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1. Introduction  

Discrete Fourier Transform (DFT) is one of the core operations in digital signal processing 
and communication systems. Many fundamental algorithms can be realized by DFT, such as 
convolution, spectrum estimation, and correlation. Furthermore, DFT is widely used in 
standard embedded system applications such as wireless communication protocols 
requiring Orthogonal Frequency Division Multiplexing (Wey et al., 2007), and radar image 
processing using Synthetic Aperture Radar (Fanucci et al., 1999). In practice, DFT is difficult 
to implement directly due to its computational complexity. To reduce the degree of 
computation, Cooley and Tukey proposed the well-known Fast Fourier Transform (FFT) 
algorithm, which reduces the calculation of N-point DFT from O(N2) to O(N/2log2N). 
(Proakis & Manolakis, 2006). Nevertheless, for embedded systems, in particular portable 
devices; efficient hardware realization of FFT with small area, low-power dissipation and 
real-time computation is a significant challenge. The challenge is even more pronounced 
when FFTs with large transform lengths (>1024 points) need to be realized in embedded 
hardware. Therefore, the objective of this research is to investigate hardware efficient FFT 
architectures, emphasizing compact, low-power embedded realizations. 
As VLSI technology evolves, different architectures have been proposed for improving the 
performance and efficiency of the FFT hardware. Pipelined architectures are widely used in 
FFT realization (Li & Wanhammar, 1999; He & Torkelson, 1996; Hopkinson & Butler, 1992; 
Yang et al., 2006) due to their speed advantages. Higher radix (Hopkinson & Butler, 1992; 
Yang et al., 2006) and multi-butterfly (Bouguezel et al., 2004; X. Li et al., 2007) structures can 
also improve the performance of the FFT processor significantly, but these structures require 
substantially more hardware resources. Alternatively, shared memory based schemes with a 
single butterfly calculation unit (Cohen, 1976; Ma, 1994, 1999; Ma & Wanhammar, 2000; Wang 
et al., 2007) are preferred in many embedded FFT processors since they require least amount of 
hardware resources. Furthermore, “in-place” addressing strategy is a practical choice to 
minimize the amount of data memory. With “in-place” strategy, the two outputs of the 
butterfly unit can be written back to the same memory locations of the two inputs, and replace 
the old data. For in-place FFT processing, two data read and two data write operations occur at 
every clock cycle. Multiple memory banks and conflict-free addressing logic are required to 
realize four data accesses in one clock cycle. Consequently, a typical FFT processor is 
composed of three major components:  i) butterfly calculation units, ii) conflict free address 
generators for both data and coefficient accesses and iii) multi-bank memory units.  
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In this study, several techniques are developed for reducing the hardware logic and power 
requirements for these three components: 
1. In order to optimize the conflict free addressing logic, a modified butterfly structure 

with input/output exchange circuits is presented in Section 2.  
2. CORDIC based FFT algorithms are presented for multiplier-less and coefficient 

memory-less implementation of the butterfly unit in Section 3.   
3. Memory bank partitioning and bitline segmentation techniques are presented for 

dynamic power reduction of data memory accesses. Furthermore, a special coefficient 
memory addressing logic which reduces the switching activity is proposed in Section 4.  

Case studies with ASIC and FPGA synthesis results demonstrate the performance gains and 
feasibility of these FFT implementations on embedded systems. 

2. Hardware efficient realization of fast Fourier transform  

There is an ongoing interest in hardware efficient FFT architectures. Cohen (Cohen, 1976) 

introduced a simplified control logic for FFT address generation, which is composed of 

parity checks, barrel shifters and counters based on the fact that two data addresses of every 

butterfly operations differ in their parity. Ma (Ma, 1999) proposed a method to realize the 

radix-2 addressing logic which reduces the address generation delay by avoiding parity 

check (XOR operations), but barrel shifters are still needed. Furthermore, Ma’s approach is 

not “in-place”, so more registers and related control logic are needed to buffer the interim 

data to avoid the memory conflict. Yang (Yang et al., 2006) proposed a locally pipelined 

radix-16 FFT realized by two radix-2 deep feedback (R2SD2F) butterflies. This architecture 

can improve the throughput of the FFT processing and reduce the complex multipliers and 

adders compared to other pipelined methods, but it needs extra memory and there is 

significantly more coefficient access due to radix-16 implementation. Li (X. Li et al., 2007) 

proposed a mixed radix FFT architecture, which contains one radix-2 butterfly and one 

radix-4 butterfly. The two butterflies share the multipliers, which reduce the hardware 

consumption, but the address generation is based on XOR logic, and similar to Cohen's 

design. Next section describes in detail addressing schemes that emphasize reduced 

hardware.  

2.1 Conflict-free addressing for FFT 

The N-point discrete Fourier transform is defined by 

 
21

0

( ) ( ) 0,1,..., 1,
N j nk

nk nk N
N N

n

X k x n W k N W e
π− −

=
= = − =∑    (1) 

Fig. 1 shows the signal flow graph of 16-point decimation-in-frequency (DIF) radix-2 FFT 
(Proakis & Manolakis, 2006). FFT algorithm is composed of butterfly calculation units:  

 1( ) ( ) ( )m m mx p x p x q+ = +  (2) 

 1( ) [ ( ) ( )] r
m m m Nx q x p x q W+ = −  (3) 

Equations (2), (3) describe the radix-2 butterfly calculation at Stage m  as shown in Fig. 2. 

Parallel and “in-place” butterfly operation using two memory banks of two-port memory 
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units requires that the two inputs of any butterfly are read from different banks of memory 
and the two outputs are written to the same address locations as the inputs. As shown in 
Fig. 1, in the conventional FFT addressing scheme, only the butterflies in the first stage 
satisfy this requirement. Two inputs and two outputs of butterfly operations in all other 
stages are originating from and sinking to the same memory bank. Therefore, a special 
addressing scheme is required to prevent the conflicting addresses. 
Cohen (Cohen, 1976) used parity check to separate the data into two memory banks.  Fig. 3 
is the signal flow graph of Cohen’s approach and it shows that inputs and outputs of any 
butterfly stage utilize separate memory banks. The addresses of butterfly operations are “in-
place” located. The drawback of Cohen’s method is the address generation delay. In order to 
reduce the delay of the address generation, Ma (Ma, 1999) proposed an alternative 
addressing scheme which avoids using parity check. The signal flow graph of Ma’s scheme 
is shown in Fig. 4. In Ma’s scheme, two inputs of a butterfly unit originate from two separate 
memory banks but two outputs of the butterfly unit utilize the same memory bank. The 
inputs and outputs of a butterfly unit are not “in-place”. Therefore, extra registers and 
related control logic are needed to buffer the outputs of the butterfly until next butterfly 
calculation is finished in order to realize the “in place” operation. Compared to Cohen’s 
approach which uses both parity check and barrel shifters, Ma’s method needs only barrel 
shifters and avoids parity check, resulting in a reduced address generation delay. However, 
Ma’s approach consumes more hardware resources to realize the “in-place” operation. 
In the following section, a hardware efficient FFT engine with reduced critical path delay is 
proposed. Addressing logic is reduced by using a butterfly structure which modifies the 
conventional one by adding exchange circuits at the input and output of the butterfly (Xiao, 
et al., 2008]. With this butterfly structure, the two inputs and two outputs of any butterfly 
can be exchanged; hence all data addresses in FFT processing can be reordered. Using this 
flexible input and output ordering, addressing logic is designed to be “in-place” and it does 
not need barrel shifters.  
 

 

Memory

Bank0

Memory

Bank1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

W0

W1

W2

W3

W4

W5

W6

W7

W0

W2

W4

W6

W0

W2

W4

W6

W0

W4

W0

W4

W0

W4

W0

W4

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

0Stage 0 Stage 1 Stage 2 Stage 3
Input x(n) Output X(k)

 

Fig. 1. Signal flow graph of 16-point FFT 
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Fig. 2. Butterfly unit at stage m  
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Fig. 3. Signal flow graph of 16-point FFT using Cohen’s method (Cohen, 1976) 
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Fig. 4. Signal flow graph of 16-point FFT using Ma’s method (Ma, 1999) 
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2.2 Reduced address generation logic with the modified butterfly FFT (mbFFT) 

This addressing scheme is based on a modified butterfly FFT (mbFFT) structure, which is 
shown in Fig. 5. The main difference between the modified butterfly structure and the 
conventional one is the addition of two exchange circuits that are placed at both the input 
and the output of the butterfly unit. Each exchange circuit is composed of two (2:1) 
multiplexers; when the exchange control signal C1 or C2 is 1, the data will be exchanged, 
otherwise they keep their locations. 
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Fig. 5. Modified butterfly structure 

Equation (4) shows the function: 

If   C1=1:       
);()(),()( pyqxqypx mmmm ==

  

Else:    
);()(),()( qyqxpypx mmmm ==

  

If  C2=1:    
);()(),()( 1111 pxqyqxpy mmmm ++++ ==

  

else:     
);()(),()( 1111 qxqypxpy mmmm ++++ ==

 (4) 

Based on this butterfly structure, all data within the FFT processing can be reordered by 
setting the different values of the exchange control signals C1 and C2. The control signals are 
chosen such that the input data always originate from two separate memory banks and 
output data are written to the same memory location in order to achieve in-place operation. 

2.2.1 16-point mbFFT implementation 

For 16-point mbFFT, the signal flow graph is shown in Fig. 6.  In the figure, the butterfly 
inputs or outputs indicated by broken lines denote that the data have been exchanged.  Fig. 
7 shows the complete address generation architecture and components for 16-point FFT 
implementation. The address generation logic is composed of a 5-bit counter D, three 
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inverters, a 3-bit shifter, three (2:1) multiplexers, two (4:1) multiplexers, four multi-bit (2:1) 
multiplexers and delay elements. Stage Counter S indicates which stage of FFT is currently 
in progress and controls the two (4:1) multiplexers to generate the correct exchange control 
signals C1 and C2 for the butterfly operation. The 3-bit shifter shifts one bit at each stage and 
it controls three (2:1) multiplexers to generate the correct M1 address. Since this technique is 
“in-place”, the addresses for read and write are same with the exception of a delay 
introduced for compensating the butterfly computation time. Table I presents the counter 
values (control logic) which are used to generate the addresses for M0 and M1 memory 
banks. 
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Fig. 6. Signal flow graph of 16-point mbFFT  

 

Stage 0 
(exchange 

control signal: 
C1=0,C2=b2) 

Stage 1 
(exchange 

control signal:
C1= b2,C2= b1)

Stage 2 
(exchange 

control signal: 
C1= b1,C2= b0) 

Stage 3 
(exchange 

control signal: 
C1= b0,C2=0) 

Counter 

2 1 0( )B b b b  

Counter 

2 1 0( )B b b b
Bank0 

address

2 1 0b b b

Bank1 
address

2 1 0b b b

Bank0 
address

2 1 0b b b

Bank1 
address

2 1 0b b b

Bank0 
address

2 1 0b b b

Bank1 
address

2 1 0b b b

Bank0 
address 

2 1 0b b b  

Bank1 
address 

2 1 0b b b  

000 111 000 000 000 100 000 110 000 111 

001 110 001 001 001 101 001 111 001 110 

010 101 010 010 010 110 010 100 010 101 

011 100 011 011 011 111 011 101 011 100 

100 011 100 100 100 000 100 010 100 011 

101 010 101 101 101 001 101 011 101 010 

110 001 110 110 110 010 110 000 110 001 

111 000 111 111 111 011 111 001 111 000 

Table 1. Address generation table for the 16-point mbFFT 
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Fig. 7. Address generation circuits for 16-point mbFFT 

2.2.2 N-point mbFFT implementation 

In order to generalize the addressing scheme for 2nN = - point FFT, the necessary circuit 

components of the addressing and control logic can be listed as follows: 

• (n-1)-bit Butterfly Counter 2 3 1 0...n nB b b b b− −= ,  

• (n-1) inverters which generate the complement of the Butterfly Counter 

2 3 1 0...n nB b b b b− −=  from counter B ,  

• 2log n⎡ ⎤⎢ ⎥ - bit Stage Counter ( 1),...,2,1,0S n= − .  

• Two memory banks, Bank 0 (M0) and Bank 1 (M1). 

In practice, Stage Counter S and Butterfly Counter B can be combined to a single counter D, 

where B is the least significant (n-1) bits of counter D, and S is the most significant 2log n⎡ ⎤⎢ ⎥  

bits of counter D. At any time, the read and write addresses of M0 is exactly same as the 

value of Butterfly Counter B.  For M1, the read and write address at Stage s is 

2 3 1 2 1 0... ...n n n s n sb b b b b b− − − − − − , which is a combination of counters B  and B . The exchange 

control signal C1 is equal to 1n sb − − (assume 1 0nb − ≡ ), and C2 is equal to 2n sb − − (assume 

1 0b− ≡ ). The address of twiddle factors at stage s  is given by 2 3 0... 0...0n s n sb b b− − − − ( s  ‘0’s).  
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2.3 VLSI synthesis results 

The mbFFT architecture is synthesized using TSMC CMOS 0.18µm technology. Synthesis is 
performed with Cadence Build Gates and Encounter tools. The synthesis results for 16-point 
FFT with 32-bit complex number input show a maximum clock frequency of 280MHz with 
0.665mm2 area and 0.645mW total power consumption for the complete FFT operation 
including butterfly unit, address generation unit, and memory circuits. 
In order to compare different FFT addressing methods, the logic complexity can be 
evaluated similar to (Ma, 1999), based on gate counts. The sizes of some basic circuits and 
gates are listed in Table 2. Estimated gate count comparison for 1024-point FFT of 32-bit 
complex data (16-bit each for the real part and imaginary part) is shown in the Table 3. In 
terms of area, mbFFT scheme requires 24% fewer number of transistors. This reduction is 
mainly due to the difference in logic complexity of the multiplexers and barrel shifters. 
Based on the gate counts in Table 2 (and confirmed by synthesis results), r-input (r:1) 
multiplexer is approximately 4 times  smaller than (r-1) barrel shifter in terms of area. 
The delay of address generation for both read and write operations in the mbFFT addressing 
scheme is determined by two stages of multiplexers, where the first stage uses an r-input 
(r:1) multiplexer and the second stage uses a 2-input (2:1) multiplexer for a 2r-point FFT 
operation (see Fig 7). In (Ma, 1999), worst-case address generation delay is dominated by an 
(r-1)-bit barrel shifter and a (2:1)-multiplexer. An (r-1)-bit barrel shifter requires 

2log ( 1)r −⎡ ⎤⎢ ⎥  stages of (2:1) multiplexers in the critical path. Cohen’s address generation 

method (Cohen, 1976) uses an r-bit parity check unit, an (r-1)-bit barrel shifter, and two (2:1) 
multiplexers in the critical path. Standard cell synthesis results in Table 4 show that the 
proposed mbFFT address generation scheme is faster compared to (Cohen, 1976) and (Ma, 
1999) for large FFTs, due to the complex wiring and parasitic capacitances in barrel shifters 
and elimination of the parity-check operation.  
Compared to a pipelined FFT architecture such as R2SD2F given in (Yang et al., 2006), the 
shared memory architectures such as mbFFT offer significantly reduced hardware cost and 
power consumption at the expense of (slower) throughput. R2SD2F requires log4N-1 
multipliers, 2log4N adders and 10log4N multiplexers for the butterfly operations in an N-
point FFT. In contrast, only one multiplier, two adders and four multiplexers are used in the 
mbFFT architecture datapath. The latency (total clock cycles) of a pipelined FFT architecture 

is faster by a factor of N22
1 log . However, the maximum achievable clock frequency would 

be less than the mbFFT design due the increased complexity of the R2SD2F datapath and 
address generation. Hence, for embedded applications, the proposed reduced logic, shared 
memory FFT approach with modified butterfly units presents a more viable solution. 
 

Types of Gates and Circuits No. of. Transistors 

2-Input XOR 10 

2-1 Multiplexer 6 

10-1 Multiplexer 42 

1-bit Register/Latch 10 

9-bit Counter 182 

13-bit Counter 270 

9-bit Barrel Shifter 152 

10-bit Barrel Shifter 168 

Table 2. Transistor counts for CMOS cells (Ma, 1999) 
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Components 
Design Schemes 

Quantity Type 

Transistor 
Counts 

1 13-bit Counter 

9 Inverters 

1 9-bit Shifter 

9 1-bit 2:1 Multiplexer 

2 1-bit 10:1 Multiplexer 

4 32-bit 2:1 Multiplexer 

Proposed mbFFT 
Design 

2 9-bit Latches 

1562 

1 13-bit Counter 

2 9-bit Barrel Shifters 

4 9-bit Latches 

2 32-bit Latches 

2 9-bit 2:1 Multiplexers 

(Ma, 1999) 

2 32-bit 2:1 Multiplexers 

2066 

1 13-bit Counter 

1 9-bit Counter 

2 9-bit Latch 

2 10-bit Barrel Shifter 

2 9-bit 2:1 Multiplexer 

4 32-bit 2:1Multiplexer 

(Cohen, 1976) 

1 9-bit Address Parity Generator 

1924 

Table 3. Address generation logic comparison for 1024-point FFT with 32-bit complex data 

 

FFT size =2n Proposed mbFFT (Ma, 1999) (Cohen,1976) 

n=4 1.28 ns 1.28 ns 1.82 ns 

n=8 1.40 ns 1.53 ns 2.50 ns 

n=10 1.47 ns 1.71 ns 2.61 ns 

n=16 1.59 ns 1.85 ns 2.87 ns 

Table 4. Delay comparison of address generation circuits 

3. Multiplierless FFT architectures using CORDIC algorithm 

In FFT processors, butterfly operation is the most computationally demanding stage. 
Traditionally, a butterfly unit is composed of complex adders and multipliers. A complex 
multiplier can be very large and it is usually the speed bottleneck in the pipeline of the FFT 
processor. The Coordinate Rotation Digital Computer (CORDIC) (Volder, 1959) algorithm is 
an alternative method to realize the butterfly operation without using any dedicated 
multiplier hardware. CORDIC algorithm is versatile and hardware efficient since it requires 
only add and shift operations, making it suitable for the butterfly operations in FFT 
(Despain, 1974). Instead of storing actual twiddle factors in a ROM, the CORDIC-based FFT 
processor needs to store only the twiddle factor angles in a ROM for the butterfly operation. 
In recent years, several CORDIC-based FFT designs have been proposed for different 
applications (Abdullah et al., 2009; Lin & Wu, 2005; Jiang, 2007; Garrido & Grajal, 2007).  In 
(Abdullah et al., 2009), non-recursive CORDIC-based FFT was proposed by replacing the 
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twiddle factors in FFT architecture by non-iterative CORDIC micro-rotations. It reduces the 
ROM size, however, it does not eliminate it completely. (Lin & Wu, 2005) proposed a 
“mixed-scaling-rotation” CORDIC algorithm to reduce the total iterations, but it increases 
the hardware complexity. (Jiang, 2007) introduced Distributed Arithmetic (DA) to the 
CORDIC-based FFT algorithms, but the DA look-up tables are costly in implementation. 
(Garrido & Grajal, 2007) proposed a memory-less CORDIC algorithm to reduce the memory 
requirements for a CORDIC-based FFT processor by using only shift operations for 
multiplication.  
Conventionally, a CORDIC-based FFT processor needs a dedicated memory bank to store 
the necessary twiddle factor angles for the rotation. In our earlier work (Xiao et al., 2010), a 
modified CORDIC algorithm for FFT processors is proposed which eliminates the need for 
storing the twiddle factor angles. The algorithm generates the twiddle factor angles 
successively by an accumulator. With this approach, memory requirements of an FFT 
processor can be reduced by more than 20%. Memory reduction improves with the 
increasing radix size. Furthermore, the angle generation circuit consumes less power 
consumption than angle memory accesses. Hence, the dynamic power consumption of the 
FFT processor can be reduced by as much as 15%. Since the critical path is not modified with 
the CORDIC angle calculation, system throughput does not change.  
In the following sections, CORDIC algorithm fundamentals and the design of the proposed 
memory efficient CORDIC-based FFT processor are described. 

3.1 CORDIC algorithm 

CORDIC algorithm was proposed by J.E. Volder (Volder, 1959). It is an iterative algorithm 
to calculate the rotation of a vector by using only additions and shifts. Fig. 8 shows an 
example for rotation of a vector Vi.  
 

α
φ

),( iii yxV

),( 111 +++ iii yxV

x

y

 

Fig. 8. Rotate vector ( , )i i iV x y  to 1 1 1( , )i i iV x y+ + +  

The following equations illustrate the steps for calculating the rotation: 

 1 cos cos cos sin sin

cos sin
i

i i

x r ( ) r( )

x y

α φ α φ α φ
φ φ

+ = + = −
= −

      (5) 

 1 sin( ) (sin cos cos sin )

cos sin
i

i i

y r r

y x

α φ α φ α φ
φ φ

+ = + = +
= +

     (6) 

www.intechopen.com



Reduced Logic and Low-Power FFT Architectures for Embedded Systems 

 

391 

If each rotate angle φ  is equal to arctan 2 i− , then: 

 1 cos ( 2 )i
i i ix x yφ −
+ = − ⋅     (7) 

 1 cos ( 2 )i
i i iy y xφ −
+ = + ⋅     (8) 

Since arctan 2 iφ −= , cosφ can be simplified to a constant with fixed number of iterations: 

 1 ( 2 )i
i i i i ix K x y d −
+ = − ⋅ ⋅  (9) 

 1 ( 2 )i
i i i i iy K y x d −
+ = + ⋅ ⋅  (10) 

where cos(arctan(2 ))i
iK −= and 1id = ± . Product of Ki's can be represented by the K factor 

which can be applied as a single constant multiplication either at the beginning or end of the 

iterations. Then, (9) and (10) can be simplified to: 

 1 2 i
i i i ix x y d −
+ = − ⋅ ⋅  (10) 

 1 2 i
i i i iy y x d −
+ = + ⋅ ⋅  (11) 

The direction of each rotation is defined by di and the sequence of all di 's determines the 
final vector. di is given as: 

 i

i

1 if z 0

1 if z 0id
− <⎧ ⎫

= ⎨ ⎬+ ≥⎩ ⎭
 (12) 

where zi is called angle accumulator and given by 

 1 ( arctan 2 )i
i i iz z d −
+ = − ⋅  (13) 

All operations described through equations (10)-(13) can be realized with only additions and 

shifts; therefore, CORDIC algorithm does not require dedicated multipliers. CORDIC 

algorithm is often realized by pipeline structures, leading to high processing speed. Fig. 9 

shows the basic structure of a pipelined CORDIC unit. 

As shown in equation (1), the key operation of FFT is ( ) nk
Nx n W⋅ , (

2
j nk

nk N
NW e

π
−

= ). This is 

equivalent to "Rotate ( )x n by angle 
2

nk
N

π
− " operation which can be realized easily by the 

CORDIC algorithm. Without any complex multiplications, CORDIC-based butterfly can be 
fast. An FFT processor needs to store the twiddle factors in memory. CORDIC-based FFT 
doesn’t have twiddle factors but needs a memory bank to store the rotation angles. For 

radix-2, N-point, m-bit FFT, 
2

mN
 bits memory needed to store 

2

N
 angles. In the next 

section, a new CORDIC based FFT design which does not require any twiddle factor or 
angle memory units is presented. This design uses a single accumulator for generating all 
the necessary angles instantly and does not have any precision loss. 
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3.2 Reduced memory CORDIC based FFT  

Although several multi-bank addressing schemes have been used to realize parallel and 
pipelined FFT processing (Ma, 1999; Xiao et al., 2008), these methods are not suitable for the 
reduced memory CORDIC FFT.  In these schemes, the twiddle factor angles are not in 
regular increasing order (see Table 5), resulting in a more complex design for angle 
generators. As shown in Table 6, using a special addressing scheme first proposed in (Xiao 
et al., 2009), the twiddle factor angles follow a regular, increasing order, which can be 
 

 

Register

>>0

+/- +/- +/-

Register Register

>>0

Register

>>1

+/- +/- +/-

Register Register

>>1

Register

>>n

+/- +/- +/-

Register Register

>>n

0φ

nφ

1φ

0x 0y 0z

nx ny nz  

Fig. 9. Basic structure of a pipelined CORDIC unit 

generated by a simple accumulator. Table 6 shows the address generation table of the 16-
point radix-2 FFT. It can be seen that twiddle factor angles are sequentially increasing, and 

every angle is a multiple of the basic angle 2
N

π , which is 
8

π  for 16-point FFT. For 

different FFT stages, the angles increase always one step per clock cycle. Hence, an angle 
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generator circuit composed of an accumulator, and an output latch can realize this function, 
as shown in Fig. 10. Control signal for the latch that enables or disables the accumulator 
output is simple and it is based on the current FFT butterfly stage and RAM address bits 
b2b1b0 (see Table 6).  
 

CLK

Angle

Latch

Control Accumulator

RegisterN
π2

 

Fig. 10. Angle generator for the CORDIC based FFT 

 

Stage 0 Stage 1 Stage 2 Stage 3 
Butterfly 
Counter 

B(b2b1b0) 
RAM 

address
b0b2b1

Twiddle 
factor 
angle 

RAM 
address
b1b0b2

Twiddle 
factor 
angle 

RAM 
address
b2b1b0

Twiddle 
factor 
angle 

RAM 
address 
b0b2b1 

Twiddle 
factor 
angle 

000 000 0 000 0 000 0 000 0 

001 100 4
8

π  010 4
8

π  001 4
8

π  100 0 

010 001 8
π  100 0 010 0 001 0 

011 101 5
8

π  110 4
8

π  011 4
8

π  101 0 

100 010 2
8

π  001 2
8

π  100 0 010 0 

101 110 6
8

π  011 6
8

π  101 4
8

π  110 0 

110 011 3
8

π  101 2
8

π  110 0 011 0 

111 111 7
8

π  111 6
8

π  111 4
8

π  111 0 

Table 5. Address generation table of Ma’s (Ma, 1999) design for 16-point radix-2 FFT 

Fig. 11 shows the architecture of the proposed no-twiddle-factor-memory design for radix-2 
FFT. Four registers and eight 2-to-1 multiplexers are used. Registers are needed before and 
after the butterfly unit to buffer the intermediate data in order to group two sequential 
butterfly operations together. Therefore, the conflict-free “in-place” data accessing can be 
realized. This register-buffer design can be extended to any radix FFTs. For radix-2, the 
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structure can be simplified by using just 4 registers, but for radix-r FFT, 22 r×  registers are 

needed. Fig. 12 shows the structure for radix-r FFT. 
 

Stage 0 Stage 1 Stage 2 Stage 3 
Butterfly 
Counter 

B(b2b1b0) 
RAM 

address
b2b1b0

Twiddle 
factor 
angle 

RAM 
address
b0b2b1

Twiddle 
factor 
angle 

RAM 
address
b1b0b2

Twiddle 
factor 
angle 

RAM 
address 
b2b1b0 

Twiddle 
factor 
angle 

000 000 0 000 0 000 0 000 0 

001 001 8
π  100 0 010 0 001 0 

010 010 2
8

π  001 2
8

π  100 0 010 0 

011 011 3
8

π  101 2
8

π  110 0 011 0 

100 100 4
8

π  010 4
8

π  001 4
8

π  100 0 

101 101 5
8

π  110 4
8

π  011 4
8

π  101 0 

110 110 6
8

π  011 6
8

π  101 4
8

π  110 0 

111 111 7
8

π  111 6
8

π  111 4
8

π  111 0 

Table 6. Address generation table for 16-point radix-2 FFT with the proposed angle 
generator 
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Data
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2
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3
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Fig. 11. Radix-2 FFT processor with no-twiddle-factor-memory 
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Fig. 12. Proposed radix-r CORDIC-based FFT 

For an 2nN = -point FFT, the addressing and control logic are composed of several 

components: An ( 1)n − -bit butterfly counter 2 3 1 0...n nB b b b b− −= will provide the address 

sequences and the control logic of the angle generator. In stage S , the memory address is 

given by
snnss bbbbbbb ...... 320121 −−−− , which is rotate right S bits of butterfly counter B . 

Meanwhile, the control logic of the latch of the angle generator is determined by the 

sequence of the pattern; 2 3... 0...0n n sb b b− −  ( S “0”s).  

For radix-2, 2nN = -point, m-bit FFT, (each data is 2m-bit complex number; m-bit each for 

the real part and imaginary part) by using the proposed angle generator, 
5

2

mN
 bits 

memory required by the conventional CORDIC can be reduced to
4

2

mN
 which corresponds 

to 20% reduction. For higher radix FFT, the reduction is even more significant. For radix-r 

FFT, the saving is 
( 1)r mN

r

−
bits out of  

(3 1)r mN

r

−
, which converges to 33.3% reduction. 

Due to finite wordlength, as the accumulator operates, the precision loss will accumulate as 
well. In order to address this issue, more bits (wider wordlength) can be used for the 
fundamental angle 2π/N and the accumulator logic. For example, for 1024-point FFT, the 
accumulator is extended from 16 bits to 21 bits and no precision loss is observed compared 
to a conventional angle-stored CORDIC FFT processor. 

3.3 FPGA synthesis results 

The proposed reduced memory CORDIC based FFT designs for both radix-2 and radix-4 
FFT algorithms have been realized by Verilog-HDL and implemented on an FPGA chip 
(STRATIX-III EP3SE50C2). Synthesis results shown in Table 7 show that these designs can 
reduce memory usage for FFT processors without any tangible increase in the number of 
logic elements used when compared against the conventional CORDIC implementation (i.e., 
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angles are stored in memory). Furthermore, dynamic power consumption is reduced (up to 
15%) with no delay penalties. The synthesis results match with the theoretical analysis.  
 

Radix-2 Radix-4 

 
Proposed 

CORDIC FFT
(angle 

generator) 

Conventional 
CORDIC FFT

(angles 
stored) 

Proposed 
CORDIC FFT 

(angle 
generator) 

Conventional 
CORDIC FFT 

(angles 
stored) 

Total logic 
elements 

1,427 
(19-bit accum.)

1,386 
5,892 

(20-bit accum.)
5,763 

Total memory 8,672 10,720 8,728 11,800 
256-point 

FFT 

Dynamic Power 136.87 mW 156.22mW 437.53 mW 495.06 mW 

Total logic 
elements 

1,773 
(21-bit accum.)

1,718 
5,991 

(22-bit accum.)
5,797 

Total memory 33,248 41,440 33,304 45,592 
1024-point 

FFT 

Dynamic Power 135.07 mW 175.98 mW 439.40 mW 496.64 mW 

Total logic 
elements 

1,809 
(23-bit accum.)

1,757 
5,993 

(24-bit accum.)
5,863 

Total memory 
bits 

131,552 164,320 131,608 180,760 
4096-point 

FFT 

Dynamic Power 212.78 mW 242.85 mW 501.11 mW 571.72 mW 

Table 7. FPGA implementation results for Radix-2 and Radix-4 FFT 

4. Low-power FFT addressing schemes 

For embedded applications, power dissipation is often a crucial design goal. (Ma & 
Wanhammar, 1999) proposed a new addressing logic to improve the memory accessing 
speed and to reduce the power consumption. (Hasan et al., 2003) designed a new coefficient 
ordering method to reduce the power consumption of radix-4 short-length FFTs. Gate-level 
algorithms have also been proposed (Zainal at al., 2009; Saponara, 2003) to reduce the FFT 
processor’s power consumption by lower supply voltage techniques and/or voltage scaling. 
Power consumption of FFT processors can be significantly reduced by optimizing both data 
and coefficient memory accesses. Dynamic power consumption in CMOS circuits can be 
characterized by the following equation: 

 2
dynamic total DDP C V fα= ⋅ ⋅ ⋅  (14) 

where α is the switching activity, VDD is the supply voltage, f is the frequency and Ctotal is the 
total switching capacitance charging and discharging in the circuit. In particular, 
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architectural techniques can reduce two parameters in (14), Ctotal and .  These techniques are 
discussed next: First, a multi-bank memory structure is proposed for data memory accesses, 
resulting in reduced overall capacitance load on the SRAM bit-lines. Second, a new butterfly 
calculation order reduces the memory access frequency for twiddle factors and minimizes 
the switching activity. 

4.1 Memory bank partitioning 

Since FFT operation largely consists of data and twiddle factor memory accesses, it is 
desirable to reduce the power dissipation caused by memory accesses. Memory bank 
partitioning and bitline segmentation is an important technique to reduce the power 
dissipation in SRAMs. The bitlines (each read and write port is associated with one bitline) 
in the SRAM logic are a significant source of energy dissipation due to the large capacitive 
load. This capacitance has two components, wire capacitance of the bitlines and the 
diffusion capacitance of each pass transistor connecting bitline to bitcells. Hence, the 
capacitive load increases linearly with the components attached to the bitline i.e., the 
number of words or size of the memory. In order to reduce this large capacitive load, the 
data memory can be partitioned into four memory banks instead of two. As a result, the 
capacitive loading in each memory bank is lowered since the bitline wire length and the 
number of pass transistors connected to the bitline is now only one fourth of the original 
bitline. The first two memory banks, bank0 and bank1 are accessed by the upper leg of the 
butterfly structure, and bank2 and bank3 are accessed by the lower leg of the butterfly (see 
Fig. 13). The most significant bit (MSB) of the addresses determine which two memory 
banks will be accessed; the remaining two memory banks will be inactive. Multi-bank 
memory structure has been proposed before (Ma & Wanhammar, 2000), but a major 
advantage of the proposed addressing scheme is that the memory bank switching occurs 
only once in the middle of a stage. In the first half of the stage, same two memory banks are 
used and in the second half of the stage, the other two memory banks are accessed. There is 
no precharging and discharging of bitlines in the inactive memory banks. 
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Fig. 13. Signal flow graph of 16-point FFT using memory partitioning 
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4.2 Reordering coefficient access sequence 

The mbFFT architecture (see Section 2.2) can be used to generate the addressing scheme for 

reducing twiddle factor memory accesses and switching activity power. The twiddle factor 

access sequence is optimized for minimizing data bus changes. For all butterfly stages, the 

twiddle factor addresses are ordered in such a way that the twiddle factors at the same 

address are grouped together and accessed sequentially. This way, the twiddle factor ROM 

is not accessed every clock cycle. Reordering of the coefficient access sequences is shown in 

Table 8 and Table 9.  For example, in stage 1 in Table 9, only 8 accesses are needed instead of 

16, and in stage 2, only 4 accesses instead of 8 and so on.  
 

Stage 0 Stage 1 

Counter 

2 1 0( )B b b b  
Bank 0,1
address 

2 1 0b b b  

Twiddle 
factor  address 

1 0b b  

Bank 2,3
address 

2 1 0b b b  

Bank 0,1
address 

2 0 1b b b  

Twiddle 
Factor address 

10b  

Bank 2,3 
address 

2 0 1b b b  

000 000 00 000 000 00 100 

001 001 01 001 010 00 110 

010 010 10 010 001 10 101 

011 011 11 011 011 10 111 

100 100 00 100 100 00 000 

101 101 01 101 110 00 010 

110 110 10 110 101 10 001 

111 111 11 111 111 10 011 
 

Stage 2 Stage 3 

Bank0,1 
address

2 1 0b b b  

Twiddle  
factor 

address 

00  

Bank2,3
address

2 1 0b b b  

Bank0,1
address

2 1 0b b b  

Twiddle factor
address 

0 0b  

Bank2,3 
address 

2 1 0b b b  

000 00 110 000 00 111 

001 00 111 001 00 110 

010 00 100 010 00 101 

011 00 101 011 00 100 

100 00 010 100 00 011 

101 00 011 101 00 010 

110 00 000 110 00 001 

111 00 001 111 00 000 

Table 8. Address generation table for the 16-point, reduced memory access FFT 

www.intechopen.com



Reduced Logic and Low-Power FFT Architectures for Embedded Systems 

 

399 

Stage 0 Stage 1 

Counter 
)( 0123 bbbbB  

Bank 0,1 
address 

0123 bbbb  

Twiddle factor  
address 

012 bbb  

Bank 2,3
address 

0123 bbbb  

Bank 0,1 
address 

1203 bbbb  

Twiddle  factor 
Address 

012bb  

Bank 2,3 
address 

1203 bbbb  

0000 0000 000 0000 0000 000 1000 

0001 0001 001 0001 0100 000 1100 

0010 0010 010 0010 0001 010 1001 

0011 0011 011 0011 0101 010 1101 

0100 0100 100 0100 0010 100 1010 

0101 0101 101 0101 0110 100 1110 

0110 0110 110 0110 0011 110 1011 

0111 0111 111 0111 0111 110 1111 

1000 1000 000 1000 1000 000 0000 

1001 1001 001 1001 1100 000 0100 

1010 1010 010 1010 1001 010 0001 

1011 1011 011 1011 1101 010 0101 

1100 1100 100 1100 1010 100 0010 

1101 1101 101 1101 1110 100 0110 

1110 1110 110 1110 1011 110 0011 

1111 1111 111 1111 1111 110 0111 
 

Stage 2 Stage 3 Stage 4 

Bank0,1 
address 

3 1 0 2b b b b  

Twiddle  
factor 

address 

2 00b  

Bank2,3
address

3 1 0 2b b b b

Bank0,1
address

3 2 1 0b b b b

Twiddle 
factor 

address 
000 

Bank2,3 
address 

3 2 1 0b b b b  

Bank0,1
address

3 0 2 1b b b b

Twiddle  
factor 

Address 
000 

Bank2,3 
address 

3 0 2 1b b b b  

0000 000 1100 0000 000 1110 0000 000 1111 

0010 000 1110 0001 000 1111 0100 000 1011 

0100 000 1000 0010 000 1100 0001 000 1110 

0110 000 1010 0011 000 1101 0101 000 1010 

0001 100 1101 0100 000 1010 0010 000 1101 

0011 100 1111 0101 000 1011 0110 000 1001 

0101 100 1001 0110 000 1000 0011 000 1100 

0111 100 1011 0111 000 1001 0111 000 1000 

1000 000 0100 1000 000 0110 1000 000 0111 

1010 000 0110 1001 000 0111 1100 000 0011 

1100 000 0000 1010 000 0100 1001 000 0110 

1110 000 0010 1011 000 0101 1101 000 0010 

1001 100 0101 1100 000 0010 1010 000 0101 

1011 100 0111 1101 000 0011 1110 000 0001 

1101 100 0001 1110 000 0000 1011 000 0100 

1111 100 0011 1111 000 0001 1111 000 0000 

Table 9. Address generation table for the 32-point, reduced memory access FFT 
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Equations (15) and (16) show the twiddle factor memory access frequency for shared 
memory methods (Xiao et al., 2008) and the proposed reduced memory access method for 

2nN = point FFT.  

Conventional method:  ( )( )2( 2) 2 log 2 2
2 2

N N
n N× − + = − +  (15) 

Reduced memory access method:   
1

2

2 2 2 2 2
n

i n

i

N
−

=
+ = − = −∑     (16) 

Table 10 shows the twiddle factor memory access frequency for different FFT lengths. As 

FFT length increases, the power saving also scales up. 

4.3 Implementation 

To implement an 2nN = -point FFT with reduced coefficient memory accesses, an (n-1)-bit 

Butterfly Counter 2 3 1 0...n nB b b b b− −= , and a 2log n⎡ ⎤⎢ ⎥ -bit Stage Counter ( 1), ... ,2,1,0S n= −  is 

needed. In addition, one (n-2)-bit barrel shifter is used: Assume 1 2 1 0( ... , )u u uRR x x x x x v− −  

indicates rotate-right counter 1 2 1 0...u u ux x x x x− −  by v  bit. At stage s, the read and write 

addresses of the upper legs of the butterfly is 3 1 0 3 4 1 0( ... , ) ...u n n nA RR b b b s a a a a− − −= = , and 

2nb −  decides if bank0 or bank1 will be accessed.  

 

 
16- 

point
FFT 

32- 
point
FFT 

64- 
point
FFT 

128-
point
FFT 

256-
point
FFT 

512-
point
FFT 

1024-
point
FFT 

2048-
point
FFT 

4096- 
point 
FFT 

8192- 
point 
FFT 

Conventional 
FFT design 

18 50 130 322 770 1794 4098 9218 20482 45058 

Reduced memory 
access FFT design 

14 30 62 126 254 510 1022 2046 4094 8190 

Reduction 22% 40% 52% 61% 67% 72% 75% 78% 80% 82% 

Table 10. Reduction in twiddle factor memory access frequency 

For example, for the 32-point FFT shown in Table 9, at stage 2, the address of the upper legs 

of the butterfly is 2 1 0 1 0 2( ,2)RR b b b b b b= , and when b3=0, memory bank0 will be accessed, 

when b3=1, memory bank1 will be accessed. For the read and write addresses of the lower 
legs of the butterfly, (n-2) inverters are needed. The address is given by 

3 4 1 2 1 0... ...n n n s n sa a a a a a− − − − − − , and 2rb −  decides if bank2 or bank3 will be accessed at stage 0. At 

stage 0, when 2 0nb − = , bank2 will be accessed. When 2 1nb − = , bank3 will be accessed. For 

other stages 2 0nb − =  means bank3 will be accessed, 2 1nb − =  means bank4 will be accessed. 

The address of twiddle factors is given by 3 0... 0...0n sa a− −  ( S  ‘0’s). Fig 14 shows the 

components of the address generation logic using mbFFT and four memory banks. 
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Fig. 14. Address generation circuits for low-power 16-point FFT using mbFFT and four 
memory banks 
 

Shared memory design 
(Xiao et al., 2008) 

Power optimized design 

 
Total 

power 
Dynamic 

power 
Static 
power 

Total 
power 

Dynamic 
power 

Static 
power 

512 point FFT 653.14mw 203.13mw 450.00mw 635.47mw 185.47mw 450.00mw 

1024 point FFT 715.79mw 265.79mw 450.00mw 676.79mw 226.78mw 450.00mw 

2048point FFT 840.49mw 390.49mw 450.00mw 764.31mw 314.31mw 450.00mw 

4096 point FFT 1089.33mw 639.33mw 450.00mw 939.25mw 489.24mw 450.00mw 

8192 point FFT 1595.13mw 1145.13mw 450.00mw 1289.17mw 839.17mw 450.00mw 

Table 11. FPGA synthesis results – Reduction in dynamic power 
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4.4 FPGA synthesis results 

The low-power FFT algorithm is implemented on an FPGA chip (ALTERA STRATIX 

EP1S25F780C5) with FFT length up to 8192 points as shown in Table 11. The synthesis 

results demonstrate that dynamic power reduction grows with the transform size, making 

this architecture ideal for applications requiring long FFT operations. 

5. Conclusion 

This study focused on hardware efficient and low-power realization of FFT algorithms. 

Recent novel techniques have been discussed and presented to realize conflict-free memory 

addressing of FFT. Proposed methods reorder the data and coefficient address sequences in 

order to achieve significant logic reduction (24% less transistors) and delay improvements 

within FFT processors. Multiplierless implementation of FFT is shown using a CORDIC 

algorithm that does not need any coefficient angle memory, resulting in 33% memory and 

15% power reduction. Finally, optimization of FFT dynamic power consumption is 

presented through memory partitioning and reducing coefficient memory access frequency 

(26% power reduction for 8192 point-FFT).  
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