a source for making mistakes.  
The unitary transformation U  was here chosen (Eq. 17) to easily find time-invariant lambda-
points, rather than to be optimal. An optimized choice is made in the unscented non-
degenerate method (Hessling, 2010b). The time-varying lambda-points are then sampled in 
the direction of the time-dependent gradient (in the parameter space). 
The estimation of mean correction and estimation of uncertainty with sensitivities were 
made with different methods. With unscented sampling these operations are synthesized 
jointly as different statistical moments. The symmetry implies that the analysis can be 
extended to higher moments to more accurately include parametric dependencies. 
However, that would require a sampling method which takes more moments into account 
(Eq. 16), as well as much more information of the stochastic dynamic model than is 
usually available. 
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4. Feature extraction 

There are many examples of extracting dynamic information from measurements which 
qualify as ‘feature extraction’ and can be partly or completely realized with digital filters. A 
crucial aspect is to have a complete and robust specification of the feature to be extracted. 
The two selected examples here are related to the safety of traffic, road hump analysis and 
determination of road texture.  

 
4.1 Road humps  
Maintaining speed limits in the traffic is a global problem. Radar measurements of the speed 
and supervision by policemen are commonly used to enforce speed limits. A popular 
passive control measure is the ‘sleeping policeman’ or road hump (Engwall, 1979). Vehicles 
are intentionally excited in excess when passing the hump which is a modified usually 
elevated short (~3-20m) section of the road. Below the speed limit, road humps should 
provide a safe and comfortable passage, but also be gentle to the vehicle. Above the speed 
limit, the discomfort should increase rapidly to enforce a distinct speed reduction. With 
respect to the human reaction, there are two important features of all road humps, one 
positive and one negative: their efficiency and the risk of injury. The efficiency is central for 
any particular hump design (Hessling & Zhu, 2008c). The risk of injury is normally low for 
single passages, but for multiple daily passages it may be substantial. Especially for 
professional drivers of taxis and buses in towns with many road humps this may be a 
problem. What has been in focus and will be addressed here is the potential damage of the 
human lumbar spine. 
The vibration pulses generated by vehicles travelling over rough surfaces such as road 
humps are believed to cause fatigue stresses in the lumbar spine. Modeling of the load on 
the human body is rather complex and is described in a recent international standard for 
evaluating the human exposure to whole-body vibrations (ISO 2631-5, 2004). It is based on 
non-linear digital filtering followed by statistical evaluation. The adverse health effects of 
prolonged exposure are condensed into an ‘R’-dose. This dose is the feature to extract from 
every complex set of road hump passages. A typical driver uses different vehicles, follows 
different time tables and drive on different roads, from the first to the last working day. The 
dose is normalized to unity which is the threshold for a ‘significant’ risk of injury. The 
calculation of the dose consists of counting peak amplitudes and weighing with exponent 
six. This weighing models the accumulated fatigue stress of the lumbar spine. 
The standard for whole body vibration (ISO 2631-5, 2004) addresses the propagation of 
vibrations from the seat pad of the driver seat to the spinal cord. The road hump problem is 
more complex. Geometric road hump profiles are translated into an excitation signal in time 
via the variable speed of the vehicles. For a fixed hump, the bandwidth of the road height 
signal increases with the speed – that is the fundamental principle of road humps. The 
vehicles may also be drastically different with respect to size as well as construction. For 
instance, the center-of-gravity is far away from the driver in buses but not in cars. This 
affects the response substantially (Hessling & Zhu, 2008c). The seats may also be different. 
Preferably, the vehicle as well as the seat response may be simulated with digital filters, just 
like the human response. The analysis of a particular road hump passage is then made with 
several digital filters, as shown in Fig. 9 below. The human lumbar spine filter and the 
vehicle filters are non-trivial and will be discussed below. 
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Fig. 8. The errors of the center Cx  (left) and the half-width Px  (right) of the confidence 
interval of the correction, for the sensitivity analysis (section 3.3.1) and the method of 
unscented binary sampling (section 3.3.2). The errors are estimated with random sampling 
of 610  correction filters. For comparison, the rescaled input signal is shown (dotted). 
 
The center (Fig. 8, left) as well as the width (Fig. 8, right) is best determined with the 
unscented binary method, in agreement with the performance of extended (based on 
sensitivity) and unscented Kalman filters (Julier, 2004). The errors of the sensitivity 
analysis are small which indicate minor non-linear effects. The half-width of the 
confidence interval, or measurement uncertainty changes much less  43  e  due to non-
linear effects, than the center  48  e  of the interval. That is typical for non-linear 
propagation of uncertainty. Hence it is inconsistent to include non-linear contributions in 
the estimate of the measurement uncertainty but not in the estimate of the mean correction 
(Hessling, 2010b). The unscented method might be superior in performance but its 
simplicity is perhaps a greater advantage. The calculation of time-dependent sensitivities 
is also a source for making mistakes.  
The unitary transformation U  was here chosen (Eq. 17) to easily find time-invariant lambda-
points, rather than to be optimal. An optimized choice is made in the unscented non-
degenerate method (Hessling, 2010b). The time-varying lambda-points are then sampled in 
the direction of the time-dependent gradient (in the parameter space). 
The estimation of mean correction and estimation of uncertainty with sensitivities were 
made with different methods. With unscented sampling these operations are synthesized 
jointly as different statistical moments. The symmetry implies that the analysis can be 
extended to higher moments to more accurately include parametric dependencies. 
However, that would require a sampling method which takes more moments into account 
(Eq. 16), as well as much more information of the stochastic dynamic model than is 
usually available. 
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4. Feature extraction 

There are many examples of extracting dynamic information from measurements which 
qualify as ‘feature extraction’ and can be partly or completely realized with digital filters. A 
crucial aspect is to have a complete and robust specification of the feature to be extracted. 
The two selected examples here are related to the safety of traffic, road hump analysis and 
determination of road texture.  

 
4.1 Road humps  
Maintaining speed limits in the traffic is a global problem. Radar measurements of the speed 
and supervision by policemen are commonly used to enforce speed limits. A popular 
passive control measure is the ‘sleeping policeman’ or road hump (Engwall, 1979). Vehicles 
are intentionally excited in excess when passing the hump which is a modified usually 
elevated short (~3-20m) section of the road. Below the speed limit, road humps should 
provide a safe and comfortable passage, but also be gentle to the vehicle. Above the speed 
limit, the discomfort should increase rapidly to enforce a distinct speed reduction. With 
respect to the human reaction, there are two important features of all road humps, one 
positive and one negative: their efficiency and the risk of injury. The efficiency is central for 
any particular hump design (Hessling & Zhu, 2008c). The risk of injury is normally low for 
single passages, but for multiple daily passages it may be substantial. Especially for 
professional drivers of taxis and buses in towns with many road humps this may be a 
problem. What has been in focus and will be addressed here is the potential damage of the 
human lumbar spine. 
The vibration pulses generated by vehicles travelling over rough surfaces such as road 
humps are believed to cause fatigue stresses in the lumbar spine. Modeling of the load on 
the human body is rather complex and is described in a recent international standard for 
evaluating the human exposure to whole-body vibrations (ISO 2631-5, 2004). It is based on 
non-linear digital filtering followed by statistical evaluation. The adverse health effects of 
prolonged exposure are condensed into an ‘R’-dose. This dose is the feature to extract from 
every complex set of road hump passages. A typical driver uses different vehicles, follows 
different time tables and drive on different roads, from the first to the last working day. The 
dose is normalized to unity which is the threshold for a ‘significant’ risk of injury. The 
calculation of the dose consists of counting peak amplitudes and weighing with exponent 
six. This weighing models the accumulated fatigue stress of the lumbar spine. 
The standard for whole body vibration (ISO 2631-5, 2004) addresses the propagation of 
vibrations from the seat pad of the driver seat to the spinal cord. The road hump problem is 
more complex. Geometric road hump profiles are translated into an excitation signal in time 
via the variable speed of the vehicles. For a fixed hump, the bandwidth of the road height 
signal increases with the speed – that is the fundamental principle of road humps. The 
vehicles may also be drastically different with respect to size as well as construction. For 
instance, the center-of-gravity is far away from the driver in buses but not in cars. This 
affects the response substantially (Hessling & Zhu, 2008c). The seats may also be different. 
Preferably, the vehicle as well as the seat response may be simulated with digital filters, just 
like the human response. The analysis of a particular road hump passage is then made with 
several digital filters, as shown in Fig. 9 below. The human lumbar spine filter and the 
vehicle filters are non-trivial and will be discussed below. 
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Fig. 9. The road hump response from the road, via the vehicle (moves to the left), to the 
human lumbar spine (left), is simulated with multiple digital filtering (DF) (right). 

 
4.1.1 Human lumbar spine filter 
In the horizontal directions, the response of the lumbar spine is modeled with a linear 
second order resonant system with one degree of freedom, similar to the transducer in 
section 3.1.1. In the vertical direction, advanced non-linear filtering is applied. The 
predominant vertical motion will be discussed here. All details of the evaluation of the 
lumbar spine response are included in the standard (ISO 2631-5, 2004). Aspects of particular 
interest in the context of digital filtering will be highlighted here. The (output) vertical 
lumbar spine acceleration  ky  at time sample Sk kTt   is calculated with a recurrent neural 
network (RNN) model from the (input) seat acceleration  kx  as, 
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The constants jji Ww ,  are given in the standard, where also the derivation of this RNN is 
discussed (annex C). The RNN is a non-linear IIR filter. The output is a linear combination 
of neurons  ku j  (Eq. 25b). If the neurons are viewed as input signals, the model is static 
and linear as only neurons at the same time instant  k  as the output are weighted (Eq. 25a). 
Disregarding this weighing of neurons and considering  kx  as input and  ky  as output, 
the second sum in Eq. 25b corresponds to a FIR-filter while the first sum describes the 
recursion or feed-back of an IIR-filter. The tanh  function provides the non-linearity which is 
individually tuned for each neuron by adjusting the constants  03.1,96.013 jw .  
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The small amplitude dynamic response of the lumbar spine can be understood by a linear 
approximation of the filter. If each neuron ju  is linearized around 13jw , 
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The poles, zeros and the magnitude of the frequency response of this filter are shown in 
Fig. 10. The amplitude response is almost flat  Hz 02Hz 10,octavedB .51  f  above the 
peak at Hz .74  generated by nearly cancelation of a pole and a zero pair. 
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Fig. 10. All poles and zeros (left), the almost cancelling pole and zero pairs (middle) and the 
frequency response (right) of the linearized human lumbar spine filter. 
 
The degree of non-linearity is different for different neurons, since their weights 13jw  are 
different (Eq. 25). The onset of non-linear behavior in each neuron can be found by 
quadratic expansion,        wawawwa tanh2tanhtanhtanh 22

000  , for a constant 
input acceleration 0a . The largest ratio between the quadratic and linear term is given by, 
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A significant non-linearity  %20  is expected for 2

0 sm10a . Indeed, that is confirmed by 
the simulations in Fig. 11. The response of the lumbar spine filter is linear for accelerations 
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Fig. 9. The road hump response from the road, via the vehicle (moves to the left), to the 
human lumbar spine (left), is simulated with multiple digital filtering (DF) (right). 

 
4.1.1 Human lumbar spine filter 
In the horizontal directions, the response of the lumbar spine is modeled with a linear 
second order resonant system with one degree of freedom, similar to the transducer in 
section 3.1.1. In the vertical direction, advanced non-linear filtering is applied. The 
predominant vertical motion will be discussed here. All details of the evaluation of the 
lumbar spine response are included in the standard (ISO 2631-5, 2004). Aspects of particular 
interest in the context of digital filtering will be highlighted here. The (output) vertical 
lumbar spine acceleration  ky  at time sample Sk kTt   is calculated with a recurrent neural 
network (RNN) model from the (input) seat acceleration  kx  as, 
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The constants jji Ww ,  are given in the standard, where also the derivation of this RNN is 
discussed (annex C). The RNN is a non-linear IIR filter. The output is a linear combination 
of neurons  ku j  (Eq. 25b). If the neurons are viewed as input signals, the model is static 
and linear as only neurons at the same time instant  k  as the output are weighted (Eq. 25a). 
Disregarding this weighing of neurons and considering  kx  as input and  ky  as output, 
the second sum in Eq. 25b corresponds to a FIR-filter while the first sum describes the 
recursion or feed-back of an IIR-filter. The tanh  function provides the non-linearity which is 
individually tuned for each neuron by adjusting the constants  03.1,96.013 jw .  
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The small amplitude dynamic response of the lumbar spine can be understood by a linear 
approximation of the filter. If each neuron ju  is linearized around 13jw , 
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The poles, zeros and the magnitude of the frequency response of this filter are shown in 
Fig. 10. The amplitude response is almost flat  Hz 02Hz 10,octavedB .51  f  above the 
peak at Hz .74  generated by nearly cancelation of a pole and a zero pair. 
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Fig. 10. All poles and zeros (left), the almost cancelling pole and zero pairs (middle) and the 
frequency response (right) of the linearized human lumbar spine filter. 
 
The degree of non-linearity is different for different neurons, since their weights 13jw  are 
different (Eq. 25). The onset of non-linear behavior in each neuron can be found by 
quadratic expansion,        wawawwa tanh2tanhtanhtanh 22
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Fig. 11. Lumbar spine response and its difference to linearized response NL , for various 

pulse acceleration amplitudes A  and widths T : 2sm 10A  (top), 2sm 1A  (bottom), 

s 1T  (left), and s 2.0T  (right). The units are 2sm  (vertical) and s  (horizontal). 

 
4.1.2 Vehicle filters 
A vehicle is a dynamic system which responds to the road hump signal, similarly to how a 
measurement system responds to its input signal. A vehicle is a composed mechanical 
system. It may be approximated with a lumped linear system with solid masses  m  and 
spring  kl   and damping elements  cl   (Hessling et. al., 2008c), similarly to a recent 
model of material testing machines (Hessling, 2008b). A two axes vehicle is modeled in 
Fig. 9 (left). The front  Fx2  and rear  Rx2  coordinates are the two related input signals 
describing height,    vtxtx FR  22 , where   is the distance between the axes and v  is 
the speed. The translation w  and scaled rotation   of the vehicle are the two outputs. The 
transfer function is thus a 22  matrix. The topology of the model can be expressed by a 
symmetric matrix, 
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When used for the spring (damping) constants  nnnn clkl  , the matrix will be denoted 
 CK . The dynamic equations are given by Newton’s force and torque laws, 
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where t is the time-derivative while knf  and n  represent the th-n  force and torque, 
respectively, and   is the radius of gyration. For a contraction x , the spring force is 

xkf   and the damping force xcf t . The topology matrix in Eq. 28 results from 

Eq. 29 with a specific choice of state-space variables  Tuuuu 821  , 
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The state-space equation will be given in the topology matrix CKL , , 
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The measurement equation relates the seat coordinate (Fig. 9) to the state-space variables, 
 

    uPuaby  001  . (32) 
 

The transfer function from the road hump signal, or front wheel coordinate  tx F2  is found 
by applying the La-place transform to the state-space equation (Eq. 31) as in section 2.3, 
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The vehicle system  sH  can be sampled as described in section 2.2 to find a digital vehicle 
filter. Alternatively, this filter can be found by calibrating the vehicle and analyzing its 
response (Zhu et. al., 2009). A bank of such digital vehicle filters can be used to represent the 
relevant traffic. The road height signals are determined by the road height profile and the 
speed of the vehicle. These signals are then filtered with vehicle filters to find the response 
of various vehicles, and with the lumbar spine filter in section 4.1.1 to find the human 
response. In this way, the health risk of road humps can be evaluated with digital filtering.  
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Fig. 11. Lumbar spine response and its difference to linearized response NL , for various 

pulse acceleration amplitudes A  and widths T : 2sm 10A  (top), 2sm 1A  (bottom), 

s 1T  (left), and s 2.0T  (right). The units are 2sm  (vertical) and s  (horizontal). 
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When used for the spring (damping) constants  nnnn clkl  , the matrix will be denoted 
 CK . The dynamic equations are given by Newton’s force and torque laws, 
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where t is the time-derivative while knf  and n  represent the th-n  force and torque, 
respectively, and   is the radius of gyration. For a contraction x , the spring force is 
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The state-space equation will be given in the topology matrix CKL , , 
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The measurement equation relates the seat coordinate (Fig. 9) to the state-space variables, 
 

    uPuaby  001  . (32) 
 

The transfer function from the road hump signal, or front wheel coordinate  tx F2  is found 
by applying the La-place transform to the state-space equation (Eq. 31) as in section 2.3, 
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The vehicle system  sH  can be sampled as described in section 2.2 to find a digital vehicle 
filter. Alternatively, this filter can be found by calibrating the vehicle and analyzing its 
response (Zhu et. al., 2009). A bank of such digital vehicle filters can be used to represent the 
relevant traffic. The road height signals are determined by the road height profile and the 
speed of the vehicle. These signals are then filtered with vehicle filters to find the response 
of various vehicles, and with the lumbar spine filter in section 4.1.1 to find the human 
response. In this way, the health risk of road humps can be evaluated with digital filtering.  
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4.2 Road surface texture 
The texture of roads is a critical feature. It affects the friction between the road surface and 
the tire. Slippery roads in rain are often a consequence of lack of texture of the road and/or 
the tire. If a road has been found to have insufficient texture, it must be modified to avoid 
accidents. Since it is very costly to rebuild roads, the pass and fail criteria are crucial. The 
surface texture is determined in two steps. The road surface is first measured and densely 
sampled, often with a profilograph. It is a vehicle equipped with a height measuring system. 
The vehicle motion is determined with inertial navigation and the distance between its 
height and the road is measured with a laser. The difference signal describes the road 
surface. The surface height map is then condensed into a feature called mean profile depth 
(MPD), according to an international standard (ISO 13473-1, 1997). Unfortunately, the 
evaluation lacks robustness. Independent evaluations may result in different values of the 
MPD. Hence, the method needs to be improved. The current evaluation is first described 
and commented in section 4.2.1. An improved method based on digital filtering will then be 
proposed in section 4.2.2. Digitals filters are robust as they specify the calculation 
completely. Fixing the sampling rate, the proposed filter coefficients can be directly stated in 
a revised standard, similarly to the specification of the lumbar spine filter (ISO 2631-5, 2004). 

 
4.2.1 Mean profile depth (MPD) 
The standard for characterization of road/pavement texture (ISO 13473-1, 1997) follows the 
steps in Fig. 12 to evaluate road height variations with wavelengths in the range of 

mm 505 , corresponding to a frequency band -1m 20020 . Inverse distance is a frequency 
equivalent to inverse time. 
 

 
Fig. 12. The mean profile depth (MPD) (left) is according to the standard (ISO 13473-1, 1997) 
determined in four steps (right), using a measured map of heights h  (Step 0). 
 
The road height profile (step 0) must be sampled with a horizontal resolution of at least 

mm 1 . That is plausible considering the shortest wavelength of interest  mm 5 . The 
bandpass-filtering (step 1) is not further specified than the dB 3  cross-over frequencies 
  -1m 400 0,1  and minimal slopes   octavedB 12 ,6 . The upper cross-over frequency is on the 
borderline of being consistent with the sampling rate – the utilization is as high as 

%80500/400  . The specification of minimal slope may be understood from the widespread 
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concept of ideal ‘square’ filter response in the frequency domain. It cannot be understood 
from considerations in the space domain: A too abrupt cut-off in the frequency domain must 
result in oscillations in the space domain. Further, in the space domain the phase distortion 
is important. No requirement on the phase response of the band-pass filter is however 
made. Baseline limiting (step 2) consists of dividing the measured surface profile into 
consecutive baseline intervals of mm 10100  length. The peaks in the two adjacent 
segments of equal length  mm 50  are then detected (step 3).  The MPD is finally determined 
as the average of these peaks, measured relative to the mean height (step 4).  
Dividing the profile into baselines and detecting isolated peaks in this way may be common 
but is definitely not robust. The result is sensitive to translations of the dividing points of 
adjacent baselines, as well as changes in the position of the peaks. Any peak occurring only 
once in each segment will be counted in full but together with a larger peak, it will be 
completely neglected. These deficiencies will result in noisy MPD-signals. 

 
4.2.2 Modified MPD (MMPD) 
Many aspects of the current standard can be improved without major deviations from the 
intentions of the standard. The degree of agreement between the modified mpd (MMPD) to 
be proposed and the current MPD will not be a measure of quality. Rather, the quality is to 
be found in fulfillment of the intentions of the current standard (ISO 13473-1, 1997) and 
desired properties such as low sensitivity to irrelevant disturbances, repeatability in 
independent evaluations and simplicity of implementation. 
The band-pass filtering in step 1 (Fig. 12) describes the selection of relevant information. The 
filter needs to be specified in more detail to improve the repeatability as well as reducing the 
distortion. A simple method to eliminate phase distortion is to use symmetric forward and 
reversed digital filtering (section 2.1). The fall-off rate can be chosen as low as possible by 
using a first-order filter. The suggestion is to use a standard digital Butterworth filter of first 
order with cross-over frequencies   -1m 434 .5,6 , and apply it in both directions of space. A 
sampling rate -1m 0001Sf  complies with the required resolution and gives a numerically 
acceptable utilization. That will result in a fall-off rate of   octavedB 12,12  and zero phase 
response. This filter fulfills all requirements of the current standard. 
The MPD calculation requires major adjustments to become robust. The division into 
disjoint baselines (step 2, Fig. 12) is preferably substituted with overlapping baselines. 
Calculating the average height h  will then directly correspond to digital filtering of the 
road profile with an averaging FIR-filter with equal coefficients 100,2,1,1001  kbk . 
Averaging filters belong to the class of smoothing filters and are well-known to be anything 
but perfect (Hamming, 1998). They have an oscillating frequency response, an undesirable 
finite amplification at the Nyquist frequency Nf , as well as an unwanted finite slope at zero 
frequency. Applying an averaging filter is equivalent of piecewise linear regression with a 
constant. A better alternative is to use a polynomial. Such polynomial smoothing FIR-filters 
(includes the averaging filter) have linear phase (symmetric coefficients). Polynomial filters 
have the same deficiency of finite amplification at Nf . This undesired response may be 
removed by adjusting the identical first and last coefficients. Treating them as a free 
parameter they may be adjusted for zero gain of the filter at Nf . That will improve the high 
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Fig. 12. The mean profile depth (MPD) (left) is according to the standard (ISO 13473-1, 1997) 
determined in four steps (right), using a measured map of heights h  (Step 0). 
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concept of ideal ‘square’ filter response in the frequency domain. It cannot be understood 
from considerations in the space domain: A too abrupt cut-off in the frequency domain must 
result in oscillations in the space domain. Further, in the space domain the phase distortion 
is important. No requirement on the phase response of the band-pass filter is however 
made. Baseline limiting (step 2) consists of dividing the measured surface profile into 
consecutive baseline intervals of mm 10100  length. The peaks in the two adjacent 
segments of equal length  mm 50  are then detected (step 3).  The MPD is finally determined 
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Dividing the profile into baselines and detecting isolated peaks in this way may be common 
but is definitely not robust. The result is sensitive to translations of the dividing points of 
adjacent baselines, as well as changes in the position of the peaks. Any peak occurring only 
once in each segment will be counted in full but together with a larger peak, it will be 
completely neglected. These deficiencies will result in noisy MPD-signals. 

 
4.2.2 Modified MPD (MMPD) 
Many aspects of the current standard can be improved without major deviations from the 
intentions of the standard. The degree of agreement between the modified mpd (MMPD) to 
be proposed and the current MPD will not be a measure of quality. Rather, the quality is to 
be found in fulfillment of the intentions of the current standard (ISO 13473-1, 1997) and 
desired properties such as low sensitivity to irrelevant disturbances, repeatability in 
independent evaluations and simplicity of implementation. 
The band-pass filtering in step 1 (Fig. 12) describes the selection of relevant information. The 
filter needs to be specified in more detail to improve the repeatability as well as reducing the 
distortion. A simple method to eliminate phase distortion is to use symmetric forward and 
reversed digital filtering (section 2.1). The fall-off rate can be chosen as low as possible by 
using a first-order filter. The suggestion is to use a standard digital Butterworth filter of first 
order with cross-over frequencies   -1m 434 .5,6 , and apply it in both directions of space. A 
sampling rate -1m 0001Sf  complies with the required resolution and gives a numerically 
acceptable utilization. That will result in a fall-off rate of   octavedB 12,12  and zero phase 
response. This filter fulfills all requirements of the current standard. 
The MPD calculation requires major adjustments to become robust. The division into 
disjoint baselines (step 2, Fig. 12) is preferably substituted with overlapping baselines. 
Calculating the average height h  will then directly correspond to digital filtering of the 
road profile with an averaging FIR-filter with equal coefficients 100,2,1,1001  kbk . 
Averaging filters belong to the class of smoothing filters and are well-known to be anything 
but perfect (Hamming, 1998). They have an oscillating frequency response, an undesirable 
finite amplification at the Nyquist frequency Nf , as well as an unwanted finite slope at zero 
frequency. Applying an averaging filter is equivalent of piecewise linear regression with a 
constant. A better alternative is to use a polynomial. Such polynomial smoothing FIR-filters 
(includes the averaging filter) have linear phase (symmetric coefficients). Polynomial filters 
have the same deficiency of finite amplification at Nf . This undesired response may be 
removed by adjusting the identical first and last coefficients. Treating them as a free 
parameter they may be adjusted for zero gain of the filter at Nf . That will improve the high 
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frequency attenuation considerably, see Fig. 13 (right). The unavoidable change in 
bandwidth may be compensated by adjusting the length of the filter. These filters will be 
called modified polynomial filters. The regularity or differentiability at zero frequency 
increases with the order of the polynomial: An thn  order polynomial filter has 1n  
vanishing derivatives at zero frequency. Thus, they resemble the Butterworth ‘max-flat’ 
design (Hamming, 1998). The modified polynomial FIR filter is thus comparable to the IIR 
Butterworth filter, see Fig. 13 (left). Avoiding recursion requires many more coefficients – 
filters like the polynomial filters could be obtained by truncated sampling of the infinite 
impulse response of Butterworth filters. This truncation introduces oscillations as shown in 
Fig. 13 (right). 
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Fig. 13. Magnitude of frequency response of smoothing filters,  in the low (left) and high 
(right) frequency range: the averaging filter(right: 1.0 ) , the modified square polynomial 
117-tap FIR filter, and the proposed second order Butterworth filter (BW) with cross-over 
frequency -1m 5.5 . 
 
The smoother roll-off of the recursive Butterworth filter results in a more robust analysis of 
noisy measurements. Its low number of filter coefficients is also preferable in a standard 
document. The complexity of implementation is low as well as the risk of making errors. 
The order of filtering is not critical for the remaining steps of the analysis and can be 
increased. The phase distortion may once again be eliminated with symmetric forward and 
reverse filtering (section 2.1). The effective order will then double to four.  
The peaks detected in step 3 (Fig. 12) are closely related to percentiles determined from 
cumulative probability distributions. Percentiles are for instance used in calibrations 
(ISO GUM, 1993). The thn  percentile   xPn  is the value exceeding precisely n  per cent 
of all samples  x . Statistical moments (section 3.3.2) are superior to high percentiles in 
robustness as they utilize weighing over all samples. The ratios of percentiles and the 
standard deviation are called coverage factors (section 3.3). A robust measure of peaks is 
found by combining a short-range standard deviation and a long-range percentile. The 
number of samples in every baseline is far too low for evaluation of percentiles. Each set of 
100 consecutive recordings of the road depth in each baseline may be considered as samples 
drawn from a unique pdf. The widths of different pdfs belonging to different baselines are 
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likely different. The coverage factors or the types of these pdfs are likely much less different. 
A plausible assumption is that the coverage factors for different baselines are nearly equal 
and can be estimated using all samples. This global coverage factor is as robust as possible. 
The mean of the two peaks in Fig. 12 are rather well described by the th99  percentile. The 
calculation of the standard deviation is robust enough to be calculated for each baseline. The 
smoothing filter used to calculate the mean baseline depth h  can also be used to evaluate 
the mean baseline square deviation   222 hhhh  , or squared standard deviation. 
The smoothing filter is effectively a rather sharp anti-alias filter. The MPD signal may 
therefore be directly down-sampled to be consistent with the baseline resolution. This 
concludes the derivation of the method for determining the modified MPD (MMPD): 

1. The measured road profile is sampled with -1m 1000Sf . Otherwise, linear down-
sampling is applied. 

2. The road profile is filtered in both directions of time with a digital band-pass 
Butterworth filter of order one with cross-over frequencies   -1m 434,5.6Cf . Filter 
coefficients2: ]8119.008119.0[ b , ]6237.03099.0000.1[ a .  

3. The running mean and variance of the depth are evaluated with the same smoothing 
filter. The digital Butterworth filter is of order two, has a cross-over frequency 

-1m 5.5Cf , and is applied in both directions of time. The band-pass filtered road 

profile h  and its square 2h  are filtered to give 
S

h  and 
S

h2 , respectively. Filter 

coefficients: ]2921.05842.02921.0[10 3  b , ]9522.09511.1000.1[ a .  
4. The th99   percentile of the road depth,  

A
hhP 99 , where 

A
  denotes average 

over all samples, will be called GPD – Global Profile Depth. It is a measure of the 

mean MMPD. The global coverage factor is given by, 22GPD
AAP hhk  . 

5. The mean profile depth is given by, 2222GPDMMPD
AASS

hhhh  . 

6. Finally, the MMPD is down-sampled to -1m 20Sf . 
  
An example of calculated MMPD is shown in Fig. 14. The generated road profile was an 
uncorrelated normally distributed variation of depth with standard deviation equal to one. 
The smoothing filter of the MMPD is compared to the average filter suggested by the 
current standard. Clearly, the robustness improved considerably – the noise of the 
calculated mean profile depth disappeared. 

                                                                 
2 Defined according to a common convention (Matlab): Numerator ][ 10 bbb   and 
denominator ][ 10 aaa  , where the indices denote the lag in samples. 
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frequency attenuation considerably, see Fig. 13 (right). The unavoidable change in 
bandwidth may be compensated by adjusting the length of the filter. These filters will be 
called modified polynomial filters. The regularity or differentiability at zero frequency 
increases with the order of the polynomial: An thn  order polynomial filter has 1n  
vanishing derivatives at zero frequency. Thus, they resemble the Butterworth ‘max-flat’ 
design (Hamming, 1998). The modified polynomial FIR filter is thus comparable to the IIR 
Butterworth filter, see Fig. 13 (left). Avoiding recursion requires many more coefficients – 
filters like the polynomial filters could be obtained by truncated sampling of the infinite 
impulse response of Butterworth filters. This truncation introduces oscillations as shown in 
Fig. 13 (right). 
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Fig. 13. Magnitude of frequency response of smoothing filters,  in the low (left) and high 
(right) frequency range: the averaging filter(right: 1.0 ) , the modified square polynomial 
117-tap FIR filter, and the proposed second order Butterworth filter (BW) with cross-over 
frequency -1m 5.5 . 
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noisy measurements. Its low number of filter coefficients is also preferable in a standard 
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increased. The phase distortion may once again be eliminated with symmetric forward and 
reverse filtering (section 2.1). The effective order will then double to four.  
The peaks detected in step 3 (Fig. 12) are closely related to percentiles determined from 
cumulative probability distributions. Percentiles are for instance used in calibrations 
(ISO GUM, 1993). The thn  percentile   xPn  is the value exceeding precisely n  per cent 
of all samples  x . Statistical moments (section 3.3.2) are superior to high percentiles in 
robustness as they utilize weighing over all samples. The ratios of percentiles and the 
standard deviation are called coverage factors (section 3.3). A robust measure of peaks is 
found by combining a short-range standard deviation and a long-range percentile. The 
number of samples in every baseline is far too low for evaluation of percentiles. Each set of 
100 consecutive recordings of the road depth in each baseline may be considered as samples 
drawn from a unique pdf. The widths of different pdfs belonging to different baselines are 
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likely different. The coverage factors or the types of these pdfs are likely much less different. 
A plausible assumption is that the coverage factors for different baselines are nearly equal 
and can be estimated using all samples. This global coverage factor is as robust as possible. 
The mean of the two peaks in Fig. 12 are rather well described by the th99  percentile. The 
calculation of the standard deviation is robust enough to be calculated for each baseline. The 
smoothing filter used to calculate the mean baseline depth h  can also be used to evaluate 
the mean baseline square deviation   222 hhhh  , or squared standard deviation. 
The smoothing filter is effectively a rather sharp anti-alias filter. The MPD signal may 
therefore be directly down-sampled to be consistent with the baseline resolution. This 
concludes the derivation of the method for determining the modified MPD (MMPD): 

1. The measured road profile is sampled with -1m 1000Sf . Otherwise, linear down-
sampling is applied. 

2. The road profile is filtered in both directions of time with a digital band-pass 
Butterworth filter of order one with cross-over frequencies   -1m 434,5.6Cf . Filter 
coefficients2: ]8119.008119.0[ b , ]6237.03099.0000.1[ a .  

3. The running mean and variance of the depth are evaluated with the same smoothing 
filter. The digital Butterworth filter is of order two, has a cross-over frequency 

-1m 5.5Cf , and is applied in both directions of time. The band-pass filtered road 

profile h  and its square 2h  are filtered to give 
S

h  and 
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h2 , respectively. Filter 

coefficients: ]2921.05842.02921.0[10 3  b , ]9522.09511.1000.1[ a .  
4. The th99   percentile of the road depth,  

A
hhP 99 , where 
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  denotes average 

over all samples, will be called GPD – Global Profile Depth. It is a measure of the 

mean MMPD. The global coverage factor is given by, 22GPD
AAP hhk  . 

5. The mean profile depth is given by, 2222GPDMMPD
AASS

hhhh  . 

6. Finally, the MMPD is down-sampled to -1m 20Sf . 
  
An example of calculated MMPD is shown in Fig. 14. The generated road profile was an 
uncorrelated normally distributed variation of depth with standard deviation equal to one. 
The smoothing filter of the MMPD is compared to the average filter suggested by the 
current standard. Clearly, the robustness improved considerably – the noise of the 
calculated mean profile depth disappeared. 
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Fig. 14. The proposed smoothing of the MMPD compared to the average smoothing of the 
present MPD, for an uncorrelated normally distributed road profile. 

 
5. Conclusions  

A multitude of different digital filters for exploring and refining measurements have been 
discussed: single correction filters or ensembles of correction filters, sensitivity filters, 
lumbar spine filter, banks of vehicle filters, and road texture filters. The analyses they realize 
differ substantially. All digital filters were designed or synthesized in three steps: dynamic 
model – prototype – digital filter. The identification of models was not considered as a part 
of the synthesis of digital filters and was omitted. The model describes the physical system 
and the prototype what we are interested in. The major part of the chapter focused on the 
construction of prototypes from models. The prototypes were sampled into digital filters. A 
brief survey of some well established sampling techniques was given. In the examples, 
prototypes were sampled with the exponential pole-zero mapping.  
The discussed filters fell into one of two categories: 1. Analysis of measured signals utilizing 
calibration information of the measurement system. 2. Extraction of any feature of interest 
that is related to a measured signal. Digital filters devised to correct and analyze measured 
signals are preferably considered as a part of an improved measurement system. The 
extracted feature could be a constant like an accumulated dose describing the risk of injury, 
or a spatially varying measure of road texture. A feature is justified by its broad acceptance 
and they are therefore often defined in standard documents. A feature which is not robust is 
questionable and may lose its importance. Low robustness originates from the definition of 
the feature and/or its incomplete specification. In this context digital filters are ideal, as they 
completely describe how the extraction is made with a finite set of numerical numbers. 
Many operations are difficult to realize in real time, like zero-phase filtering and 
stabilization. These become trivial with reversed filtering, as was illustrated repeatedly. 
The only example of non-linear digital filtering, the human lumbar spine filter, was 
analyzed but not synthesized. It is strongly desired that measurement systems are as linear-
in-response as possible. Correction of the non-linear response of measurement systems with 

 

non-linear digital filters is virgin territory. It requires non-linear model identification, which 
needs to be further developed to reach the ‘off-the-shelf’ status of linear identification 
methods. The sampling techniques for linear systems can to some extent probably be 
inherited to sampling of non-linear prototypes. 
A challenge for the future is to find novel and unique applications where digital filters really 
make a difference to how measurements are processed into valuable results. Digital filters 
are dynamic time-invariant systems with feedback. That sets their potential but also their 
limitations. Sampling is separate from construction of prototypes. Even though sampling of 
systems always introduces errors, it seldom limits the performance of digital filters. 
Normally, it is the quality of the underlying model that is crucial. A digital filter can never 
perform better than the model from which its prototype is constructed. 
Differential equations in time are ubiquitous and are used in perhaps the majority of all 
physical and technological models, but rarely for calibrating measurement systems. For all 
such models, digital filters are potential candidates for modeling, refining results and 
extracting information. Digital filters supporting measurements and synthesized by a third-
party (neither manufacturers, nor users) are still in their infancy. It is truly amazing how 
useful such digital filters often turn out to be in various applications. 
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Fig. 14. The proposed smoothing of the MMPD compared to the average smoothing of the 
present MPD, for an uncorrelated normally distributed road profile. 
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of the synthesis of digital filters and was omitted. The model describes the physical system 
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