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1. Abstract 

Faults in mechanisms must be detected quickly and reliably in order to avoid important 
losses. Detection systems should be developed to minimize maintenance costs and are 
generally based on consistent models, but as simple as possible. Also, the models for 
detecting faults must adapt to external and internal conditions to the mechanism. The 
present chapter deals with three particular maintenance algorithms for turnouts in railway 
infrastructure by means of discrete filters that comply with these general objectives. All of 
them have the virtue of being developed within a well-known and common framework, 
namely the State Space with the help of the Kalman Filter (KF) and/or complementary Fixed 
Interval Smoother (FIS) algorithms. The algorithms are tested on real applications and 
thorough results are shown. 

 
2. Introduction    

Faults in any important mechanisms must be detected quickly and reliably if the 
information is to be useful. Generally such mechanisms may be modeled as discrete 
dynamic systems, where data must be processed on line. When feasible, the detection 
system should use a model as simple as possible for detecting faults quickly by analyzing 
data in real time. The models for detecting faults must adapt to external and internal 
conditions to the mechanism, since both of them may affect the system as a whole.  
 
The present chapter deals with maintenance systems for turnouts in railway infrastructure 
by means of discrete filters. Turnouts are assembled from switches and a crossing where the 
moving parts are often described as the “points” move by the point mechanism. The 
standard railway point mechanism is a complex electro-mechanical device with many 
potential failure modes.  
 
Several approaches for maintenance of such devices are shown in this chapter and briefly 
described in this introduction. All of them have the virtue of being developed within a well-
known common framework, namely the State Space (SS) with the help of the Kalman Filter 
(KF) and/or complementary Fixed Interval Smoother (FIS) algorithms, exposed in general 
terms in the following section. 

1

www.intechopen.com



Digital Filters2

 

Based on this common framework, the following subsections in this introduction show the 
particular applications shown in later sections of the chapter. 

 
2.1. Filtering with Integrated Random Walks (IRW) 
One possible way to analyze faults on line is to work with a reference dynamic system for 
their analysis. If the absolute value of the difference between the actual data and the 
reference data (i.e. the profile without any fault) is analyzed, the majority of faults may be 
detected by means of a simplified univariate dynamic system, like the one explored in [9]. 
The dynamic system and the use of the SS framework and the KF in this study allow 
increasing the reliability of the model presented that is the basic input to a rule-based 
decision mechanism. When applied to the linear discrete data filtering problem, the KF is a 
powerful algorithm, because it supports estimations of past, present and, most importantly, 
future states. It can therefore be used in predictive maintenance applications where data 
collected from sensors is affected by measurement and transmission line noise [12]. 
 
The previous approach may be exploited by setting up a bivariate model composed of two 
time series, i.e. the reference curve on one hand and each one of the empirical curves 
obtained on line on the other hand. More specifically (see section 4.2 below) a tentative 
model consists of a bivariate trend plus noise structure. The correlation between either 
trends or signals free from noise is considered as an indication of similarity between the 
curves and therefore the inexistence of failures. As long as the new incoming data is free 
from fault, the correlation parameter is close to one, but as a failure starts to develop this 
parameter tends to differ from one. The cut-off value of the correlation coefficient relevant to 
discern ‘good’ and ‘bad’ curves is selected on practical grounds based on past experience 
with this kind of data, but refined formal statistical criteria may be used as well [19]. Even 
forecasts of the curve that is being studied may be produced at any point in time, based on 
the current parameter values and the future data of the reference curve [14]. Therefore the 
fault may be detected ahead of time. 

 
2.2. Random Walks and smoothing 
Similar measurement data were collected from sensors mounted on a UK type M63 point 
machine at the Carillion Rail (formerly GTRM) Training Centre in Stafford (UK). It is 
difficult to compare the measurements taken during induced failure conditions with those 
from the fault-free condition because of noise in the measurements. The measurement data 
needed to be filtered in order to reduce the noise before comparisons may be made. Filtering 
using a SS model and the KF was an option (like in [9], [19] and [20]). Assuming the noisy 
data is a signal plus noise model, the KF reduces the power of the 100 and 200 Hz interfering 
signals. Rather than augmenting the SS models to express the additional knowledge of the 
interfering signals, a much simpler smoothing seems more convenient because of the 
relationship between the sample rate and the frequencies of the interfering signals, and 
provides excellent results for the data collected during this series of experiments [10]. 

 
2.3. Advance Dynamic Harmonic Regression (DHR) 
A different case study was based on data collected from point mechanisms at Abbotswood 
Junction (UK). Three electro-mechanical and four electro-hydraulic point machines were 

 

monitored by a RCM system. Processed information was sent remotely from the trackside 
data-collection units to a personal computer located in a local relay room. 
 
A fault is detected by comparing the forecasts of the model, considered as the expected 
signal in the case of no faults, with the actual data coming from the point mechanism when 
a movement is in progress. If the error is too large, measured by its standard deviation, a 
fault alarm is issued. The limit at which an error is considered too large is a design 
parameter that is fixed by experimentation. The system adapts to the changes experienced 
by the point machine. There are internal alterations (like friction, wear, etc.) and external as 
well (like environmental conditions, impacts, obstacles, etc.). The adaptability of the system 
is accomplished by continuous estimation of the models as new information becomes 
available and by discarding the oldest information. Models are always estimated on fault-
free data [13].  
 
The key point in this application is that the expected shape is computed as the forecast of a 
combination of two models that work interactively on historical data coming from signals 
free from any fault. The first of the models forecasts the time span a movement would take 
in case of absence of faults (an appropriate model used in this case was of the VARMA class 
or a local level plus noise but set up in continuous time). The second model is run to forecast 
the signal itself (due to the nature of the data a pertinent class is a Dynamic Harmonic 
Regression, DHR, similar to a Fourier analysis, but with advanced features included to 
incorporate a time varying period observed in the data). 
 
The outline of the chapter is as follows. Section 3 reports a brief explanation of the general 
framework on which all the models in this chapter are set up, namely the State Space 
systems. Section 4 shows the first of the applications, i.e. in the point mechanisms. Finally 
section 5 shows how a fault detection algorithm may be implemented on seven point 
machines at Abbotswood junction (UK). 

 
3. State Space systems 

The general framework on which all models in this chapter are cast, is the so called State 
Space systems, that have experienced a remarkable attention during the last decades, as the 
extended literature about it reveals [3], [7], [13], [15], [16], [17], [21], [24], [26] and [27]. 
 
A stochastic discrete-time State Space system (SS) is a model composed of two sets of 
equations, the Observation Equations, and State Equations. The former relates the output to the 
states of the system, while the latter reflects the dynamic behavior of the system by relating 
the current value of the states to their past values. There are a number of different 
formulations of these equations, but one fairly general representation is given by 
equations (1) (see [3] and [21]). In general, much simpler models are sufficient, as later case 
studies show. 
 

 
(ii)               :  Equationsn Observatio
(i)             :            Equations State

ttt

ttt
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Based on this common framework, the following subsections in this introduction show the 
particular applications shown in later sections of the chapter. 

 
2.1. Filtering with Integrated Random Walks (IRW) 
One possible way to analyze faults on line is to work with a reference dynamic system for 
their analysis. If the absolute value of the difference between the actual data and the 
reference data (i.e. the profile without any fault) is analyzed, the majority of faults may be 
detected by means of a simplified univariate dynamic system, like the one explored in [9]. 
The dynamic system and the use of the SS framework and the KF in this study allow 
increasing the reliability of the model presented that is the basic input to a rule-based 
decision mechanism. When applied to the linear discrete data filtering problem, the KF is a 
powerful algorithm, because it supports estimations of past, present and, most importantly, 
future states. It can therefore be used in predictive maintenance applications where data 
collected from sensors is affected by measurement and transmission line noise [12]. 
 
The previous approach may be exploited by setting up a bivariate model composed of two 
time series, i.e. the reference curve on one hand and each one of the empirical curves 
obtained on line on the other hand. More specifically (see section 4.2 below) a tentative 
model consists of a bivariate trend plus noise structure. The correlation between either 
trends or signals free from noise is considered as an indication of similarity between the 
curves and therefore the inexistence of failures. As long as the new incoming data is free 
from fault, the correlation parameter is close to one, but as a failure starts to develop this 
parameter tends to differ from one. The cut-off value of the correlation coefficient relevant to 
discern ‘good’ and ‘bad’ curves is selected on practical grounds based on past experience 
with this kind of data, but refined formal statistical criteria may be used as well [19]. Even 
forecasts of the curve that is being studied may be produced at any point in time, based on 
the current parameter values and the future data of the reference curve [14]. Therefore the 
fault may be detected ahead of time. 

 
2.2. Random Walks and smoothing 
Similar measurement data were collected from sensors mounted on a UK type M63 point 
machine at the Carillion Rail (formerly GTRM) Training Centre in Stafford (UK). It is 
difficult to compare the measurements taken during induced failure conditions with those 
from the fault-free condition because of noise in the measurements. The measurement data 
needed to be filtered in order to reduce the noise before comparisons may be made. Filtering 
using a SS model and the KF was an option (like in [9], [19] and [20]). Assuming the noisy 
data is a signal plus noise model, the KF reduces the power of the 100 and 200 Hz interfering 
signals. Rather than augmenting the SS models to express the additional knowledge of the 
interfering signals, a much simpler smoothing seems more convenient because of the 
relationship between the sample rate and the frequencies of the interfering signals, and 
provides excellent results for the data collected during this series of experiments [10]. 

 
2.3. Advance Dynamic Harmonic Regression (DHR) 
A different case study was based on data collected from point mechanisms at Abbotswood 
Junction (UK). Three electro-mechanical and four electro-hydraulic point machines were 

 

monitored by a RCM system. Processed information was sent remotely from the trackside 
data-collection units to a personal computer located in a local relay room. 
 
A fault is detected by comparing the forecasts of the model, considered as the expected 
signal in the case of no faults, with the actual data coming from the point mechanism when 
a movement is in progress. If the error is too large, measured by its standard deviation, a 
fault alarm is issued. The limit at which an error is considered too large is a design 
parameter that is fixed by experimentation. The system adapts to the changes experienced 
by the point machine. There are internal alterations (like friction, wear, etc.) and external as 
well (like environmental conditions, impacts, obstacles, etc.). The adaptability of the system 
is accomplished by continuous estimation of the models as new information becomes 
available and by discarding the oldest information. Models are always estimated on fault-
free data [13].  
 
The key point in this application is that the expected shape is computed as the forecast of a 
combination of two models that work interactively on historical data coming from signals 
free from any fault. The first of the models forecasts the time span a movement would take 
in case of absence of faults (an appropriate model used in this case was of the VARMA class 
or a local level plus noise but set up in continuous time). The second model is run to forecast 
the signal itself (due to the nature of the data a pertinent class is a Dynamic Harmonic 
Regression, DHR, similar to a Fourier analysis, but with advanced features included to 
incorporate a time varying period observed in the data). 
 
The outline of the chapter is as follows. Section 3 reports a brief explanation of the general 
framework on which all the models in this chapter are set up, namely the State Space 
systems. Section 4 shows the first of the applications, i.e. in the point mechanisms. Finally 
section 5 shows how a fault detection algorithm may be implemented on seven point 
machines at Abbotswood junction (UK). 

 
3. State Space systems 

The general framework on which all models in this chapter are cast, is the so called State 
Space systems, that have experienced a remarkable attention during the last decades, as the 
extended literature about it reveals [3], [7], [13], [15], [16], [17], [21], [24], [26] and [27]. 
 
A stochastic discrete-time State Space system (SS) is a model composed of two sets of 
equations, the Observation Equations, and State Equations. The former relates the output to the 
states of the system, while the latter reflects the dynamic behavior of the system by relating 
the current value of the states to their past values. There are a number of different 
formulations of these equations, but one fairly general representation is given by 
equations (1) (see [3] and [21]). In general, much simpler models are sufficient, as later case 
studies show. 
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In (1) tz  is the m dimensional vector of observed variables for Nt ,,2,1  ; tx  is an n 

dimensional stochastic state vector; tw  is an r dimensional vector of (to be Gaussian) 
system disturbances, i.e. zero mean white noise inputs with a covariance matrix tQ ; and tv  
is a s dimensional vector of zero mean white noise variables (measurement noise: again 
assumed to be Gaussian) with a covariance matrix tR . In general, the vector tv  is assumed 
to be independent of tw  (not necessarily), and these two noise vectors are independent of 

the initial state vector 0x . tttttt RQCHE  and , , , , ,  are, respectively, the n n, n r, m n, 
and m s, r r and s s system matrices, some elements of which are known and others 
that need to be estimated in some way. 
 
Given the general SS form (1), the estimation problem consists of finding the first and 
second order moments (mean and covariance) of the state vector, conditional on all the data 
in a sample. Provided that all disturbances in the model are Gaussian, a Kalman Filter (KF) 
produces the optimal estimates of such moments in the sense of minimizing the Mean 
Squared Errors (MSE). An algorithm that is used in parallel with the KF and is not so well-
known in certain contexts is the Fixed Interval Smoothing (FIS) algorithm, which allows for an 
operation similar to that of the KF but with a different set of information. The KF used in 
this chapter is: 
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The backward FIS recursions are: 
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This general SS formulation is capable of handling many nonstationary linear dynamical 
systems; also it can model nonlinear systems but conditionally Gaussian; general 
heteroscedastic systems; time-varying systems; etc. In addition, many kinds of extensions of 
model have been proposed in the literature, such as linear approximations of functionally 
nonlinear dynamic systems; non-Gaussian disturbances; etc. Missing data is not a problem 
given the recursive nature of the algorithms, because such data are replaced by their 

 

expectations based on the model and the data. Then, if such data is at the end of the sample 
the KF produces forecasts of the signal, while if they are in the middle or at the beginning 
both algorithms produce interpolation or forecasts from the beginning of the series 
backwards.  
 
The application of the recursive KF/FIS algorithms requires values for all the system 
matrices tttttt RQCHE  and , , , , , . Most of the elements of these matrices must be 
estimated by efficient methods. The Maximum Likelihood (ML) method in the time domain 
by means of ‘prediction error decomposition’ ([24] and [15]) is the most common because of 
its generality and good theoretical properties.  

 
4. Filtering with Integrated Random Walks (IRW) 

4.1. Data 
Approximately 55 % of railway infrastructure component failures on high speed lines are 
due to signalling equipment and turnouts. “Signalling equipment” covers signals, track 
circuits, interlockings, automatic train protection (ATP) or LZB (track loop based ATP), and 
the traffic control centre. From another point of view, the annual cost of maintaining points 
is rather high compared to other infrastructure elements, about 3.4 million UKP (United 
Kingdom Pound) per year for about 1000 km of railway. TC-TCR trade circuits, for example, 
cost 2.1 million UKP per year for the same area. Of the points expenditure, 1.2 million UKP 
is for clamp lock type (hydraulic) turnout and 1.4 UPK million for electrically operated 
turnouts (data provided by a British asset manager). Turnouts can also be used to 
implement flank protection for a train route allocated to another train. This is achieved by 
positioning the blades of the turnout in such a way that a train driving through the turnout 
is not directed into a track segment belonging to the route of another train.  
 
Most standard point machines (see Fig. 1) contain a switch actuating and a locking 
mechanism which includes a hand-throw lever and a selector lever to allow operation by 
power or hand. The mechanism is normally divided into three major subsystems: (i) the 
motor unit which may includes a contactor control arrangement and a terminal area; (ii) a 
gearbox comprising spur-gears and a worm reduction unit with overload clutch; and (iii) 
the dual control mechanism as well as a controller subsystem with motor cut-off and 
detection contacts. Generally, there are also mechanical linkages for the detection and 
locking of the point. The standard railway point is therefore a complex electro-mechanical 
device with many potential failure modes. 
 
The circuit controller includes detection switches and a pair of snap-action switches to stop 
the machine at the end of its stroke and to brake the motor electrically so that the 
mechanism is not subject to impacts. The detection switches have high pressure wiping 
contacts made of silver/cadmium oxide or gold and they are operated by both the lockbox 
and the detection rod. The detection switches have additional contacts to allow mid-stroke 
short circuiting of the detection relays to avoid wrong indications in the signal box or 
electronic interlocking. 
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In (1) tz  is the m dimensional vector of observed variables for Nt ,,2,1  ; tx  is an n 

dimensional stochastic state vector; tw  is an r dimensional vector of (to be Gaussian) 
system disturbances, i.e. zero mean white noise inputs with a covariance matrix tQ ; and tv  
is a s dimensional vector of zero mean white noise variables (measurement noise: again 
assumed to be Gaussian) with a covariance matrix tR . In general, the vector tv  is assumed 
to be independent of tw  (not necessarily), and these two noise vectors are independent of 

the initial state vector 0x . tttttt RQCHE  and , , , , ,  are, respectively, the n n, n r, m n, 
and m s, r r and s s system matrices, some elements of which are known and others 
that need to be estimated in some way. 
 
Given the general SS form (1), the estimation problem consists of finding the first and 
second order moments (mean and covariance) of the state vector, conditional on all the data 
in a sample. Provided that all disturbances in the model are Gaussian, a Kalman Filter (KF) 
produces the optimal estimates of such moments in the sense of minimizing the Mean 
Squared Errors (MSE). An algorithm that is used in parallel with the KF and is not so well-
known in certain contexts is the Fixed Interval Smoothing (FIS) algorithm, which allows for an 
operation similar to that of the KF but with a different set of information. The KF used in 
this chapter is: 
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The backward FIS recursions are: 
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This general SS formulation is capable of handling many nonstationary linear dynamical 
systems; also it can model nonlinear systems but conditionally Gaussian; general 
heteroscedastic systems; time-varying systems; etc. In addition, many kinds of extensions of 
model have been proposed in the literature, such as linear approximations of functionally 
nonlinear dynamic systems; non-Gaussian disturbances; etc. Missing data is not a problem 
given the recursive nature of the algorithms, because such data are replaced by their 

 

expectations based on the model and the data. Then, if such data is at the end of the sample 
the KF produces forecasts of the signal, while if they are in the middle or at the beginning 
both algorithms produce interpolation or forecasts from the beginning of the series 
backwards.  
 
The application of the recursive KF/FIS algorithms requires values for all the system 
matrices tttttt RQCHE  and , , , , , . Most of the elements of these matrices must be 
estimated by efficient methods. The Maximum Likelihood (ML) method in the time domain 
by means of ‘prediction error decomposition’ ([24] and [15]) is the most common because of 
its generality and good theoretical properties.  

 
4. Filtering with Integrated Random Walks (IRW) 

4.1. Data 
Approximately 55 % of railway infrastructure component failures on high speed lines are 
due to signalling equipment and turnouts. “Signalling equipment” covers signals, track 
circuits, interlockings, automatic train protection (ATP) or LZB (track loop based ATP), and 
the traffic control centre. From another point of view, the annual cost of maintaining points 
is rather high compared to other infrastructure elements, about 3.4 million UKP (United 
Kingdom Pound) per year for about 1000 km of railway. TC-TCR trade circuits, for example, 
cost 2.1 million UKP per year for the same area. Of the points expenditure, 1.2 million UKP 
is for clamp lock type (hydraulic) turnout and 1.4 UPK million for electrically operated 
turnouts (data provided by a British asset manager). Turnouts can also be used to 
implement flank protection for a train route allocated to another train. This is achieved by 
positioning the blades of the turnout in such a way that a train driving through the turnout 
is not directed into a track segment belonging to the route of another train.  
 
Most standard point machines (see Fig. 1) contain a switch actuating and a locking 
mechanism which includes a hand-throw lever and a selector lever to allow operation by 
power or hand. The mechanism is normally divided into three major subsystems: (i) the 
motor unit which may includes a contactor control arrangement and a terminal area; (ii) a 
gearbox comprising spur-gears and a worm reduction unit with overload clutch; and (iii) 
the dual control mechanism as well as a controller subsystem with motor cut-off and 
detection contacts. Generally, there are also mechanical linkages for the detection and 
locking of the point. The standard railway point is therefore a complex electro-mechanical 
device with many potential failure modes. 
 
The circuit controller includes detection switches and a pair of snap-action switches to stop 
the machine at the end of its stroke and to brake the motor electrically so that the 
mechanism is not subject to impacts. The detection switches have high pressure wiping 
contacts made of silver/cadmium oxide or gold and they are operated by both the lockbox 
and the detection rod. The detection switches have additional contacts to allow mid-stroke 
short circuiting of the detection relays to avoid wrong indications in the signal box or 
electronic interlocking. 
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Fig. 1. Point Mechanism 
 
476 experiments (point moves or attempted point moves) were carried out while collecting 
time, force and operating current data. The data from the point mechanism is initially 
classified in terms of direction of movement, i.e., either reverse to normal direction or 
normal to reverse direction. For both directions, faults have been detected with “current (A) 
vs. time (s)” curves and “force (N) vs. (s)” curves (see some examples in Fig. 2(a) and 2(b)). It 
was observed that “current (A) vs. time (s)” curves are not the best choice for detecting 
faults in point mechanisms. The final classification of faults employs only the magnitude 
and the moment when they change with respect to the reference curves.  
 

 
Fig. 2. Operating force curves for a point mechanism 
 
For detecting faults in point mechanisms, a model was employed that can determine the 
dynamic character of the system. For instance, the reference signals or curves for detecting 
faults depend on the environmental conditions (temperature, humidity, etc.), and on the in 
service time of the system, because the friction forces are larger at the beginning than once 
the system has worn in. The available data consists of 79 curves for the reverse to normal 
direction, including 4 curves “as commissioned”, and 72 curves for the normal to reverse 
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direction, with 3 curves “as commissioned” (some of them may be seen in Fig. 2). A 
reference dynamic system has to be applied to all of these variables. The data collected 
refers to force (N) versus time (s). The first conclusion after studying these curves is that we 
can detect only a few faults by analyzing the signal directly but, if we analyze the 
differences between the current data xj and the reference data xi in the form of absolute 
values dj (1), we can detect the majority of faults as they develop. 
 

 
txxd i

t
j
t

j
t  ,

 (1) 
 
Some of these curves are shown in Fig. 3(a) and 3(b) for reverse to normal direction and 
normal to reverse direction respectively. The ‘x’ axis is time [s] and the ‘y’ axis is the difference 
between the dynamic mean geometric and the current curve as an absolute value [N]. 
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In model (2) all the system matrices are time invariant: I  is a two dimensional identity matrix; 
0  is a two by two matrix of zeros; 2

  are the variances of the noise signals or disturbances 
either in the state or observation equations; 

  is the covariance between two disturbances; 
and   is the correlation coefficient between the two noise signals in the state equation.  
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Fig. 1. Point Mechanism 
 
476 experiments (point moves or attempted point moves) were carried out while collecting 
time, force and operating current data. The data from the point mechanism is initially 
classified in terms of direction of movement, i.e., either reverse to normal direction or 
normal to reverse direction. For both directions, faults have been detected with “current (A) 
vs. time (s)” curves and “force (N) vs. (s)” curves (see some examples in Fig. 2(a) and 2(b)). It 
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direction, with 3 curves “as commissioned” (some of them may be seen in Fig. 2). A 
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can detect only a few faults by analyzing the signal directly but, if we analyze the 
differences between the current data xj and the reference data xi in the form of absolute 
values dj (1), we can detect the majority of faults as they develop. 
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By comparing systems (2) and (1) it is easy to see the system matrices values in this 
particular case, i.e.  
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The unknown hyper-parameters to be estimated by ML in this model are Q  and R . It should 
be noted that Q  is parameterized in the way shown above in order to force the appearance 
of the correlation coefficient between the state disturbances explicitly. The following points 
must be taken into account when interpreting model (2):  

 The observation equation implies that the series are composed of a local mean 
level or trend with added noise. 

 The first two states in the model are the local mean level (or trends) of each 
series. In other words, they are the signals free from noise; 

 Given the structure of the model, it is easy to show that the third and fourth 
states are the gradients of the trends. The slopes are modelled here as stochastic 
and therefore changing as a function of time according to the variance of the 
state disturbances; 

 If the correlation coefficient is 1, both trends are proportional to each other, 
meaning that the dynamic behaviour of both trends is the same. This is an 
important point that the authors wanted to test later; 

 By definition, 2
  must be positive; 11   ; and R  must be positive 

definite. Since all these are parameters to be estimated, it may be advantageous 
constrained search algorithms; 

 The asymptotic distribution of the ML estimates are Gaussian if all the 
disturbances in model (2) are Gaussian. Then, since   is estimated explicitly, 
the confidence intervals and statistical hypothesis tests for this parameter may 
be easily constructed. 

In fact, the parameter   is proposed here as a way to discriminate between “faulty” and “as 
commissioned” curves (see below), where the “faulty” curve is caused by wear as described 
above. Strictly speaking, the two curves are behaving in the same way when 1 , but 
previous experience with point mechanisms of a similar kind must be incorporated here, 
because it is, difficult, in general to find those values in practical situations. Then, a cut-off 
value of   must be considered in order to discriminate between ‘good’ and ‘bad’ curves. 
 
The modeling strategy outlined above may be applied to both off-line and on-line situations. In 
this latter case it would be possible to get an estimated time series for   (with confidence bands) 
and the time of wear assessment detected on-line very quickly when parameters start to move 
away from their initial values. Even forecasts of the current curve may be produced at any point 
in time, based on the current parameter values and the future data of the reference curve.  
Very fast algorithms have been developed for ML estimation of SS systems in which all the 
unknowns are some elements of the covariance matrices Q  and R , such as in model (4).  
The problem of initializing the KF and hence ML needs to be resolved. One of the most 
important tools is the use of the exact likelihood function [5] and[6]. 

 

4.3. Experimental Results 
The model described in the previous subsection was employed in an off-line mode with data 
collected during laboratory tests (see Fig. 2). The model output (shown in Fig. 4, based in 
signals from Fig. 3) was then used to classify the curves as either “as commissioned” or 
“faulty”. This step may be achieved several ways. The approach compares   with the 
individual points in time with a relating high threshold value. A value of   below the 
threshold is an indication of a lack of correlation with the current reference curve and therefore 
is classified as “faulty”i. A more refined and somewhat more formal criterion is based on such 
single point estimate and its 95% confidence band. In this case, a curve is considered to be “as 
commissioned” if the upper limit of the confidence band is close to target value or equal to 1.  
 
For point operation in both directions, with a value of 99.0  the totality of faulty curves 
could be detected. In the NR direction, since the highest value of   for faulty curves was 
0.92 and the 95% confidence interval uses (0.77, 0.98). In the RN direction, the highest value 
of   for faulty curves was 0.97 and the 95% confidence interval was (0.93, 0.99). 
 
The results achieved with the same reference curve, but different test results are shown in 
Fig. 4, one “as commissioned” curve (top panel) and one faulty curve (bottom).  
 

 
Fig. 4. Two examples of forecasts based on model (4) at different forecast origins. One “as 
commissioned” curve (top) and one “faulty” curve (bottom). Forecast origins are marked by 
the vertical line. 
 
In both cases the reference curve was available for the whole time span (based on previous 
curves taken from the system) and the information to test each curves was set up to the 
                                                                 
i Alternatively, the estimated correlation coefficient may be tuned so that the number of 
curves correctly classified is maximised. 
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forecast origin (vertical line). The objective of obtaining a forecast for the behavior of the 
system based on such incomplete information was thus using model (4). In an on-line 
situation, the parameters and the forecasts are updated each time a new observation is 
available. 
 
Fig. 5 shows the recursive estimate of   with its 95% confidence intervals (assuming gaussian 
noises) for an “as commissioned” curve (top) and a “faulty” one (bottom). In both cases the 
confidence on the estimate tends to increase as more information becomes available. 
 

 
Fig. 5. Recursive estimation of   (stars) and 95% confidence bands (solid) for one “as 
commissioned” curve (top) and one “faulty” curve (bottom). 

 
5. Random Walks and smoothing 

5.1. Device and data 
Following successful implementation on a level crossing mechanism (Roberts 2002) [23], the 
authors adapted the methods to detect faults in seven point machines at Abbotswood 
junction, shown in Fig. 6 as boxes 638, 639, 640, 641A, 641B, 642A and 642B.  
 
The configuration deployed at Abbotswood junction was developed in collaboration with 
Carillion Rail (formerly GTRM), Network Rail (formerly RailTrack) and Computer 
Controlled Solutions Ltd. The junction consists of four electro-mechanical M63 and three 
electro-hydraulic point machines, shown in Figure 2. Each M63 machine is fitted with a load 
pin and Hall-effect current clamps. The electric-hydraulic point machines are instrumented 
with two hydraulic pressure transducers, namely an oil level transducer and a current 
transducer. A 1 Mb/sec WorldFIP network, compatible with the Fieldbus standard EN50170 
(CENELEC EN50170 2002) [4], connects the trackside data-collection units to a PC located in 
the local relay room. Data acquisition software was written to collect data with a sampling 
rate of 200 Hz. Processed results can be observed on the local PC and also remotely. 
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Fig. 6. Set of points and the relevant components/sub-units at Abbotswood junction. 
 
The supply voltage of the point machine was measured (Fig. 7a), as well as the current 
drawn by the electric motor (Fig. 7b) and the system as a whole (Fig. 7d). In addition, the 
force in the drive bar was measured with a load pin introduced into the bolted connection 
between the drive bar and the drive rod (Fig. 7c). Fig. 7 shows the raw measurement signals 
taken in the fault-free (control or “as commissioned”) condition for normal to reverse and 
reverse to normal operation, respectively. Note that the currents and voltages begin and end 
at zero for both directions of operation, but a static force remains following the reverse to 
normal throw and a different force remains after the normal to reverse throw. 
 
It is difficult to compare the measurements taken during induced failure conditions with 
those from the fault-free condition because of noise in the measurements. 
 

www.intechopen.com



Digital Filters for Maintenance Management 11

 

forecast origin (vertical line). The objective of obtaining a forecast for the behavior of the 
system based on such incomplete information was thus using model (4). In an on-line 
situation, the parameters and the forecasts are updated each time a new observation is 
available. 
 
Fig. 5 shows the recursive estimate of   with its 95% confidence intervals (assuming gaussian 
noises) for an “as commissioned” curve (top) and a “faulty” one (bottom). In both cases the 
confidence on the estimate tends to increase as more information becomes available. 
 

 
Fig. 5. Recursive estimation of   (stars) and 95% confidence bands (solid) for one “as 
commissioned” curve (top) and one “faulty” curve (bottom). 

 
5. Random Walks and smoothing 

5.1. Device and data 
Following successful implementation on a level crossing mechanism (Roberts 2002) [23], the 
authors adapted the methods to detect faults in seven point machines at Abbotswood 
junction, shown in Fig. 6 as boxes 638, 639, 640, 641A, 641B, 642A and 642B.  
 
The configuration deployed at Abbotswood junction was developed in collaboration with 
Carillion Rail (formerly GTRM), Network Rail (formerly RailTrack) and Computer 
Controlled Solutions Ltd. The junction consists of four electro-mechanical M63 and three 
electro-hydraulic point machines, shown in Figure 2. Each M63 machine is fitted with a load 
pin and Hall-effect current clamps. The electric-hydraulic point machines are instrumented 
with two hydraulic pressure transducers, namely an oil level transducer and a current 
transducer. A 1 Mb/sec WorldFIP network, compatible with the Fieldbus standard EN50170 
(CENELEC EN50170 2002) [4], connects the trackside data-collection units to a PC located in 
the local relay room. Data acquisition software was written to collect data with a sampling 
rate of 200 Hz. Processed results can be observed on the local PC and also remotely. 

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Rh
o

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Rh
o

Time  (s)

 

 
Fig. 6. Set of points and the relevant components/sub-units at Abbotswood junction. 
 
The supply voltage of the point machine was measured (Fig. 7a), as well as the current 
drawn by the electric motor (Fig. 7b) and the system as a whole (Fig. 7d). In addition, the 
force in the drive bar was measured with a load pin introduced into the bolted connection 
between the drive bar and the drive rod (Fig. 7c). Fig. 7 shows the raw measurement signals 
taken in the fault-free (control or “as commissioned”) condition for normal to reverse and 
reverse to normal operation, respectively. Note that the currents and voltages begin and end 
at zero for both directions of operation, but a static force remains following the reverse to 
normal throw and a different force remains after the normal to reverse throw. 
 
It is difficult to compare the measurements taken during induced failure conditions with 
those from the fault-free condition because of noise in the measurements. 
 

www.intechopen.com



Digital Filters12

 

 
Fig. 7. ‘As commissioned’ measured signals for the normal to reverse throw 

 
5.2. Filtering the signal 
One possibility to reduce the noise is by using the SS formulation in (1) as a digital filter 
capable of reducing observation noise when the measured quantity varies slowly, but 
additive measurement noise covers a broad spectrum [8], [9]. In this particular case the 
signal being measured is modeled as a random walk, i.e. it tends to change by small 
amounts in a short time but can change by larger amounts over longer periods of time. The 
SS model used for each signal is described by equations (3). 
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Comparing with the general SS equations (1) we have: 
 Variables tx , tz , Q, R, tw  and tv  are all scalars. 
 1   ;1   ;   ;1   ;1 t  ttttt w CHwEΦ . 

 The initial value given to 0x̂  is: 0ˆ0 x .  

 The initial value of 0P is chosen to reflect uncertainty in the initial estimate. Here 

0P  is initialised as 6
0 10P . 

 The remaining quantities to be specified are Q, the variance of the noise driving the 
random walk, and R, the variance of the observation noise. 

 
By empirical methods using simulation, the best filtering is achieved with Q = 0.03 and 
R = 0.5. Note that the ratio Q/R defines the filter behavior. 
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The power spectral density of the filtered motor current (computed only while the motor is 
running) shows significant energy peaks at 100 and 200 Hz (Fig. 8, where the normalized 
frequency of 1 corresponds to a frequency of 250 Hz). 
 

 
Fig. 8. Motor current power spectral density following Kalman filtering 
 
The dynamic model used can be augmented to model the observed interfering signals as 
narrow band disturbances centred at 100 and 200 Hz. The spectrum of the motor current 
signal is examined next before a decision on the most appropriate filtering is taken. 
 
A spectral analysis of the motor current signal against time (or sample) shows that the 
characteristic of the noise varies with the operating condition of the motor. From the 
spectrogram one can identify a small 50 Hz interference signal before the motor begins to 
turn (samples 1 to 1100). In the second stage, where the motor is turning, the interfering 
signal has strong 100 Hz and 200 Hz components but no 50 Hz component. In the final 
stage, the motor current does not have identifiable 50, 100, or 200 Hz components, but is 
affected by general wideband noise.  
 
Power spectral densities (psds) were computed for data selected from each of the three 
distinct operating regions. There is a 50 Hz interference signal during the first region and 
wideband noise during the last. Fig. 9 shows the psd for the middle phase, which is the 
noisiest region. It is possible to augment the SS model to describe the observed interfering 
signals, using different models for each of the three distinct phases. However, a simpler yet 
effective smoothing scheme exists, as described in the next section. 
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additive measurement noise covers a broad spectrum [8], [9]. In this particular case the 
signal being measured is modeled as a random walk, i.e. it tends to change by small 
amounts in a short time but can change by larger amounts over longer periods of time. The 
SS model used for each signal is described by equations (3). 
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Comparing with the general SS equations (1) we have: 
 Variables tx , tz , Q, R, tw  and tv  are all scalars. 
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 The initial value given to 0x̂  is: 0ˆ0 x .  

 The initial value of 0P is chosen to reflect uncertainty in the initial estimate. Here 

0P  is initialised as 6
0 10P . 

 The remaining quantities to be specified are Q, the variance of the noise driving the 
random walk, and R, the variance of the observation noise. 

 
By empirical methods using simulation, the best filtering is achieved with Q = 0.03 and 
R = 0.5. Note that the ratio Q/R defines the filter behavior. 
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The power spectral density of the filtered motor current (computed only while the motor is 
running) shows significant energy peaks at 100 and 200 Hz (Fig. 8, where the normalized 
frequency of 1 corresponds to a frequency of 250 Hz). 
 

 
Fig. 8. Motor current power spectral density following Kalman filtering 
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affected by general wideband noise.  
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wideband noise during the last. Fig. 9 shows the psd for the middle phase, which is the 
noisiest region. It is possible to augment the SS model to describe the observed interfering 
signals, using different models for each of the three distinct phases. However, a simpler yet 
effective smoothing scheme exists, as described in the next section. 
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Fig. 9. Power Spectral Density estimate (samples 1000 to 4000). 

 
5.3. Smoothing 
Noting that the sampling rate is 500 Hz and the interfering signals appear at 50, 100 and 
200 Hz, an alternative filtering method, or, more correctly, smoothing method, is to compute 
a moving average of the original signal over a suitable number of samples. For example, 
computing the moving average with 10 samples has zero response to signals at 50 Hz. 
However, a 100 Hz signal, with only 5 samples per cycle, is not necessarily removed, 
depending on the relative phase of the 100 Hz signal and the samples. Removal of the 50 Hz, 
100 Hz and 200 Hz interfering signals is guaranteed by computing a moving average over 
40 samples, i.e. over a time window of 80 ms. This moving average also spreads an 
instantaneous motor current change over 80 ms, but this is not a problem in practice as the 
motor current does not change instantaneously. A moving average computed over 40 
samples (80 ms) removes information at 12.5 Hz (and integer multiples thereof) and in 
addition acts as a general first-order low pass filter with a –3 dB point at 5.5 Hz. Losing 
information around 12.5 Hz is not important as long as comparisons are made between 
identically processed signals. By suitable alignment of the moving average result, filtering 
becomes smoothing. The smoothed signals are delayed by 40 ms, but this is of no concern 
for comparison with similarly processed fault-free signals. There is still some residual 100 
and 200 Hz interference, but it is much reduced. Identical smoothing has been applied to all 
measurement channels, even though they are not equally affected by 50 Hz noise and its 
harmonics. A comparison of the smoothed signals with the corresponding signals obtained 
in the fault-free condition is now possible. 
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Fig. 10. Average control curves. N-R: Normal to Reverse Direction 

 
5.4. Results 
The failure modes listed are identified using a pattern recognition method. The signals 
obtained in the fault-free condition, smoothed as described above and averaged over five 
throws, are shown in Fig. 10. The smoothed signals obtained under induced failure modes 
have been compared to the reference (or control) signals.  

 
Fig. 11. A Control signal and Switch Blocked and Malleable Blockage failure modes signals 
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Fig. 9. Power Spectral Density estimate (samples 1000 to 4000). 
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Fig. 11 shows the voltage signals for the failure modes Switch Blocked 1, Switch Blocked 2 
and Malleable Blockage, in the normal to reverse direction.  
 
Every failure can potentially be detected from signals a, b and c for normal to reverse 
transitions, and using signals b and c for reverse to normal transitions. Therefore, employing 
only signal b or c it potentially is possible to detect every fault in both operating directions. 

 
6. Advanced Dynamic Harmonic Regression (DHR) 

The system developed in this section detects faults by means of comparing what can be 
considered a “normal” or “expected” shape of a signal with respect to the actual shape 
observed as new data become available. One important feature of this system is that it 
adapts gradually to the changes experienced in the state of the point mechanism. The 
forecasts are always computed by including into the estimation sample the last point 
movements and discarding the older ones. In this way, time varying properties of the 
system due to a number of factors, like wear, are included, and hence the forecasts are 
adaptive. 
 
The data is a signal with long periods of inactivity, mixed up with other short periods where 
a point movement is being produced. Fig. 12 shows one small part of the dataset in the later 
case study, where the time axis has been truncated in order to show the movements of the 
signal. The real picture is one in which the inactivity periods are much longer that those 
shown in the figure, in a way that the movement periods would appear as thin lines. 
 

 
Fig. 12. Signal used by the fault detection algorithm. 
 
A new signal can be composed exclusively of those time intervals where the point 
mechanism is actually working. Looking at Fig. 12 it can be devised that even movements 
(normal to reverse move) have a slightly different pattern than uneven movements (reverse 
to normal). Therefore, two signals may be formed by concatenating the normal to reverse 
movements of the point mechanism in one hand, and the reverse to normal moves in the 
other. Fig. 13 shows one portion of the normal to reverse signal. 
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Fig. 13. Signal obtained by concatenation of portions of data where the point mechanism is 
working. 
 
As it is clearly shown in Figure 13, the signal to analyse has strong periodicity and can be 
then modelled and forecast by a statistical model capable of replicating such behaviour. The 
period of the signal is exactly the time it takes to the point mechanism to produce a 
complete movement. Two difficulties arise that should be considered by the model: (i) the 
sampling interval of the data is not constant, it has small variations produced by the 
measurement equipment that should be taken into account; and (ii) the frequency or period 
of the waves changes over time. As a matter of fact, the changes of the period may be 
considered as a measurement of the wear in the system, as illustrated in Figure 14. 
 

 
Fig. 14. Time the point mechanism spend to produce movements in normal to reverse 
direction (solid) and reverse to normal (dotted). 
 
Fig. 14 shows the 380 time varying periods (or time to produce a complete movement of the 
mechanism) for the "normal to reverse" and "reverse to normal" signals (the first five data 
points corresponds to the signal shown in Fig. 13) that constitutes the full data set in the 
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Fig. 11 shows the voltage signals for the failure modes Switch Blocked 1, Switch Blocked 2 
and Malleable Blockage, in the normal to reverse direction.  
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a point movement is being produced. Fig. 12 shows one small part of the dataset in the later 
case study, where the time axis has been truncated in order to show the movements of the 
signal. The real picture is one in which the inactivity periods are much longer that those 
shown in the figure, in a way that the movement periods would appear as thin lines. 
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sampling interval of the data is not constant, it has small variations produced by the 
measurement equipment that should be taken into account; and (ii) the frequency or period 
of the waves changes over time. As a matter of fact, the changes of the period may be 
considered as a measurement of the wear in the system, as illustrated in Figure 14. 
 

 
Fig. 14. Time the point mechanism spend to produce movements in normal to reverse 
direction (solid) and reverse to normal (dotted). 
 
Fig. 14 shows the 380 time varying periods (or time to produce a complete movement of the 
mechanism) for the "normal to reverse" and "reverse to normal" signals (the first five data 
points corresponds to the signal shown in Fig. 13) that constitutes the full data set in the 

0 2 4 6 8 10
-12

-10

-8

-6

-4

-2

0

Periodic Signal

Si
gn

al

Time (seconds)

0 50 100 150 200 250 300 350

2

2.1

2.2

2.3

2.4

Time length of movements

T
im

e 
(s

ec
on

ds
)

Movement index

www.intechopen.com



Digital Filters18

 

later case study. There were several sudden increases of the period at some points in time 
due to faults that have been removed from the figure, in order to avoid distortions of the 
vertical axis. The time axis is on an irregular sampling interval, in order to take into account 
the moment at which each movement has taken place. It is clear that the period is lower at 
the beginning of the sample with a rapid increase that tends to come down from the middle 
of the sample. A similar behaviour is devised in the reverse to normal signal.  
 
The fault detection algorithm proposed here in essence would be composed of the following 
steps: 

1. Forecasting next period on the basis of the signal in Figure 14. 
2. Forecasting the signal in Figure 13 by a Dynamic Harmonic Regression model that 

uses the period forecast of the previous step. 
Assessing forecasts by comparing the forecast of step 2 with the actual signal coming from 
the sensors installed in the point mechanism. If the forecasts generated in step 2 are too bad 
(measured by the variance of the forecast error), a fault is detected. The way to assess 
whether a failure has been produced is by checking the variance of the forecast error above a 
certain level fixed for each specific point mechanism. 

 
6.1. Step 1: Modeling and forecasting the period 
Two procedures have been considered: i) VARMA models in discrete time with two signals 
(the periods for normal to reverse and reverse to normal) modeled jointly; ii) once again a 
univariate local level model plus noise, but in continuous time. 

 
6.1.1. VARMA model 
The VARMA (Vector Auto-Regressive Moving-Average) models (see e.g. [1], [18] and [25]) 
are natural extensions of the ARIMA (Auto-Regressive Integrated Moving Average) models 
to the multivariate case. One of the simplest but general formulations of a VARMA(p, q) 
model is 
 
 qtqttptptt   vΘvΘvPφPφP 1111          (4) 

where  Tttt pp ,2,1P  is a bivariate signal; tv  is a bivariate white noise, i.e. purely 

random signal with no serial correlation and covariance matrix R ; and iφ  ( pi ,,2,1  ) 

and jΘ  ( qj ,,2,1  ) are squared blocks of coefficients of dimension 22 . 

 
VARMA models admit several SS representation according to equation (1). The one prefered 
here is (with  qpr ,max ) 
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The model orders p  and q  can be identified using multivariate autocorrelation and 
multivariate partial autocorrelation functions. The block parameters, as well as the 
covariance matrix of the noise, are estimated using Maximum Likelihood. Forecasts are then 
computed on the basis of the actual data and the estimates of the model parameters, once 
the model passes a validation process. One of the most important validation tests is the 
absence of serial correlation in the perturbation vector noise tv  (see e.g. [1], [18] and [25]). 
 

It is vital that the signals tP  on which all the VARMA methodology is applied should have 
stationary mean and variance. 

 
6.1.2. Local level model in continuous time 
The model used for forecasting the period of the next movement (in a particular direction) in 
this case represents the observation, i.e. the period drifts over time, as wear varies simply 
because of usage (increases) or by preventive maintenance (decreases). Since the point 
movements are not produced at equally spaced intervals of time, a continuous-time model 
should be used. Formally, the continuous time SS model is given by 
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where  tP  stands for the time varying period that is decomposed into the local level  tl  
and a noise term  tv  assumed to be white Gaussian noise;  tw1  and  tw2  are 
independent white noises. 
 
One way to treat the continuous system above is by finding a discrete-time SS equivalent to it 
(see e.g. Harvey 1989) [15], by means of the solution to the differential equation implied by the 
system. A change in notation is necessary to convert the system to discrete-time: denote the k
th observation of the series  kz  (for 1,2, ,k N  ) and assume that this observation is made at 

time tk. Let 00 t  and 1 kkk tt , i.e. the time interval between two consecutive 
measurements. System (3) may be represented by the discrete-time SS system in (5). 

www.intechopen.com



Digital Filters for Maintenance Management 19
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the moment at which each movement has taken place. It is clear that the period is lower at 
the beginning of the sample with a rapid increase that tends to come down from the middle 
of the sample. A similar behaviour is devised in the reverse to normal signal.  
 
The fault detection algorithm proposed here in essence would be composed of the following 
steps: 

1. Forecasting next period on the basis of the signal in Figure 14. 
2. Forecasting the signal in Figure 13 by a Dynamic Harmonic Regression model that 

uses the period forecast of the previous step. 
Assessing forecasts by comparing the forecast of step 2 with the actual signal coming from 
the sensors installed in the point mechanism. If the forecasts generated in step 2 are too bad 
(measured by the variance of the forecast error), a fault is detected. The way to assess 
whether a failure has been produced is by checking the variance of the forecast error above a 
certain level fixed for each specific point mechanism. 

 
6.1. Step 1: Modeling and forecasting the period 
Two procedures have been considered: i) VARMA models in discrete time with two signals 
(the periods for normal to reverse and reverse to normal) modeled jointly; ii) once again a 
univariate local level model plus noise, but in continuous time. 

 
6.1.1. VARMA model 
The VARMA (Vector Auto-Regressive Moving-Average) models (see e.g. [1], [18] and [25]) 
are natural extensions of the ARIMA (Auto-Regressive Integrated Moving Average) models 
to the multivariate case. One of the simplest but general formulations of a VARMA(p, q) 
model is 
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where  Tttt pp ,2,1P  is a bivariate signal; tv  is a bivariate white noise, i.e. purely 

random signal with no serial correlation and covariance matrix R ; and iφ  ( pi ,,2,1  ) 

and jΘ  ( qj ,,2,1  ) are squared blocks of coefficients of dimension 22 . 

 
VARMA models admit several SS representation according to equation (1). The one prefered 
here is (with  qpr ,max ) 
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The model orders p  and q  can be identified using multivariate autocorrelation and 
multivariate partial autocorrelation functions. The block parameters, as well as the 
covariance matrix of the noise, are estimated using Maximum Likelihood. Forecasts are then 
computed on the basis of the actual data and the estimates of the model parameters, once 
the model passes a validation process. One of the most important validation tests is the 
absence of serial correlation in the perturbation vector noise tv  (see e.g. [1], [18] and [25]). 
 

It is vital that the signals tP  on which all the VARMA methodology is applied should have 
stationary mean and variance. 

 
6.1.2. Local level model in continuous time 
The model used for forecasting the period of the next movement (in a particular direction) in 
this case represents the observation, i.e. the period drifts over time, as wear varies simply 
because of usage (increases) or by preventive maintenance (decreases). Since the point 
movements are not produced at equally spaced intervals of time, a continuous-time model 
should be used. Formally, the continuous time SS model is given by 
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where  tP  stands for the time varying period that is decomposed into the local level  tl  
and a noise term  tv  assumed to be white Gaussian noise;  tw1  and  tw2  are 
independent white noises. 
 
One way to treat the continuous system above is by finding a discrete-time SS equivalent to it 
(see e.g. Harvey 1989) [15], by means of the solution to the differential equation implied by the 
system. A change in notation is necessary to convert the system to discrete-time: denote the k
th observation of the series  kz  (for 1,2, ,k N  ) and assume that this observation is made at 

time tk. Let 00 t  and 1 kkk tt , i.e. the time interval between two consecutive 
measurements. System (3) may be represented by the discrete-time SS system in (5). 
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In order to make systems (6) and (5) equivalent, the variances of observational noise is 
unchanged as R , but the covariance matrix of the process noise in the state equations 
becomes 
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(see Harvey 1989, page 487) [15]. If all the data are sampled at regular time intervals, then 
 k  and the noise variances are all constant; but if the data is irregularly spaced, as it is 

in our case, k  would take into account the irregularities of the sampling process. It is worth 
noting that the continuous-time model (5) involved system matrices that are all constant and 
the state noises were all independent of each other with constant variances. Beware that 
system (6) is written in form (1) and is the only case in this chapter that involves a time 
variable transition matrix kΦ  and time variable variance noises that are correlated to each 
other according to the expression of kQ . 

 
6.2. Step 2: Modeling and forecasting the signal 
Once the period or the time length of the next movement of the point mechanism is forecast 
by any of the models in section 5.1., it is necessary to produce the forecast of the signal itself 
for the next occurrence, in order to produce what should be expected in case of no faults. 
 
This is done by a Dynamic Harmonic Regression model (DHR) set up as described below. 
This model is very convenient in the present situation because it can easily handle the time-
varying nature of the movement period. Obviously, the model can also be written in the 
form of a SS system as in (1). 
 
The formula of a DHR with the required properties is shown in equation (7). 
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Here, tkz ,  is the periodic signal in which the subscript k indicates whether the normal to 

reverse ( 1k ) or the reverse to normal ( 2k ) signals are being considered; M  is the 
number of harmonics that should be included in the regression to achieve an adequate 
representation of the signal tkz , ; kia ,  and kib ,  are M2  parameters to be estimated, 

representing the amplitudes of the co-sinusoidal waves; tki ,,  are frequencies at which the 

 

sinusoids are evaluated, with tktki pi ,,, 2    for Mi ,,2,1   and 2,tkpM   and 

2,1k ; 
tke ,
 is a pure random white noise with constant variance. Separate Harmonic 

Regression models are used for the normal to reverse and reverse to normal signals. 
 
There are two key points for the model (7) to be an adequate representation of tkz , : 

1. tkp ,  and tki ,,  have time varying period/frequency. The nature of such variation is 

dependent on the signal itself. For one full movement of the point mechanism tkp ,  

is maintained constant and is equal to the time it takes to produce the full 
movement. This value will be different in the next movement and is modified 
accordingly.  

2. The time index *t  is a variable linked to tkp ,  that varies from 0 to tkp ,  in each 

movement. Therefore, this variable is reset to 0 as soon as a movement finishes (see 
Fig. 15. 

 

 
Fig. 15. Two full movements of the point mechanism, with their associated period and time 
index according to model (7). 
 
Model (7) is then a regression of a signal on a set of deterministic functions of time and 
therefore all the standard regression theory can be applied, in particular estimates and 
forecasts can be made quickly. Model (7) have been generalized further by allowing 
parameters kia ,  and kib ,  to be time varying, producing a more flexible model, known as a 

Dynamic Harmonic Regression (DHR; see [21] [26]), but such complications are not found 
necessary in the case study described later.  

 
6.3. The full fault detection algorithm 
The full algorithm for fault detection comprises the following steps: 

1. Determine which historical data to use. In the later case study the previous 50 free-
from-faults movements of the point mechanism are used to estimate models (4) (5) 
and (7) at each new movement. 
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(see Harvey 1989, page 487) [15]. If all the data are sampled at regular time intervals, then 
 k  and the noise variances are all constant; but if the data is irregularly spaced, as it is 

in our case, k  would take into account the irregularities of the sampling process. It is worth 
noting that the continuous-time model (5) involved system matrices that are all constant and 
the state noises were all independent of each other with constant variances. Beware that 
system (6) is written in form (1) and is the only case in this chapter that involves a time 
variable transition matrix kΦ  and time variable variance noises that are correlated to each 
other according to the expression of kQ . 

 
6.2. Step 2: Modeling and forecasting the signal 
Once the period or the time length of the next movement of the point mechanism is forecast 
by any of the models in section 5.1., it is necessary to produce the forecast of the signal itself 
for the next occurrence, in order to produce what should be expected in case of no faults. 
 
This is done by a Dynamic Harmonic Regression model (DHR) set up as described below. 
This model is very convenient in the present situation because it can easily handle the time-
varying nature of the movement period. Obviously, the model can also be written in the 
form of a SS system as in (1). 
 
The formula of a DHR with the required properties is shown in equation (7). 
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Here, tkz ,  is the periodic signal in which the subscript k indicates whether the normal to 

reverse ( 1k ) or the reverse to normal ( 2k ) signals are being considered; M  is the 
number of harmonics that should be included in the regression to achieve an adequate 
representation of the signal tkz , ; kia ,  and kib ,  are M2  parameters to be estimated, 

representing the amplitudes of the co-sinusoidal waves; tki ,,  are frequencies at which the 

 

sinusoids are evaluated, with tktki pi ,,, 2    for Mi ,,2,1   and 2,tkpM   and 

2,1k ; 
tke ,
 is a pure random white noise with constant variance. Separate Harmonic 

Regression models are used for the normal to reverse and reverse to normal signals. 
 
There are two key points for the model (7) to be an adequate representation of tkz , : 

1. tkp ,  and tki ,,  have time varying period/frequency. The nature of such variation is 

dependent on the signal itself. For one full movement of the point mechanism tkp ,  

is maintained constant and is equal to the time it takes to produce the full 
movement. This value will be different in the next movement and is modified 
accordingly.  

2. The time index *t  is a variable linked to tkp ,  that varies from 0 to tkp ,  in each 

movement. Therefore, this variable is reset to 0 as soon as a movement finishes (see 
Fig. 15. 

 

 
Fig. 15. Two full movements of the point mechanism, with their associated period and time 
index according to model (7). 
 
Model (7) is then a regression of a signal on a set of deterministic functions of time and 
therefore all the standard regression theory can be applied, in particular estimates and 
forecasts can be made quickly. Model (7) have been generalized further by allowing 
parameters kia ,  and kib ,  to be time varying, producing a more flexible model, known as a 

Dynamic Harmonic Regression (DHR; see [21] [26]), but such complications are not found 
necessary in the case study described later.  

 
6.3. The full fault detection algorithm 
The full algorithm for fault detection comprises the following steps: 

1. Determine which historical data to use. In the later case study the previous 50 free-
from-faults movements of the point mechanism are used to estimate models (4) (5) 
and (7) at each new movement. 
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2. A point forecast of the time that it would take the next movement is produced by 
means of model (4) or (5), together with its 95% confidence interval. In this way, a 
range of lengths or periods of the next movement are considered. Then, a different 
forecast of the signal tkz ,  is produced for each period forecast in the previous step. 

Following this a full set of forecasts become available for a time horizon long 
enough to cover a full movement of the point mechanism. 

3. The new data points measured by the system are compared to all the forecasts 
produced in the previous step. The forecast closer to the actual data measured by 
the minimum of the standard deviation of the error is then considered to be the 
best forecast of the signal. 

4. If the best forecast is systematically bad, a fault has occurred and the system issues 
a warning. If the best errors are always low, no faults are detected. The boundary is 
measured in terms of standard deviation of the errors and such a value has to be 
adjusted for each particular point mechanism.  

5. If no fault is detected, then the data of the latest movement is incorporated into the 
historical data to be used next time, the oldest movement data being dropped. 
However, if a fault is detected, the historical data used to perform step 1 for the 
next movement is unchanged for the next movement.  

 
The algorithm can be used in on-line or off-line contexts. For on-line use, step 3 can be 
repeated as each measurement data point becomes available. For off-line use the algorithm 
is applied to all the data collected for a full movement of the mechanism. 
 
The system requires a couple of values to be fixed by experimentation, namely the alarm 
limit that can be calculated from the standard deviation of signal tkz , , and also the number 

of harmonics to include in the Harmonic Regression (M  in model (7)). Experiments carried 
out on logged data have been performed to set these two design parameters of the 
algorithm. The final setting for the standard deviation is 0.4 for the standard deviation, 
found to give the best discrimination between faulty and non-faulty events; and 62M  
harmonics for model (7) produces accurate fit and forecasts to the signal. 

 
6.4. Results 
Standard identification techniques on VARMA models suggested a VARMA(0, 1). 
Estimation of such a model for the full data set was 
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The correlation between the components of the noise vector is 0.3. The relation between the 
output variables can be more easily seen if the model is written in the form of difference 
equations, 
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The correlation of each variable with its own past is more important that the relation to each 
other, judging by the coefficients relating both variables and the correlation of noises. 
Nevertheless, the relation between them is significant and should be taken into account in 
order to forecast the output variables. The model is adequate in the sense that no serial 
correlation left in the residuals. 
 
One example is shown in Fig. 16. The top panels show the forecast of the periods to use in 
the DHR models, with the 95% confidence intervals. Such period is the expected length of 
the next movement, that is the value introduced into the DHR model to forecast the signal 
itself. The forecast of the signal is shown in the bottom panels, where the dotted lines are the 
actual values and the solid lines are the final forecast of the system. It is clear that the left 
case is free from any fault, since the forecast matches perfectly the actual data, while the 
expected behavior in the right panel is very different to the actual data, implying that a fault 
has occurred. 
 

 

 
Fig. 16. Left panels shows results for fault free data. Right panels show results for a faulty 
signal. Panels in the two first rows show the forecast of VARMA model (from the vertical 
line on); solid lines show the actual periods and the forecast (smoother line). Panels in 
bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
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2. A point forecast of the time that it would take the next movement is produced by 
means of model (4) or (5), together with its 95% confidence interval. In this way, a 
range of lengths or periods of the next movement are considered. Then, a different 
forecast of the signal tkz ,  is produced for each period forecast in the previous step. 

Following this a full set of forecasts become available for a time horizon long 
enough to cover a full movement of the point mechanism. 

3. The new data points measured by the system are compared to all the forecasts 
produced in the previous step. The forecast closer to the actual data measured by 
the minimum of the standard deviation of the error is then considered to be the 
best forecast of the signal. 

4. If the best forecast is systematically bad, a fault has occurred and the system issues 
a warning. If the best errors are always low, no faults are detected. The boundary is 
measured in terms of standard deviation of the errors and such a value has to be 
adjusted for each particular point mechanism.  

5. If no fault is detected, then the data of the latest movement is incorporated into the 
historical data to be used next time, the oldest movement data being dropped. 
However, if a fault is detected, the historical data used to perform step 1 for the 
next movement is unchanged for the next movement.  

 
The algorithm can be used in on-line or off-line contexts. For on-line use, step 3 can be 
repeated as each measurement data point becomes available. For off-line use the algorithm 
is applied to all the data collected for a full movement of the mechanism. 
 
The system requires a couple of values to be fixed by experimentation, namely the alarm 
limit that can be calculated from the standard deviation of signal tkz , , and also the number 

of harmonics to include in the Harmonic Regression (M  in model (7)). Experiments carried 
out on logged data have been performed to set these two design parameters of the 
algorithm. The final setting for the standard deviation is 0.4 for the standard deviation, 
found to give the best discrimination between faulty and non-faulty events; and 62M  
harmonics for model (7) produces accurate fit and forecasts to the signal. 

 
6.4. Results 
Standard identification techniques on VARMA models suggested a VARMA(0, 1). 
Estimation of such a model for the full data set was 
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The correlation between the components of the noise vector is 0.3. The relation between the 
output variables can be more easily seen if the model is written in the form of difference 
equations, 
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The correlation of each variable with its own past is more important that the relation to each 
other, judging by the coefficients relating both variables and the correlation of noises. 
Nevertheless, the relation between them is significant and should be taken into account in 
order to forecast the output variables. The model is adequate in the sense that no serial 
correlation left in the residuals. 
 
One example is shown in Fig. 16. The top panels show the forecast of the periods to use in 
the DHR models, with the 95% confidence intervals. Such period is the expected length of 
the next movement, that is the value introduced into the DHR model to forecast the signal 
itself. The forecast of the signal is shown in the bottom panels, where the dotted lines are the 
actual values and the solid lines are the final forecast of the system. It is clear that the left 
case is free from any fault, since the forecast matches perfectly the actual data, while the 
expected behavior in the right panel is very different to the actual data, implying that a fault 
has occurred. 
 

 

 
Fig. 16. Left panels shows results for fault free data. Right panels show results for a faulty 
signal. Panels in the two first rows show the forecast of VARMA model (from the vertical 
line on); solid lines show the actual periods and the forecast (smoother line). Panels in 
bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
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Similar results are achieved when the local level model set up in continuous time is used 
instead (see Fig. 17).  
 

 
Fig. 17. Left panels shows results for fault free data. Right panels show results for a faulty 
signal. Panels in the first row show the forecast of the local level model (from the vertical 
line on); solid lines show the actual periods and the forecast (smoother line). Panels in 
bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
 
This algorithm was applied to the full dataset (380 movements in either directions). From 
normal to reverse movements 8 were abnormal due to faults similar to the one shown in 
Figure 17. No faults were registered in the reverse to normal direction data. Selecting a 
standard deviation of 0.4 as the boundary of faults detection we get that all the faults were 
detected and not a single false alarm was produced in any of the cases. 
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Similar results are achieved when the local level model set up in continuous time is used 
instead (see Fig. 17).  
 

 
Fig. 17. Left panels shows results for fault free data. Right panels show results for a faulty 
signal. Panels in the first row show the forecast of the local level model (from the vertical 
line on); solid lines show the actual periods and the forecast (smoother line). Panels in 
bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
 
This algorithm was applied to the full dataset (380 movements in either directions). From 
normal to reverse movements 8 were abnormal due to faults similar to the one shown in 
Figure 17. No faults were registered in the reverse to normal direction data. Selecting a 
standard deviation of 0.4 as the boundary of faults detection we get that all the faults were 
detected and not a single false alarm was produced in any of the cases. 
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