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Abstract 

This paper develops a design of two-dimensional (2D) digital filter with monotonic 
amplitude-frequency responses using Darlington-type gyrator networks by the application 
of Generalized Bilinear Transformation (GBT). The proposed design provides the stable 
monotonic amplitude-frequency responses and the desired cutoff frequency of the 2D 
digital filters. This 2D recursive digital filter design includes 2D digital low-pass, high-pass, 
band-pass and band-elimination filters. Design examples are given to illustrate the 
usefulness of the proposed technique. 
Index Terms— Stability, monotonic response, GBT, gyrator network. 

 
1. Introduction 

Because of recent growth in the 2D signal processing activities, a significant amount of 
research work has been done on the 2D filter design [1] and it is seen that monotonic 
characteristics in frequency response of a filter is getting more popular. The filters with the 
monotonic characteristics are one of the best filters for the digital image, video and audio 
(enhancement and restoration) [2]. The filters are widely accepted in the applications of 
medical science, geographical science and environment, space and robotic engineering [1]. 
For example, medical applications are concerned with processing of chest X-Ray, cine 
angiogram, projection of frame axial tomography and other medical images that occurs in 
radiology, nuclear magnetic resonance (NMR), ultrasonic scanning and magnetic resonance 
imaging (MRI) etc. and the restoration and enhancement of these images are done by the 2D 
digital filters [3].  
 
The design of 2D recursive filters is difficult due to the non-existence of the fundamental 
theorem of algebra in that the factorization of 2D polynomials into lower order polynomials 
and the testing for stability of a 2D transfer function (recursive) requires a large number of 
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computations. But, the major drawbacks of the recursive filters are their lower-order 
realizations and computational intensive design techniques. Several design techniques of 2D 
recursive filter have been reported in the literature [2], [4] – [9] and most of these designs 
have problems of computational complexity, stability and unable to provide variable 
magnitude monotonic characteristic. A design technique of 2D recursive filters have been 
shown which met simultaneously magnitude and group delay specifications [4], although 
the technique has the advantage of always ensuring the filter stability, the difficulties to be 
encountered are computational complexity and convergence [5]. In [6], 2D filter design as a 
linear programming problem has been proposed, but, this tends to require relatively long 
computation time. In [7], a filter design has been shown using the two specifications as the 
problem of minimizing the total length of modified complex errors and minimized it by an 
iterative procedure. Difficulties of the design obtain for two-dimensional stability testing at 
each iteration during the minimization procedure. 
One way to ensure a 2D transfer function is stable is if the denominator of the transfer 
function is satisfied to be a Very Strict Hurwitz Polynomial (VSHP) [8] and that can ensure a 
transfer function that there is no singularity in the right half of the biplane, which can make 
a system unstable.  In [9]-[11], stable 2D recursive filters have been designed by generation 
of Very Strict Hurwitz Polynomial (VSHP), but it is not guaranteed to provide the stable 
monotonic amplitude-frequency responses. Several filter designs with monotonic amplitude 
frequency response has been reported [12] – [16], but to the best of our knowledge, filter 
design with variable monotonic amplitude frequency response is not proposed yet. 
In this paper, 2-D digital filters with variable monotonic amplitude frequency responses are 
designed starting from Darlington-type networks containing gyrators and doubly-
terminated RLC-networks. The extension of Darlington-synthesis to two-variable positive 
real functions is given in [17], [18]; but they do not contain gyrators. From the 2-D stable 
transfer functions so obtained, the GBT [19] is applied to obtain 2-D digital functions and 
their properties are studied. The designed filters are used in the image processing 
application. 

 
2. THE TWO BASIC STRUCTURES CONSIDERED 
Two filter structures are considered for 2D digital recursive filters design and both 
structures are taken from Darlington-synthesis [20]. Figures 1(a) and (b) show the two 
structures considered in this paper. 
The impedances of the filters are replaced by doubly-terminated RLC filters and the overall 
transfer function will be of the form 
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where the coefficients of H(s1,s2,g) are functions of g.  
 

 
(a) Filter 1                                   (b) Filter 2 

Fig. 1. Doubly terminated gyrator filters. 
 
In this paper, second-order Butterworth and Gargour & Ramachandran filters [19] are 
considered as doubly terminated RLC networks. For simplicity, each gyrator network is 
classified into three cases, such as the impedances of gyrator network are replaced by the 
second-order Butterworth filter and Gargour & Ramachandran filter are called case-I and 
case-II respectively. The impedances of gyrator network are replaced by second-order 
Butterworth and Gargour & Ramachandran filters is called case-III.  

 
3. Filter 1 

Transfer functions of case-I, case-II and case-III of Filter 1 (Figure 1(a)) provide stable 
functions, when denominators of the cases are VSHPs. This can be verified easily by the 
method of Inners [21]. The impedances of the cases are modified by first applying the GBT 
given by  
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computations. But, the major drawbacks of the recursive filters are their lower-order 
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and the impedance of a capacitor becomes 
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For example, the transfer function of the case-I represents as 
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The coefficients are dependent on the value and sign of ‘g’. 
 
The GBT [19] is applied to the transfer function (5) and it is shown that the 2D digital low-
pass filters are obtained for the lower values of g and the 2D digital high-pass filters are 
obtained for the higher values of g. But the amplitude-frequency response of the Filter 1 is 
constant for g = 1.  
If monotonicity in the magnitude response is desired, the values of ai, bi and ki have to be 
adjusted and these are given in Table 1. Figure 2 shows the 3-D magnitude plot of such a 
low-pass filter. 
 

g  ai  bi Case-I Case-II Case-III 

0.001 -0.9 0.9 0.09>ki>0 82 > ki >0 0.1>ki>0 

0.001 -0.9 0.5 0.4>ki>0 1.5> ki > 0 0.9>ki>0 

0.001 -0.5 0.9 205>ki>0 95 > ki > 0 100>ki>0 

Table 1. The ranges of ik  satisfy the monotonic characteristics in the amplitude-frequency 
response of 2D Low-passFilter (Filter 1). 
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Fig. 2. 3D magnitude plot and contour plot of the 2D digital low-pass filter  (Filter 1) when  
g = 0.01. 

 
4. Filter 2 

The impedances Z1, Z2 and Z3 of Filter 2 (Fig.1(b)) are replaced by impedances of the second-
order RLC filters. The resultant transfer function is unstable, because, the denominator is 
indeterminate [8]. 
 
In order to generate a stable analog transfer function HMB2(s1,s2,g), the impedances Z1 and Z2 
of Filter 2 (Figure 1(b)) are replaced by the impedances of the second-order RLC filters and 
the third impedance (Z3) is replaced by a resistive element. As a result, the denominator of 
the case-I, case-II and case-III of Filter 2 are VSHPs. 
 
Transfer function of the case-I (Filter 2) is represented as 
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The coefficients of numerator are dependent on the value and sign of  ‘g’, but the coefficients 
of denominator are dependent only the value of  ‘g’. 
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Fig. 2. 3D magnitude plot and contour plot of the 2D digital low-pass filter  (Filter 1) when  
g = 0.01. 
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The GBT [19] is applied to (6) and it is shown that the 2D digital low-pass filters are 
obtained for the lower values of g, the 2D digital high-pass filters are obtained for the higher 
values of g and inverse filter responses are obtained for the opposite sign of g. 
 
If monotonicity in the magnitude response is desired, the values of g, ai, bi and ki have to be 
adjusted and these are given in Table 2 and Table 3. Figure 3 shows the 3-D magnitude plot 
of such a high-pass filter. 
 

g   ai   bi  Case-I Case-II Case-III 
0.01 -0.9 0.9 0.2 > ki >0 0.2 > ki > 0 0.2 > ki > 0 
0.01 -0.9 0.5 0.7 > ki > 0 0.6 > ki > 0 0.5 > ki > 0 
0.01 -0.5 0.9 4 > ki > 0 3> ki >0 3.2 > ki >0 

Table 2. The ranges of ik  satisfy the monotonic characteristics in the amplitude-frequency 
response of 2D Low-passFilter (Filter2). 
 

ai bi ki Case-I (Filter 1) Case-I (Filter 2) 
-0.1 0.1 1 0.3 >g ≥ 0 ∞ >g ≥ 0, 0.4 >g ≥ -0.1 
-0.1 0.1 5 0.1 >g ≥ 0 ∞ >g ≥ 9, 0.2 >g ≥ -0.01 
-0.1 0.1 10 0.05 >g ≥ 0 ∞ >g ≥ 13, 0.08 >g ≥ -0.005 
-0.5 0.5 1 0.7 >g ≥ 0 ∞ >g ≥ 3.2, 0.5 >g ≥ -0.1 
-0.5 0.5 5 0.4 >g ≥ 0 ∞ >g ≥ 4.8, 0.3 >g ≥ -0.04 
-0.5 0.5 10 0.18 >g ≥ 0 ∞ >g ≥ 7, 0.2 >g ≥ -0.04 
-0.9 0.9 1 ∞ >g ≥ 0 ∞ > |g| > 0 
-0.9 0.9 5 4.6 >g ≥ -1.5 ∞ >g ≥ 3.2, 0.5 >g ≥ -0.1 
-0.9 0.9 10 1 >g ≥ -0.67 ∞ >g ≥ 3.4, 0.41 >g ≥ -0.09 

Table 3. The ranges of g  for the various parameter-values of the GBT, where the 2D digital 
high-pass filter  contains the monotonic characteristics. 
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Fig. 3. 3D magnitude plot and contour plot of the 2D digital high-pass filter  (Filter 2) when 
g = -0.7. 

5. Band-pass and band-elimination filters 

In order to design the 2D digital band-pass and band-elimination filter, the following GBT 
[23] is applied to a stable analog transfer function.  
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Fig. 4. 3D magnitude plot 2D digital band-pass filter  (g =-001). 
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Fig. 5. 3D magnitude plot of the 2D digital band-elimination filter (g = -0.5) 
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The GBT [19] is applied to (6) and it is shown that the 2D digital low-pass filters are 
obtained for the lower values of g, the 2D digital high-pass filters are obtained for the higher 
values of g and inverse filter responses are obtained for the opposite sign of g. 
 
If monotonicity in the magnitude response is desired, the values of g, ai, bi and ki have to be 
adjusted and these are given in Table 2 and Table 3. Figure 3 shows the 3-D magnitude plot 
of such a high-pass filter. 
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ai bi ki Case-I (Filter 1) Case-I (Filter 2) 
-0.1 0.1 1 0.3 >g ≥ 0 ∞ >g ≥ 0, 0.4 >g ≥ -0.1 
-0.1 0.1 5 0.1 >g ≥ 0 ∞ >g ≥ 9, 0.2 >g ≥ -0.01 
-0.1 0.1 10 0.05 >g ≥ 0 ∞ >g ≥ 13, 0.08 >g ≥ -0.005 
-0.5 0.5 1 0.7 >g ≥ 0 ∞ >g ≥ 3.2, 0.5 >g ≥ -0.1 
-0.5 0.5 5 0.4 >g ≥ 0 ∞ >g ≥ 4.8, 0.3 >g ≥ -0.04 
-0.5 0.5 10 0.18 >g ≥ 0 ∞ >g ≥ 7, 0.2 >g ≥ -0.04 
-0.9 0.9 1 ∞ >g ≥ 0 ∞ > |g| > 0 
-0.9 0.9 5 4.6 >g ≥ -1.5 ∞ >g ≥ 3.2, 0.5 >g ≥ -0.1 
-0.9 0.9 10 1 >g ≥ -0.67 ∞ >g ≥ 3.4, 0.41 >g ≥ -0.09 

Table 3. The ranges of g  for the various parameter-values of the GBT, where the 2D digital 
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Fig. 3. 3D magnitude plot and contour plot of the 2D digital high-pass filter  (Filter 2) when 
g = -0.7. 

5. Band-pass and band-elimination filters 

In order to design the 2D digital band-pass and band-elimination filter, the following GBT 
[23] is applied to a stable analog transfer function.  
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Fig. 4. 3D magnitude plot 2D digital band-pass filter  (g =-001). 
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Fig. 5. 3D magnitude plot of the 2D digital band-elimination filter (g = -0.5) 
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The 2D digital band-pass filters and the 2D digital band-elimination filters are obtained 
depending on the values and sign of g which is shown in Table 4. Figures 4 and 5 show the 
3D magnitude plots of the digital band-pass and band-elimination filter respectively, which 
are obtained from Case-I (Filter1) and case-I (Filter2). 

 
6. Digital filter Transformation 

The proposed digital filter transformation provides the low-pass to high-pass filter (Table 5) 
or the band-pass to band-elimination filter (Table 6) or vice-versa transformation by 
regulating the value or sign of g. However, the low-pass to band-pass or the high-pass to 
band-elimination filter or vice versa transformation is obtained by regulating the value or 
sign of g and the parameters of the GBT as shown in Figure 6. In Filter 1, the digital filter 
transformations are obtained by regulating the value of g. However, in Filter 2, the digital 
filter transformations are obtained by regulating the value or sign of g.  
 

 
Fig. 6. Block diagram of the digital filter transformation 
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Table 4. The ranges of g  of the case-I To obtain the 2D digital band-pass and band-
elimination filters.  
 
 
 
 

Filter Low-pass Filter High-Pass Filter 
Case-I (Filter 1) g = 0.01 g =50 
Case-II (Filter 1) g =0.03 g =100 
Case-III (Filter 1) g =0.01 g =115 
Case-I (Filter 2) g = 10 g = -10 
Case-II (Filter 2) g = 8 g = -8 

Case-III (Filter 2) g = 9 g = -9 
Table 5. Digital filter transformation from 2D low-pass filter to high-pass filter. 
 

Filter Band-pass Filter Band-stop Filter 
Case-I (Filter 1)  g = 0.01 g =100 
Case-II (Filter 1)  g =0.03 g =150 
Case-III (Filter 1)  g =0.05 g = 50 
Case-I (Filter 2) g = 5 g = -5 
Case-II (Filter 2) g = 25  g = -25 
Case-III (Filter 2) g = 100 g = -100 

Table 6. Digital filter transformation from 2D band-pass filter to band-elimination filter. 

 
7. Applications 

The designed 2D digital filters can use in the various image processing applications, such as 
image restoration, image enhancement. The band-width of the designed digital filter can be 
controlled by the magnitude of g and the parameters of the GBT. As a result, the 2d digital 
filter provides facilities as required in the image processing applications.  
 
For illustration, a standard image (Lena) (Figure 7 (a)) [1] is corrupted by gaussian noises 
and the degraded image (Figure 7 (b)) is passed through the 2D digital low-pass filters for 
de-noising purposes. Table 7 shows the quality of the reconstructed images is measured in 
term of mean squared error (MSE) [24] and peak signal-to-noise ratio (PSNR) [24] in decibels 
(dB) for the most common gray image [3]. Average PSNR of the reconstructed images are 
obtained by Filter2 is higher than Filter1, but, some cases, Filter1 provides better 
performance than Filter2. Overall, it is seen that the significant amount of noise is reduced 
from a degraded image by the both filters 

 
Filter g  MSEns PSNRns(dB) MSEout PSNRout(dB) 
Case-I (Filter1) 0.001 629.9926 20.1374 257.3906 24.0249 
Case-II (Filter1) 0.001 636.2678 20.0944 257.7424 24.0189 
Case-III (Filter1) 0.001 636.3893 20.0936 273.4251 23.7624 
Case-I (Filter2) 0.001 630.9419 20.1309 256.4292 24.0411 
Case-II (Filter2) 0.001 634.0169 20.1098 244.2690 24.2521 
Case-III (Filter2) 0.001 639.1828 20.0746 253.6035 24.0893 

Table 7. DENOISING EXPERIMENT ON LENA IMAGE (GAUSSIAN NOISE WITH mean = 
0, variance = 0.01 IS ADDED INTO THE IMAGE) 
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(a)                                        (b) 

      
(c)                                        (d) 

Fig. 7.(a) The original image of Lena,  (b) the noisy image with Gaussian noise (variance 
=0.01), (c) the reconstructed image by case I (Filter 1) when g = 0.001 (PSNRout = 24.3337 dB), 
(f) the reconstructed image by case I (Filter 2) when g =0.001 (PSNRout = 24.2287 dB) 

 
8. Conclusion 

A new design of 2-D recursive digital filters has been proposed and it includes low-pass, 
high-pass, band-pass and band-elimination filters using Darlington-type gyrator network. It 
is seen that the behavior of the gyrator filter is changed not only for the values of resistance, 
capacitance and inductance of the filter, but also the value and sign of g. The coefficients of 
the transfer functions of Filter 1 and Filter 2 are function of g. The ranges of g are defined for 
attaining stable monotonic characteristics in the pass-band region, because g has control 
over the frequency responses of the filters.  
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Fig. 7.(a) The original image of Lena,  (b) the noisy image with Gaussian noise (variance 
=0.01), (c) the reconstructed image by case I (Filter 1) when g = 0.001 (PSNRout = 24.3337 dB), 
(f) the reconstructed image by case I (Filter 2) when g =0.001 (PSNRout = 24.2287 dB) 
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attaining stable monotonic characteristics in the pass-band region, because g has control 
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