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1. Introduction    

Inertial trajectory control is essential for UAVs which must follow predetermined paths 
through three-dimensional space (Healy and Liebard, 1993, Kaminer et al., 1998, Boyle et al., 
1999, Singh et al., 2003, Tsach et al., 2003, Ren and Beard, 2004, Wegener et al., 2004, Ren and 
Atkins, 2005, No et al., 2005, Clough, 2005, Papadales et al., 2005, Narasimhan et al., 2006, 
Kaminer et al., 2007). Other applications of trajectory control include formation flight, aerial 
refueling, and autonomous landing maneuvers (Pachter et al., 1994, Proud et al., 1999, 
Fujimori et al. 2000, Singh et al., 2000, Pachter et al., 2001, Wang et al., 2008).  
Two different approaches can be distinguished in the design of these trajectory control 
systems. The most popular approach is to separate the guidance and control laws: a given 
reference trajectory is converted by the guidance laws to velocity and attitude commands for 
the autopilot, which in turn generates the actuator signals (Ren and Beard, 2004, Pachter et 
al., 1994, Pachter et al., 2001). Usually, the assumption is made that the autopilot response to 
heading and airspeed commands is first order in nature to simplify the design. 
The other design approach is to integrate the guidance and control laws into one system, in 
order to achieve better stability guarantees and improved performance. Kaminer et al. (1998) 
use an integrated guidance and control approach to trajectory tracking in which the 
trimmed flight conditions along the reference trajectory are the command input to the 
tracking controllers. Singh (2003) uses a combination of sliding-mode control and adaptive 
control. 
In this chapter an integrated, though cascaded Lyapunov-based adaptive backstepping 
(Krstić et al., 1992, Singh and Steinberg 1996) approach is taken and used to design a flight-
path controller for a nonlinear high-fidelity F-16 model. Adaptive backstepping allows 
assuming that the aerodynamic force and moment models may not be known exactly, and 
even that they may change in flight due to causes as structural damage and control actuator 
failures. There is much literature available on adaptive backstepping control system design 
for aircraft and missiles (see, for example, (Singh and Steinberg, 1996, Härkegård, 2003, 
Farrell et al., Kim et al., 2004, Shin and Kim, 2004, Farrell et al., 2005, Sonneveldt, et al., 2006, 
Sonneveldt, et al. 2007)). Most of these designs consider control of the aerodynamic angles μ, 
┙, and ┚. Due to the higher relative degree, however, the design of trajectory controllers as 
discussed here is much more complicated, as the required analytical calculation of the 
derivatives of the intermediate control variables leads to a rapid explosion of terms. This 
phenomenon is the main motivation for the authors of (Singh et al., 2003) to select a sliding-
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mode design for the outer feedback loops. Another disadvantage of (adaptive) backstepping 
flight control system design is that the contribution of the control-surface deflections to the 
aerodynamic forces cannot be taken into account. For these reasons, the constrained 
adaptive backstepping approach of (Farrell et al., 2005, Sonneveldt et al., 2007, Yip 1997) is 
used here. This method makes use of command filters to calculate the derivatives of the 
intermediate controls, which greatly simplifies the design. Additionally, these filters can be 
used to enforce magnitude and rate limits on the state and input variables. 
To simplify the mathematical approximation of the unknown aerodynamic force and 
moment characteristics, we propose to partition the flight envelope into multiple connecting 
operating regions called hyperboxes. In each hyperbox a locally valid linear-in-the-
parameters nonlinear model is defined. The coefficients of these local models can be 
estimated using the update laws of the adaptive backstepping control laws. The number and 
size of the hyperboxes should be based on a priori information on the physical properties of 
the vehicle on hand, and may be defined in terms of state variables as Mach number, angle 
of attack and engine thrust. In this study we use B-spline neural networks (Cheng et al., 
1999, Ward et al., 2003) to interpolate between the local models to ensure smooth model 
transitions. Numerical simulations of various maneuvers with aerodynamic uncertainties in 
the model and actuator failures are presented. The maneuvers are performed at several 
flight conditions to demonstrate that the control laws are valid for the entire flight envelope. 
The chapter is outlined as follows. First, the nonlinear dynamics of the aircraft model are 
introduced in Sec. II. In Sec. III the adaptive control system design is presented decomposed 
in four cascaded feedback-loop designs. The aerodynamic model identification process 
including the B-spline neural networks is discussed in Sec. IV. Section V validates the 
performance of the control laws using numerical simulations performed in 
MATLAB/Simulink. A summary of the results and the conclusions are given in Sec. VI. 
Finally, an appendix on the concept of constrained adaptive backstepping is included. 

2. Aircraft model description 

The aircraft model used in this study is that of an F-16 fighter aircraft with geometry and 

aerodynamic data as reported in (Nguyen et al., 1979). The aerodynamic data in tabular 

form have been obtained from wind-tunnel tests and are valid up to Mach 0.6 for the wide 

range of -20 deg α≤ ≤ 90 deg and -30 deg β≤ ≤ 30 deg. The control inputs of the model are 

the elevator, ailerons, rudder, and leading-edge flaps, as well as the throttle setting. The 

leading-edge flaps are not used in the control design. The control-surface actuators are 

modeled as first-order low-pass filters with rate and magnitude limits as given in 

(Sonneveldt et al., 2007). Before giving the equations of motion for the F-16 model, some 

reference frames to describe the aircraft motion are needed. The reference frames used in 

this paper are the Earth-fixed reference frame EF , used as the inertial frame; the vehicle-

carried local Earth reference frame OF , with its origin fixed in the center of gravity of the 

aircraft, which is assumed to have the same orientation as EF ; the wind-axes reference 

frame WF , obtained from OF by three successive rotations of χ , γ , and μ ; the stability-axes 

reference frame SF , obtained from WF by a rotation of β− ; and the body-fixed reference 

frame BF , obtained from SF by a rotation ofα , as is also indicated in Fig. 1. The body-fixed 

reference frame BF  can also be obtained directly from OF by three successive rotations of yaw 

angleψ , pitch angleθ , and roll angleφ . More details and transformation matrices are given 

in, for example, (Lewis and Stevens, 1992, Cook, 1997). 
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Fig. 1. Aircraft reference frames 

Assuming that the aircraft has a rigid body, which is symmetric around the X–Z body-fixed 
plane, the relevant nonlinear coupled equations of motion can be described by (Lewis and 
Stevens, 1992): 
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where 0

T
X x y z= ⎡ ⎤⎣ ⎦ , 1

T
X V χ γ= ⎡ ⎤⎣ ⎦ , 2

T
X μ α β= ⎡ ⎤⎣ ⎦ , 3

T
X p q r= ⎡ ⎤⎣ ⎦ , and the 

definition of the inertia terms ( )1, ,9ic i = A is given in, for example, (Sonneveldt et al., 2007). 
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The engine angular momentum eh is assumed to be constant. These 12 differential equations 

are sufficient to describe the complete motion of the aircraft; other states such as the attitude 

anglesφ ,θ , and ψ are functions of 3X , and their dynamics can be expressed as 

 3

1 sin tan cos tan

0 cos sin

sin cos
0

cos cos

X

φ φ θ φ θ
θ φ φ
ψ φ φ

θ θ

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
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$

$

$
 (5) 

The thrust model of (Nguyen et al., 1979) is implemented, which calculates the thrust as a 

function of altitude, Mach number, and throttle setting tδ . This model is given in tabular 

form. The aerodynamic forces L, Y, and D (expressed in the wind reference frame WF ) and 

moments L , M , and N  (expressed in body fixed frame BF ) are summations of the various 

aerodynamic contributions stored in lookup tables. As an example, the pitch moment M is 

given by 

 

( ) ( )
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2 25
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 (6) 

 

Other aerodynamic forces and moments are given in similar form; for a detailed discussion, 
see (Nguyen et al., 1979). 

3. Adaptive control design 

In this section we aim to develop an adaptive guidance and control system that 

asymptotically tracks a smooth prescribed inertial trajectory ( )ref ref ref ref
T

Y x y z= with 

position states ( )0

T
X x y z= . Furthermore, the sideslip angle β has to be kept at zero to 

enable coordinated turning. It is assumed that the reference trajectory 

( )ref ref ref ref
T

Y x y z=  satisfies 

 ref ref refcosx V χ=$  (7) 

 ref ref refsiny V χ=$  (8) 

 

with refV , refχ , refz , and their derivatives continuous and bounded. It also assumed that the 

components of the total aerodynamic forces L, Y, and D and moments L , M and N are 

uncertain, and so these will have to be estimated. The available controls are the control-

surface deflections ( )Te a rδ δ δ and the engine thrust T. The Lyapunov-based control 

design based on (Farrell et al., 2005, Sonneveldt et al., 2007) is done in four feedback loops, 

starting at the outer loop. 
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3.1 Inertial position control 
We start the outer-loop feedback control design by transforming the tracking control 
problem into a regulation problem: 

 ( )
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 (9) 

 

where we introduce a vehicle carried vertical reference frame with origin in the center of 
gravity and X-axis aligned with the horizontal component of the velocity vector (Ren and 
Beard, 2004, Proud et al., 1999). Differentiating Eq. (9) now gives 
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We want to control the position errors 0Z  through the flight-path angles χ and γ , and the 

total airspeed V. However, from Eq. (10) it is clear that it is not yet possible to do something 

about 02z in this design step. Now we select the virtual controls 

 ( )des,0 ref ref
01 01cosV V c zχ χ= − −  (11) 
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where 01 0c > and 03 0c > are the control gains. The actual implementable virtual control 

signals desV and desγ , as well as their derivatives, desV$ and desγ$ , are obtained by filtering the 

virtual signals with a second-order low-pass filter. In this way, tedious calculation of the 

virtual control derivatives is avoided (Swaroop et al., 1997). An additional advantage is that 

the filters can be used to enforce magnitude or rate limits on the states (Farrell et al., 2003, 

2007). As an example, the state-space representation of such a filter for des,0V is given by 
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where ( )MS ⋅ and ( )RS ⋅ represent the magnitude and rate limit functions as given in (Farrell 

et al., 2007). These functions enforce the state V to stay within the defined limits. Note that if 
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the signal des,0V is bounded, then desV and desV$ are also bounded and continuous signals. 

When the magnitude and rate limits are not in effect, the transfer function from des,0V to 
desV is given by 

 
des 2

des,0 2 22
V

V V V

V

V s

ω
ζ ω ω

=
+ +

 (15) 

and the error des,0 desV V− can be made arbitrarily small by selecting the bandwidth of the 

filter to be sufficiently large (Swaroop et al., 1997). 

3.2 Flight-path angle and airspeed control 

In this loop the objective is to steerV and γ to their desired values, as determined in the 

previous section. Furthermore, the heading angle χ has to track the reference signal refχ , and 

we also have to guarantee that 02z is regulated to zero. The available (virtual) controls in this 

step are the aerodynamic angles μ andα , as well as the thrust T . The lift, drag, and side 

forces are assumed to be unknown and will be estimated. Note that the aerodynamic forces 

also depend on the control-surface deflections
T

e a rU δ δ δ= ⎡ ⎤⎣ ⎦ . These forces are quite 

small, because the surfaces are primarily moment generators. However, because the current 

control-surface deflections are available from the command filters used in the inner loop, we 

can still take them into account in the control design. The relevant equations of motion are 

given by 
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are functions containing the uncertain aerodynamic forces. Note that the intermediate 

control variablesα and μ do not appear affine in the 1X subsystem, which complicates the 

design somewhat. Because the control objective in this step is to track the smooth reference 

signal ( )des des des des
1

T

X V χ γ= with ( )1

T
X V χ γ= , the tracking errors are defined as 
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To regulate 1Z and 02z to zero, the following equation needs to be satisfied (Kanayama et al., 

1990): 
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where 1F̂ is the estimate of 1F and 
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with the estimate of the lift force decomposed as ( ) ( ) ( )0
ˆ ˆ ˆ, , ,L X U L X U L X Uα α= +  

The estimate of the aerodynamic forces 1F̂ is defined as 

 ( )
1 11

ˆ ˆ,T
F FF X U= Φ Θ  (20) 

where
1

T
FΦ is a known (chosen) regressor function and

1

ˆ
FΘ is a vector with unknown constant 

parameters. It is assumed that there exists a vector
1FΘ such that 

 ( )
1 11 ,T

F FF X U= Φ Θ  (21) 

 

This means the estimation error can be defined as
1 1 1

ˆ
F F FΘ = Θ −Θ# . We now need to determine 

the desired values desα and desμ . The right-hand side of Eq. (18) is entirely known, and so the 

left-hand side can be determined and the desired values can be extracted. This is done by 

introducing the coordinate transformation 

 ( ) ( )( )0
ˆ ˆ, , sin cosx L X U L X U Tα α α μ≡ + +  (22) 

 ( ) ( )( )0
ˆ ˆ, , sin siny L X U L X U Tα α α μ≡ + +  (23) 

 

which can be seen as a transformation from the two-dimensional polar coordinates 

( ) ( )0
ˆ ˆ, , sinL X U L X U Tα α α+ +  

and μ to Cartesian coordinates x and y. The desired signals ,0
0 0

T
desT y x⎡ ⎤⎣ ⎦ are given by 
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Thus, the virtual control signals are equal to 
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Filtering the virtual signals to account for magnitude, rate, and bandwidth limits will give 

the implementable virtual controls desα , desμ and their derivatives. The sideslip-angle 

command was already defined as ref 0β = , and thus des des des
2 0

T

X μ α⎡ ⎤= ⎣ ⎦ and its derivative 

are completely defined. However, care must be taken because the desired virtual control 
des,0μ is undefined when both 0x and 0y are equal to zero, making the system momentarily 

uncontrollable. This sign change of ( ) ( )0
ˆ ˆ, , sinL X U L X U Tα α α+ + can only occur at very low 

or negative angles of attack. This situation was not encountered during the maneuvers 

simulated in this study. To solve the problem altogether, the designer could measure the 

rate of change for 0x and 0y and devise a rule base set to change sign when these terms 

approach zero. Furthermore, problems will also occur at high angles of attack when the 

control effectiveness term L̂α will become smaller and eventually change sign. Possible 

solutions include limiting the angle-of-attack commands using the command filters or 

proper trajectory planning to avoid high-angle-of-attack maneuvers. Also note that so far in 

the control design process, we have not taken care of the update laws for the uncertain 

aerodynamic forces; they will be dealt with when the static control design is finalized. 

3.3 Aerodynamic angle control 

Now the reference signal des des des des
2 [ ]TX μ α β= and its derivative have been found and 

we can move on to the next feedback loop. The available virtual controls in this step are the 

angular rates 3X . The relevant equations of motion for this part of the design are given by 
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are known (matrix and vector) functions. The tracking errors are defined as 

 des
2 2 2Z X X= −  (28) 

To stabilize the 2Z subsystem, a virtual feedback control des,0
3X is defined as 

 des,0 des
2 3 2 2 2 1 2 2 2 2

ˆ , 0TB X C Z A F H X C C= − − − + = >$  (29) 

 

The implementable virtual control (i.e., the reference signal for the inner loop) des
3X and its 

derivative are again obtained by filtering the virtual control signal des,0
3X with a second-order 

command-limiting filter. 

3.4 Angular rate control 

In the fourth step, an inner-loop feedback loop for the control of the body-axis angular rates 

3

T
X p q r= ⎡ ⎤⎣ ⎦ is constructed. The control inputs for the inner loop are the control-surface 

deflections
T

e a rU δ δ δ= ⎡ ⎤⎣ ⎦ . The dynamics of the angular rates can be written as 
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are unknown (matrix and vector) functions that have to be approximated. Note that for a 
more convenient presentation, the aerodynamic moments have been decomposed: for 
example, 

 ( ) ( )0, ,
e a re a rM X U M X U M M Mδ δ δδ δ δ= + + +  (31) 
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where the higher-order control-surface dependencies are still contained in ( )0 ,M X U . The 

control objective in this feedback loop is to track the reference signal des ref ref ref
3 [ ]TX p q r=  

with the angular rates 3X . Defining the tracking errors 

 des
3 3 3Z X X= −  (32) 

and taking the derivatives results in 

 ( ) ( )( ) ( ) des
3 3 3 3 3 3,Z A F X U B X U H X X= + + −$ $  (33) 

 

To stabilize the system of Eq. (33), we define the desired control 0U as 

 0 des
3 3 3 3 3 3 3 3 3 3
ˆ ˆ , 0TA B U C Z A F H X C C= − − − + = >$  (34) 

 

where 3F̂ and 3B̂ are the estimates of the unknown nonlinear aerodynamic moment functions 

3F and 3B , respectively. The F-16 model is not over-actuated (i.e., the 3B matrix is square). If 

this is not the case, some form of control allocation would be required (Enns, 1998, Durham, 

1993). The estimates are defined as 

 ( ) ( )
3 3 3 33 3

ˆ ˆˆ ˆ, , , for 1, ,3
i i i

T T
F F B BF X U B X i= Φ Θ = Φ Θ = A  (35) 

 

where
3

T
FΦ and

3i

T
BΦ are the known regressor functions, 

3

ˆ
FΘ and

3

ˆ
i

BΘ are vectors with 

unknown constant parameters, and 3
ˆ

i
B represents the ith column of 3B̂ . It is assumed that 

there exist vectors
3FΘ and

3i
BΘ such that 

 ( ) ( )
3 3 3 33 3, ,

i i i

T T
F F B BF X U B X= Φ Θ = Φ Θ  (36) 

 

This means that the estimation errors can be defined as
3 3 3

ˆ
F F FΘ = Θ −Θ# and

3 3 3

ˆ
i i i

B B BΘ = Θ −Θ# . 

The actual control U is found by applying a filter similar to Eq. (13) to 0U . 

3.5 Update laws and stability properties 
We have now finished the static part of our control design. In this section the stability 
properties of the control law are discussed and dynamic update laws for the unknown 
parameters are derived. Define the control Lyapunov function 

 

( ) ( )( ) ( )1 1 1 3 3 3 3 3 3

2 212
0 0 11 13 2 2 3 3

02

3
1 1 1

1

1 2 2 cos

2

1
trace trace trace

2 i i i

T T T

T T T
F F F F F F B B B

i

z
V Z Z z z Z Z Z Z

c

− − −

=

⎛ ⎞−
= + + + + + +⎜ ⎟⎜ ⎟

⎝ ⎠

+ Θ Γ Θ + Θ Γ Θ + Θ Γ Θ∑# # # # # #
 (37) 

 

with the update gains matrices
1 1 3 3

0, 0T T
F F F FΓ = Γ > Γ = Γ > , and

3 3
0

i i

T
B BΓ = Γ > . Taking the 

derivative ofV along the trajectories of the closed-loop system gives 
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( ) ( ) ( )

( ) ( )( )( )
( ) ( )( )

1 1

1

2 des,0 ref 2 des,0
01 01 02 01 01 02 01 12 03 03 03

2 ref 2 212
11 11 12 02 12 13 13 1 1 1 1 2 1 2

02

des,0
1 1 1 2 1 2 2 2 2 2 2

sin sin sin

ˆsin sin

ˆ ˆ

T T
F F

T T T
F

V c z z z V V z z z V z c z V z

c
c z V z z z c z Z A B G X G X

c

Z B G X G X Z C Z Z A

χ χ γ γ= − + + − + − + − − − +

⎛ ⎞
− − + − + Φ Θ + − +⎜ ⎟⎜ ⎟

⎝ ⎠

+ − − + Φ

$ $ $

#

( )

( )
1

3 3 3 3 1 1 1 3 3 3

3 3 3

des,0
2 2 3 3 3 3 3

3
0 1 1

3 3 3 3 3
1

3
1

1

ˆ ˆ ˆtrace trace

ˆtrace

i i

i i i

T T T
F

T T T T T T
F F B B i F F F F F F

i

T
B B B

i

Z B X X Z C Z

Z A U Z A B U U − −

=

−

=

Θ + − − +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ Φ Θ + Φ Θ + − − Θ Γ Θ − Θ Γ Θ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− Θ Γ Θ⎜ ⎟
⎝ ⎠

∑

∑

#

$ $# # # #

$ #

(38) 

To cancel the terms in Eq. (38), depending on the estimation errors, we select the update 
laws 

 ( ) ( )1 1 1 3 3 3 3 3 3 31 1 2 2 3 3 3 3
ˆ ˆ ˆ, , proj

i i i i

T T T T
F F F a F F F B B B B iA Z A Z A Z A Z UΘ = Γ Φ + Θ = Γ Φ Θ = Γ Φ

$ $ $
 (39) 

with ( ) ( )( )1 1 1 11 1 1 1 2 1 2
ˆT T

a F F F FA A B G X G XΦ Θ = Φ Θ + −# #  

The update laws for 3B̂ include a projection operator (Ioannou and Sun, 1995) to ensure that 

certain elements of the matrix do not change sign and full rank is maintained always. For 

most elements, the sign is known based on physical principles. Substituting the update laws 

in Eq. (38) leads to 

( )

( ) ( ) ( )( ) ( ) ( )

2 2 2 ref 2 2 des,012
01 01 03 03 11 11 12 13 13 2 2 2 3 3 3 01

02

des,0 des,0 des,0 0
03 1 1 1 2 1 2 2 2 3 3 3 3 3

sin

ˆ ˆsin sin

T T

T T T

c
V c z c z c z V z c z Z C Z Z C Z V V z

c

V z Z B G X G X Z B X X Z A B U Uγ γ

= − − − − − − − − + − +

− − + − + − + −

$
 (40) 

where the first line is already negative semi-definite, which we need to prove stability in the 
sense of Lyapunov. Because our Lyapunov function V equation (37) is not radially 
unbounded, we can only guarantee local asymptotic stability (Kanayama et al., 1990). This is 
sufficient for our operating area if we properly initialize the control law to 
ensure 12 / 2z π≤ ± . However, we also have indefinite error terms due to the tracking errors 
and due to the command filters used in the design. As mentioned before, when no rate or 
magnitude limits are in effect, the difference between the input and output of the filters can 
be made small by selecting the bandwidth of the filters to be sufficiently larger than the 
bandwidth of the input signal. Also, when no limits are in effect and the small bounded 
difference between the input and output of the command filters is neglected, the feedback 
controller designed in the previous sections will converge the tracking errors to zero (for 
proof, see (Farrell et al.,  2005, Sonneveldt et al., 2007, Yip, 1997)). 
Naturally, when control or state limits are in effect, the system will in general not track the 
reference signal asymptotically. A problem with adaptive control is that this can lead to 
corruption of the parameter-estimation process, because the tracking errors that are driving 
this process are no longer caused by the function approximation errors alone (Farrell et al., 
2003). To solve this problem we will use a modified definition of the tracking errors in the 
update laws in which the effect of the magnitude and rate limits has been removed, as 
suggested in (Farrell et al., 2005, Sonneveldt et al., 2006). Define the modified tracking errors 
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 1 1 1 2 2 2 3 3 3, ,Z Z Z Z Z Z= − Ξ = − Ξ = − Ξ# # #  (41) 

with the linear filters 

 

( ) ( )( )
( )
( )

des,0
1 1 1 1 1 2 1 2

des,0
2 2 2 2 3 3

0
3 3 3 3 3

ˆ ˆ, , , ,

ˆ

C B G X U X G X U X

C B X X

C A B U U

Ξ = − Ξ + −

Ξ = − Ξ + −

Ξ = − Ξ + −

$

$

$

 (42) 

The modified errors will still converge to zero when the constraints are in effect, which 

means the robustified update laws look like 

 ( ) ( )1 1 1 3 3 3 3 3 3 31 1 2 2 3 3 3 3
ˆ ˆ ˆ, , proj

i i i i

T T T T
F F F a F F F B B B B iA Z A Z A Z A Z UΘ = Γ Φ + Θ = Γ Φ Θ = Γ Φ

$ $ $
 (43) 

To better illustrate the structure of the control system, a scheme of the adaptive inner-loop 

controller is shown in Fig. 2.  

4. Model identification 

To simplify the approximation of the unknown aerodynamic force and moment functions, 

thereby reducing computational load, the flight envelope is partitioned into multiple 

connecting operating regions called hyperboxes or clusters. This can be done manually 

using a priori knowledge of the nonlinearity of the system, automatically using nonlinear 

optimization algorithms that cluster the data into hyperplanar or hyperellipsoidal clusters 

(Babuška, 1998) or a combination of both. In each hyperbox a locally valid linear-in-the-

parameters nonlinear model is defined, which can be estimated using the update laws of the 

Lyapunov-based control laws. The aerodynamic model can be partitioned using different 

state variables, the choice of which depends on the expected nonlinearities of the system. In 

this study we use B-spline neural networks (Cheng et al., 1999, Ward et al., 2003) (i.e., radial 

basis function neural networks with B-spline basis functions) to interpolate between the 

local nonlinear models, ensuring smooth transitions. In the previous section we defined 

parameter update laws equation (43) for the unknown aerodynamic functions, which were 

written as 

 ( ) ( ) ( )
1 1 3 3 3 31 3 3

ˆ ˆ ˆˆ ˆ ˆ, , , ,
i i i

T T T
F F F F B BF X U F X U B X= Φ Θ = Φ Θ = Φ Θ  (44) 

Now we will further define these unknown vectors and known regressor vectors. The total 

force approximations are defined as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( )

0

0

0

ˆ ˆ ˆ ˆˆ , , ,
2

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,
2 2

ˆ ˆˆ , , ,

q e

p r a r

e

L L e L L e

Y e Y Y Y a Y r

D e D e

qc
L qS C C C C

V

pb rb
Y qS C C C C C

V V

D qS C C

α δ

δ δ

δ

α β β δ α α α β δ

α β δ α β α β α β δ α β δ

α β δ α β δ

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + + +⎜ ⎟
⎝ ⎠

= +

 (45) 
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Fig. 2. Inner-loop control system 

and the moment approximations are defined as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,
2 2

ˆ ˆ ˆ ˆ, ,
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,
2 2

p r e a r

q e

p r e a r

e e a rL L L L L L

eM M M

e e a rN N N N N N

pb rb
L qS C C C C C C

V V

qc
M qS C C C

V

pb rb
N qS C C C C C C

V V

δ δ δ

δ

δ δ δ

α β δ α β α β α β δ α β δ α β δ

α β α α β δ

α β δ α β α β α β δ α β δ α β δ

⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠
⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠

 (46) 

Note that these approximations do not account for asymmetric failures that will introduce 
coupling of the longitudinal and lateral motions of the aircraft. If a failure occurs that 
introduces a parameter dependency that is not included in the approximation, stability can 
no longer be guaranteed. It is possible to include extra cross-coupling terms, but this is 
beyond the scope of this paper. The total nonlinear function approximations are divided 
into simpler linear-in-the parameter nonlinear coefficient approximations: for example, 

 ( ) ( )
0 0 0

ˆ ˆ, ,
L L

T
L C CC α β ϕ α β θ=  (47) 

where the unknown parameter vector
0

ˆ
LCθ contains the network weights (i.e., the unknown 

parameters), and
0LCϕ is a regressor vector containing the B-spline basis functions 

(Sonneveldt et al., 2007). All other coefficient estimates are defined in similar fashion. In this 

case a two-dimensional network is used with input nodes forα and β . Different scheduling 

parameters can be selected for each unknown coefficient. In this study we used third-order 

B-splines spaced 2.5 deg and one or more of the selected scheduling variablesα , β and eδ . 

Following the notation of Eq. (47), we can write the estimates of the aerodynamic forces and 

moments as 

 
( ) ( ) ( )
( ) ( ) ( )

ˆˆ ˆˆ ˆ ˆ, , , , , , , ,

ˆ ˆ ˆˆ ˆ ˆ, , , , , , , ,

T T T
L e L Y e Y D e D

T T T
e e eL L M M N N

L Y D

L M N

α β δ α β δ α β δ

α β δ α β δ α β δ

= Φ Θ = Φ Θ = Φ Θ

= Φ Θ = Φ Θ = Φ Θ
 (48) 
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which is a notation equivalent to the one used in Eq. (44). Therefore, the update laws 
equation (43) can indeed be used to adapt the B-spline network weights. In practice 
nonparametric uncertainties such as 1) un-modeled structural vibrations 2) measurement 
noise, 3) computational round-off errors and sampling delays, and 4) time variations of the 
unknown parameters, can result in parameter drift. One approach to avoiding parameter 
drift taken here is to stop the adaptation process when the training error is very small (i.e. a 
dead zones (Babuška, 1998, Karason and Annaswamy, 1994)).  

5. Simulation results 

This section presents the simulation results from the application of the flight-path controller 
developed in the previous sections to the high-fidelity, six-degree-of-freedom F-16 model of 
Sec. 2. Both the control law and the aircraft model are written as C S-functions in 
MATLAB/Simulink. The simulations are performed at three different starting flight 
conditions with the trim conditions: 1) h= 5000 m, V= 200 m/s, and ┙=θ=2.774 deg; 2) h=0 m, 
V =250 m/s, and ┙=θ=2.406 deg; and 3) h= 2500 m, V= 150 m/s, and ┙=θ=0.447 deg; where h 
is the altitude of the aircraft, and all other trim states are equal to zero. 
Furthermore, two maneuvers are considered: 1) a climbing helical path and 2) a 
reconnaissance and surveillance maneuver. The latter maneuver involves turns in both 
directions and some altitude changes. The simulations of both maneuvers last 300 s. The 
reference trajectories are generated with second-order linear filters to ensure smooth 
trajectories. To evaluate the effectiveness of the online model identification, all maneuvers 
will also be performed with a ±30% deviation in all aerodynamic stability and control 
derivatives used by the controller (i.e., it is assumed that the onboard model is very 
inaccurate). Finally, the same maneuvers are also simulated with a lockup at ±10 deg of the 
left aileron. 

5.1 Control parameter tuning 
We start with the selection of the gains of the static control law and the bandwidths of the 

command filters. Lyapunov stability theory only requires the control gains to be larger than 

zero, but it is natural to select the largest gains of the inner loop. Larger gains will, of course, 

result in smaller tracking errors, but at the cost of more control effort. It is possible to derive 

certain performance bounds that can serve as guidelines for tuning (see, for example, Krstić, 
et al., 1993, Sonneveldt et al., 2007). However, getting the desired closed-loop response is 

still an extensive trial-and-error procedure. The control gains were selected as 01 0.1c = ,  

5
02 10c −= , 03 0.5c = , 11 0.01c = , 12 2.5c = , 13 0.5c = , ( )2 diag 1,1,1C = , ( )3 diag 2,2,2C = . 

The bandwidths of the command filters for the actual control variables eδ , aδ , and rδ are 

chosen to be equal to the bandwidths of the actuators, which are given in (Sonneveldt et al., 

2007). The outer-loop filters have the smallest bandwidths. The selection of the other 

bandwidths is again trial and error. A higher bandwidth in a certain feedback loop will 

result in more aggressive commands to the next feedback loop. All damping ratios are equal 

to 1.0. It is possible to add magnitude and rate limits to each of the filters. In this study 

magnitude limits on the aerodynamic roll angle μ and the flight-path angle γ are used to 

avoid singularities in the control laws. Rate and magnitude limits equal to those of the 

actuators are enforced on the actual control variables. 
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The selected command-filter parameters can be found back in Table 1. As soon as the 
controller gains and command-filter parameters have been defined, the update law gains 
can be selected. Again, the theory only requires that the gains should be larger than zero. 
Larger update gains means higher learning rates and thus more rapid changes in the B-
spline network weights. 

5.2 Manoeuvre 1: upward spiral 
In this section the results of the numerical simulations of the first test maneuver, the 
climbing helical path, are discussed. For each of the three flight conditions, five cases are 
considered: nominal, the aerodynamic stability and control derivatives used in the control law 
perturbed with +30% and with -30% with respect to the real values of the model, a lockup of 
the left aileron at +10 deg, and a lockup at -10 deg. No actuator sensor information is used. In 
Fig. 3 the results are plotted of the simulation without uncertainty, starting at flight condition 
1. The maneuver involves a climbing spiral to the left with an increase in airspeed. It can be 
seen that the control law manages to track the reference signal very well and closed-loop 
tracking is achieved. The sideslip angle does not become any larger than ±0.02 deg. The 
aerodynamic roll angle does reach the limit set by the command filter, but this has no 
consequences for the performance. The use of dead zones ensures that the parameter update 
laws are indeed not updating during this maneuver without any uncertainties. The responses 
at the two other flight conditions are virtually the same, although less thrust is needed due to 
the lower altitude of flight condition 2 and the lower airspeed of flight condition 3. The other 
control surfaces are also more efficient. This is illustrated in Tables 2–4, in which the mean 
absolute values (MAVs) of the outer-loop tracking errors, control-surface deflections, and 
thrust can be found. Plots of the parameter-estimation errors are not included. However, the 
errors converge to constant values, but not to zero, as is common with Lyapunov-based 
update laws (Sonneveldt et al., 2007, Page and Steinberg, 1999). 
 

 

Table 1. Command-filter parameters 

 

 

Table 2. Manoeuvre 1 at flight condition 1: mean absolute value of tracking errors and 
control inputs 

www.intechopen.com



 Advances in Flight Control Systems 

 

38 

 

Table 3. Manoeuvre 1 at flight condition 2: mean absolute value of tracking errors and 
control inputs 
  

 

Table 4. Manoeuvre 1 at flight condition 3: mean absolute value of tracking errors and 
control inputs 

The response of the closed-loop system during the same maneuver starting at flight 
condition 1, but with +30% uncertainties in the aerodynamic coefficients, is shown in Fig. 4. 
It can be observed that the tracking errors of the outer loop are now much larger, but in the 
end, the steady-state tracking error converges to zero. The sideslip angle still remains within 
0.02 deg. Some small oscillations are visible in Fig. 4j, but these stay well within the rate and 
magnitude limits of the actuators. In Tables 2–4 the MAVs of the tracking errors and control 
inputs are shown for all flight conditions. As was already seen in the plots, the average 
tracking errors increase, but the magnitude of the control inputs stays approximately the 
same. The same simulations have been performed for a -30% perturbation in the stability 
and control derivatives used by the control law, and the results are also shown in the tables. 
It appears that underestimated initial values of the unknown parameters lead to larger 
tracking errors than overestimates for this maneuver. Finally, the maneuver is performed 

with the left aileron locked at ±10 deg [i.e., ( )damaged 0.5 10 /180a aδ δ π= ± ]. Figure 5 shows the 

response at flight condition 3 with the aileron locked at -10 deg. 
Except for some small oscillations in the response of roll rate p, there is no real change in 
performance visible; this is confirmed by the numbers of Table 4. However, from Tables 2 
and 3 we observe that aileron and rudder deflections become larger with both locked aileron 
failure cases, whereas tracking performance hardly declines. 

5.3 Manoeuvre 2: reconnaissance 
The second maneuver, called reconnaissance and surveillance, involves turns in both 
directions and altitude changes, but airspeed is kept constant. Plots of the simulation at 
flight condition 3 with -30% uncertainties are shown in Fig. 6. Tracking performance is again 
excellent and the steady-state tracking errors converge to zero. There are some small 
oscillations in the rudder deflection, but these are within the limits of the actuator. We 
compare the MAVs of the tracking errors and control inputs with those for the nominal case 
in Table 5 and observe that the average tracking errors have not increased much for this 
case. The degradation of performance for the uncertainty cases is somewhat worse at the 
other two flight conditions, as can be seen in Tables 6 and 7. The sideslip angle always 
remains within 0.05 deg for all flight conditions and uncertainties. Corresponding with the 
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results of maneuver 1, overestimation of the unknown parameters again leads to smaller 
tracking errors. Simulations of maneuver 2 with the locked aileron are also performed. 
Figure 7 shows the results for flight condition 1 with a locked aileron at _10 deg. Some very 
small oscillations are again visible in the roll rate, aileron, and rudder responses, but 
tracking performance is good and steady-state convergence is achieved. 
Table 6 confirms that the results of the simulations with actuator failure hardly differ from 
the nominal case. There is only a small increase in the use of the lateral control surfaces. The 
same holds at the other flight conditions, as can be seen in Tables 5 and 7. 
 

 

Table 5. Manoeuvre 2 at flight condition 3: mean absolute value of tracking errors and 
control inputs 
 

 

Table 6. Manoeuvre 2 at flight condition 1: mean absolute value of tracking errors and 
control inputs 
 

 

Table 7. Manoeuvre 2 at flight condition 2: mean absolute value of tracking errors and 
control inputs 

6. Conclusions 

In this paper a nonlinear adaptive flight-path control system is designed for a high-fidelity 

F-16 model. The controller is based on a backstepping approach with four feedback loops 

that are designed using a single control Lyapunov function to guarantee stability. The 

uncertain aerodynamic forces and moments of the aircraft are approximated online with B-

spline neural networks for which the weights are adapted by Lyapunov-based update laws. 

Numerical simulations of two test maneuvers were performed at several flight conditions to 

verify the performance of the control law. Actuator failures and uncertainties in the stability 

and control derivatives are introduced to evaluate the parameter-estimation process. The 

results show that trajectory control can still be accomplished with these uncertainties and 

failures, and good tracking performance is maintained. Compared with other Lyapunov-
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based trajectory control designs, the present approach is much simpler to apply and the 

online estimation process is more robust to saturation effects. Future studies will focus on 

the actual trajectory generation and the extension to formation-flying control. 

Appendix constraint adaptive backstepping 

Backstepping [21] is a systematic, Lyapunov-based method for nonlinear control design, 

which can be applied to nonlinear systems that can be transformed into lower-triangular 

form, such as the system of Eq. (A.1): 

 ( ) ( )1 1 1 2x f x g x x= +$  (A.1) 

The name “backstepping” refers to the recursive nature of the control law design procedure. 

Using the backstepping procedure, a control law is recursively constructed, along with a 

control Lyapunov function (CLF) to guarantee global stability. For the system Eq. (A.1), the 

aim of the design procedure is to bring the state vector 1x to the origin. The first step is to 

consider 2x  as the virtual control of the scalar 1x subsystem and to find a desired virtual control 

law ( )1 1xα that stabilizes this subsystem by using the control Lyapunov function ( )1 1V x : 

 ( ) 2
1 1 1

1

2
V x x=  (A.2) 

The time derivative of this CLF is negative definite 

 ( ) ( ) ( ) ( ) ( )1 1

1 1 1 1 1 1 1

1

0, 0
V x

V x f x g x x x
x

α
∂

⎡ ⎤= + < ≠⎣ ⎦∂
$  (A.3) 

If only the virtual control law 

 ( )2 1 1x xα=  (A.4) 

could be satisfied. The key property of backstepping is that we can now “step back” through 

the system. If the error between 2x and its desired value is defined as 

 ( )2 1 1z x xα= −  (A.5) 

the system Eq. (6) can be rewritten in terms of this error state 

 

( ) ( ) ( )
( ) ( ) ( ) ( )( )

1 1 1 1 1

1 1

1 1 1 1

1

x f x g x x z

x
z u f x g x x z

x

α

α
α

⎡ ⎤= + +⎣ ⎦
∂

⎡ ⎤= − + +⎣ ⎦∂

$

$
 (A.6) 

The control Lyapunov function Eq. (A.2) can now be expanded with a term penalizing the 
error state z  

 ( ) ( ) 2
2 1 1 1

1
,

2
V x z V x z= +  (A.7) 
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In simplified notation the time derivative of 2V is equal to 

 

( ) ( )

( )

1 1
2 1 1

1 1

1 1 1
1 1

1 1 1

V
V f g z z u f g z

x x

V V
f g z g u f g z

x x x

αα α

αα α

⎛ ⎞∂ ∂⎡ ⎤ ⎡ ⎤= + + + − + +⎜ ⎟⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ⎡ ⎤= + + + − + +⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎣ ⎦∂ ∂ ∂⎝ ⎠

$

 (A.8) 

which can be rendered negative definite with the control law 

 ( )1 1
1

1 1

, 0
V

u cz f g z g c
x x

α α∂ ∂⎡ ⎤= − + + + − >⎣ ⎦∂ ∂
 (A.9) 

This design procedure can also be used for a system with a chain of integrators. The only 
difference is that there will be more virtual states to “backstep” through. Starting with the 
state “farthest” from the actual control, each step of the backstepping technique can be 
broken up into three parts: 1. Introduce a virtual control 1α and an error state z , and rewrite 
the current state equation in terms of these; 2. choose a CLF for the system, treating it as a 
final stage; 3) choose an equation for the virtual control that makes the CLF stabilizable. 

The CLF is augmented at subsequent steps to reflect the presence of new virtual states, but 

the same three stages are followed at each step. Hence, backstepping is a recursive design 

procedure. 
For systems with parametric uncertainties there exists a method called adaptive 
backstepping (Kannelakopoulos et al., 1991), which achieves boundedness of the closed-
loop states and convergence of the tracking error to zero. 
Consider the parametric strict-feedback system 

 

( )

( )
( ) ( )

1 2 1 1

1 1 1 1, ,

T

T
n n n n

T
n n

x x x

x x x x

x x u x
− − −

= +

= +
= +

$
B B B

$ A
$

ϕ θ

ϕ θ
β ϕ θ

 (A.10) 

where ( ) 0xβ ≠ for all nx∈{ ,θ is a vector of unknown constant parameters, and iϕ are 
known (smooth) function vectors. The control objective is to asymptotically track a given 
reference ( )ry t  with 1x . All derivatives of ( )ry t are assumed to be known. 
The adaptive backstepping design procedure is similar to the normal backstepping 
procedure, only this time a control law (static part) and a parameter update law (dynamic 
part) are designed along with a control Lyapunov function to guarantee global stability. The 
control law makes use of a parameter estimate θ̂ , which is constantly adapted by the 
dynamic parameter update law. Furthermore, the control Lyapunov function now contains 
an extra term that penalizes the parameter estimation error ˆθ θ θ= −# . 

Theorem A.1 (Adaptive Backstepping Method): To stabilize the system Eq. (A.9) an error 

variable is introduced for each state 

 ( )1

1

i

i i r iz x y α−
−= − −  (A.11) 

along with a virtual control law 
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( )( ) ( )
( )

1 1
1 1 1 1 1

1 1 1
1 2

ˆ ˆ, ,
ˆ ˆ

i i
i kT i i i i

i i r i i i i k r i i kk
k kk r

x y c z z x y z
x y

− −
− − − − −

− + −
= =

⎛ ⎞∂ ∂ ∂ ∂
= − − − + + + Γ + Γ⎜ ⎟⎜ ⎟∂ ∂ ∂∂⎝ ⎠

∑ ∑α α α αα θ ω θ τ ω
θ θ

 (A.12) 

for 1,2, ,i n= A , where the tuning function iτ and the regressor vectors iω are defined as 

 ( )( )1

1
ˆ, ,

i

i i r i i ix y zτ θ τ ω−
−= +  (A.13) 

and 

 ( )( )
1

2 1

1

ˆ, ,
i

i i
i i r i k

k k

x y
x

−
− −

=

∂
= −

∂∑ αω θ ϕ ϕ  (A.14) 

where ( )1 2, , ,i ix x x x= A , ( ) ( )( ), , ,
i i

ri r r ry y y y= $ A . 0ic > are design constants. With these new 

variables the control and adaptation laws can be defined as 

 
( )

( )( ) ( )11 ˆ, ,
n n

n r ru x y y
x

α θ
β

−⎡ ⎤= +⎢ ⎥⎣ ⎦
 (A.15) 

and 

 ( )( )1ˆ ˆ, ,
n

n rx y Wzθ τ θ −= Γ = Γ
$

 (A.16) 

where 0TΓ = Γ > is the adaptation gain matrix and W the regressor matrix 

 ( ) ( )1
ˆ, , , iW z θ ω ω= A  (A.17) 

The control law Eq. (A.15) together with the update law Eq. (A.17) renders the derivative of 
the Lyapunov function 

 2 1

1

1 1

2 2

n
T

i
i

V z θ θ−

=

= + Γ∑ # #  (A.18) 

negative definite and thus this adaptive controller guarantees global boundedness of ( )x t  

and asymptotically tracking of a given reference ( )ry t with 1x . 
Proof of this theorem can be found in Sec. 4.3 of (Krstić et al., 1992). 
The standard adaptive backstepping procedure as has been discussed so far has a number of 

drawbacks. 

1. The analytic calculation of the virtual control derivatives is tedious, especially for large 
systems; 

2. The procedure can only handle systems that can be transformed into a lower-triangular 
form; 

3. Constraints on the inputs and states are not taken into account. 
The third drawback can be a major problem when designing for flight control, because the 
actuators of an aircraft have rate, bandwidth, and magnitude constraints. When the control 
signal demanded by the backstepping controller cannot be generated by the actuators, that 
is, the actuators saturate, stability can no longer be guaranteed. The problem becomes worse 
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Fig. 3. Manoeuvre 1: climbing helical path performed at flight condition 1 without any 
uncertainty or actuator failures 
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Fig. 4. Manoeuvre 1: climbing helical path performed at flight condition 2 with +30% 
uncertainties in the aerodynamic coefficients 
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Fig. 5. Manoeuvre 1: climbing helical path performed at flight condition 3 with left aileron 
locked at -10 deg 
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Fig. 6. Manoeuvre 2: reconnaissance and surveillance performance at flight condition 3 with 
-30% uncertainties in the aerodynamic coefficients 
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Fig. 7. Manoeuvre 2: reconnaissance and surveillance performance at flight condition 1 with 
left aileron locked at +10 deg. 
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when online parameter update laws are used, because these tend to be aggressive while 

seeking the desired tracking performance. Because the desired control signal is not achieved 

during saturation, the tracking error will increase. Because this tracking error is not just the 

result from the parameter estimation error, the update law may “unlearn” during these 

saturation periods. 

In (Farrell et al., 2003, 2005) a method is proposed that fits within the recursive adaptive 

backstepping design procedure and deals with the constraints on both the control variables 

and the intermediate states used as virtual controls.An additional advantage of the method 

is that it also eliminates the two other drawbacks of the adaptive backstepping method, that 

is, the time consuming analytic computation of virtual control signal derivatives and the 

restriction to nonlinear systems of a lower-triangular form. 

The proposed method extends the adaptive backstepping framework in two ways. 

1. Command filters are used to eliminate the analytic computation of the time derivatives of 

the virtual controls. The command filters are designed as linear, stable, low-pass filters with 

unity gain from its input to its output. The inputs of these filters are the desired (virtual) 

control signals and the outputs are the actual (virtual) control signal and its time derivative. 

Using command filters to calculate the virtual control derivatives, it is still possible to prove 

stability in the sense of Lyapunov in the absence of constraints on the control input and state 

variables. 

2. A stable parameter estimation process is ensured even when constraints on the control 

variables and states are in effect. During these periods the tracking error may increase 

because the desired control signal cannot be implemented due to these constraints imposed 

on the system. In this case the desired response is too aggressive for the system to be feasible 

and the primary goal is to maintain stability of the online function approximation. The 

command filters keep the control signal and the state variables within their mechanical 

constraints and operating limits, respectively. The effect these constraints have on the 

tracking errors can be estimated and this effect can be implemented in modified tracking 

error definitions. These modified tracking errors are only the result of parameter estimation 

errors as the effect of the constraints on the control input and state variables has been 

removed. These modified tracking errors can thus be used by the parameter update laws to 

ensure a stable estimation process. 

The command filtered adaptive backstepping approach is summarized in the following 

theorem. 

Theorem A.2 (Constrained Adaptive Backstepping Method): For the parameter strict-

feedback system Eq. (15) the tracking errors are again defined as 

 ( )1

1

i

i i r iz x y α−
−= − −  (A.19) 

for 1,2, ,i n= A . The nominal or desired virtual control laws can be defined as 

 0
1 1 1

ˆ , 1,2, , 1T
i i i i i ic z z i n− − += − − − + + − = −$ Aα ϕ θ α χ  (A20) 

where 

 1 , 1,2, ,i i iz z i nχ− = − = A  (A.21) 

are the modified tracking errors and where 
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 ( )0 , 1,2, , 1i i i i ic i nχ χ α α= − + − = −$ A  (A.22) 

are the filtered versions of the effect of the state constraints on the tracking errors iz . The 

nominal virtual control signals 0
iα are filtered to produce the magnitude, rate, and 

bandwidth limited virtual control signals iα and its derivatives iα$ that satisfy the limits 

imposed on the state variables. This command filter can for instance be chosen as (Farrell et 

al., 2005) 

 ( )
2

1 12
0

2 21 2

,
2

2

i

n
in R M i

n

q
q q

q qS S q q

α
ω αζω α
ζω

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= =⎛ ⎞⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤− −⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎜ ⎟⎣ ⎦⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

$
$ $  (A.23) 

where ( )MS ⋅  and ( )RS ⋅ represent the magnitude and rate limit functions, respectively. These 

saturation functions are defined similarly as 

( )
if

if

if
M

M x M

S x x x M

M x M

≥⎧
⎪= <⎨
⎪− ≤ −⎩

 

The effect of implementing the achievable virtual control signals instead of the desired ones 

is estimated by the iχ filters. With these filters the modified tracking errors iz can be defined. 

It can be seen from Eq. (A.21) that when the limitations on the states are not in effect the 

modified tracking error converges to the tracking error. The nominal control law is defined 

in a similar way as 

 
( )

( )( )0
1 1

1 ˆ nT
n n n n n ru c z z y

x
ϕ θ α

β − −= − − − + +$  (A.24) 

which is again filtered to generate the magnitude, rate, and bandwidth limited control signal 
u. The effect of implementing the limited control law instead of the desired one can again be 
estimated with 

 ( )0
n n nc u uχ χ β= − + −$  (A.25) 

Finally, the update law that now uses the modified tracking errors is defined as 

 
1

ˆ
n

i i
i

zθ ϕ
=

= Γ∑$
 (A.26) 

The resulting control law will render the derivative of the control Lyapunov function 

 2 1

1

1 1

2 2

n
T

i
i

V z θ θ−

=

= + Γ∑ # #  (A.27) 

negative definite, which means that the closed-loop system is asymptotically stable. 
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