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1. Introduction 

Based on the study of limited array diffraction beams, a High Frame Rate (HFR) imaging 
method which uses a broadband pulsed plane wave, or array beams transmission field 
from a linear transducer array to illuminate the area to be imaged has been developed by 
Jian-yu LU. Echoes from the objects are received with the same transducer as is used in 
transmission. For each array beam parameter in a certain range, the received signals are 
weighted with that array beam and are summed up. The summations are Fourier 
transformed from time domain to frequency domain, and then processed further with the 
so called ‘‘parameter match’’ to produce the spectrum of the imaging. 2D and 3D images 
are constructed with inverse Fourier transformer respectively. In this way, the frame per 
transmission imaging rate is achieved. 
Despite its advantages of high frame rate and high signal to noise ratio, the original HFR 
method has several drawbacks. It can only use the plane wave or the array beam 
transmission field, and is difficult to be ported for a non-array beam field, such as a 
cylindrical or spherical wave. Moreover, since the plane wave transmission field illuminates 
only a narrow area of its own width, the imaged area is quite small, and the only way to 
widen it up is to steer the transmission beams several times from different angles, which 
lowers the frame rate. Besides, the array beam field demands a linear transducer and a very 
complex weighting process. 
Therefore, the HFR method needs to allow diffraction wave transmission fields in order to 
be practically useful. For example, it may use a cylindrical or spherical field and output 
sector format images like the conventional sector B mode ones, which have contributed a lot 
in diagnosing myocardial diseases. 
In this chapter, an extended HFR method for 2D imaging is proposed. It allows all kinds of 
transmission field, including the cylindrical one and the spherical one, as well as the plane 
wave one. It is more general than the original HFR method. 
The extended HFR method works mostly like the original one, except that 1, it implements 
the weight-and-sum process through the Fourier transform; and 2, it iterates for each 
frequency in a certain range to obtain firstly a coarse image component at that frequency 
and then the refined one with the information of the transmission field removed. After the 
iteration the image components are summed up and that is the final image. 

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

262 

In ultrasonic imaging systems, the cylindrical transducer, circle or curve transducer and 
linear transducer are commonly used. The advantages and disadvantages among them are 
different. One characteristic of the cylindrical or circle transducer is they can illuminate a 
sector or pyramidal area of the object. Therefore, in the following section, we extend the 
HFR method by using a cylindrical wave to illuminate an object. Mathematical formulas 
are derived and computer simulations are performed to verify the method. The method 
allows to increase the illumination area by using a transducer of a small footprint, which 
is important for applications such as cardiac imaging where acoustic window sizes are 
limited. 
This Chapter is organized as follows. Firstly, the HFR ultrasonic imaging system based on 
the angular spectrum principle is introduced. In the flowing section, this system is extended. 
The extended HFR method allows all kinds of transmission field. Finally, a high frame rate 
2D and 3D imaging system with a curved or cylindrical array is proposed. 

2. High Frame Rate ultrasonic imaging system based on the angular 
spectrum principle 

A kind of high frame rate (HFR) 2D and 3D imaging method was developed by Jianyu Lu in 
1997. Because only one transmission is required to construct a frame of image, this method 
can reach an ultra high frame rate (about 3750 volumes or frames per second for biological 
soft tissues at a depth of 200 mm). In this section, a new HFR method is presented in the 
view of angular spectrum. Compared with conventional dynamic focusing method which 
uses delay-and-sum processing and Lu’s HFR method, which uses a kind of special 
weighting on the received signal, the new method only use the Fourier transform algorithm 
to construct image. So the system implementation of the method could be greatly simplified. 
During constructing image, several array beams with different parameters are used as 
transmitted signals, and the spectra of a frame of image is obtained by synthesizing the 
image spectrums related to different transmit event. The simulation result shows that the 
solution not only suppresses the sidelobe of system greatly and obtains the high quality 
image but also still keeps high frame rate to some extent. 

2.1 Theory 

The HFR method is based on one transmission event. In order to get the image of the object, 
the transducer transmits the limited diffraction beams to the object then the same transducer 
receives the echo signals reflected by the scatters and constructs image by Fourier transform. 
Fig.2.1 is diagram of the linear array used by HFR method. As the transducer emits the 
limited diffraction beams, the distribution of the field is 

  ( , , , ) ( ) ikzp x y z k A k e=   (2.1)  

where ( , , , )p x y z k  means the acoustic pressure at the position ( , , )x y z under the certain 

wave numbered k , and / 2 /k c f cω π= = , f  is frequency and c  is acoustic speed. ( )A k is 

the frequency spectrum of exciting signal.  

If there are some scatters in the 'z z=  plane, the pressure for the scatters is  

 
( , , , ) ( , , ) ( , , , )

                   ( , , ) ( ) i

i i i

jkz
i

s x y z k f x y z p x y z k

f x y z A k e

=

=
  (2.2)  
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where ( , , )if x y z  is the reflective coefficient function of the scatters. Using Fourier transform, 

we can get another expression for equation (2.2) in the angular spectrum domain:  

  
,

,

( , , , ) ( , , , )

( , , ) ( )

x y

x yi

ik x ik y

x y i i

x y

ik x ik yikz
i

x y

S k k k z s x y z k e dxdy

f x y z A k e e dxdy

+

+

=

=

∫

∫
  (2.3)  

 

 

Fig. 2.1. Linear transducer array used in HFR 

Because of the reflection of scatters, the echo signal represented by equation (2.2) or 
equation (2.3) propagates to the surface of the transducer. Based on the angular spectrum, it 

is easy to get the signal received by the transducer located in the plane 0z =  in angular 

spectrum:  

 
2 2 2

( , , ) ( ) ( , , , ) x yi k k k

x y x y iR k k k T k S k k k z e
− −

=   (2.4)  

Where ( )T k  is the frequency response of the transducer. For simplicity, we assume 

 2 2 2
z x yk k k k= − −   (2.5)  

From equation (2.4) and equation (2.3), the received signal can be represented further as 
follow 

 
'

,

( , , ) ( , , ) ( ) ( ) x yz i
ik x ik yik z

x y i

x y

R k k k f x y z A k T k e e dxdy
+= ∫   (2.6)  

where 

 ' 2 2 2
z x yk k k k k= + − −   (2.7)  

The equation (2.6) means the signal, which is received by transducer located in the 

plane 0z = , is come from echo signal produced by the scatters at the plane 'z z= . In fact the 

received signal comes from a lot of planes in the acoustic field. So it should be the 

summation of ( , , )x yR k k k  over different depth, namely 
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 '

'

, ,

( , , ) ( , , )

( , , ) ( ) ( ) x y z i

x y x y z

z

ik x ik y ik z

i

x y z

R k k k R k k k dz

f x y z A k T k e dxdydz
+ +

= =∫

∫∫∫
   (2.8)  

Assume 

 ' '( , , ) ( , , )BL x y z x yF k k k R k k k=   (2.9)  

where the subscript “BL” means “band-limited”. From the spectrum '( , , )BL x y zF k k k , the 

useful information of the object can be obtained by the inverse Fourier transform:  

 1 '( , , ) ( ( , , ))BL BL x y zf x y z F F k k k−=   (2.10)  

1( )F− ⋅  is a inverse Fourier transform. From equation (2.10), the relationship between image 

( , , )BLf x y z  and the object ( , , )f x y z  is expressed as  

  

' ' '( ) ( ) ( )

, , , ,

' ' '

, ,

( , , ) ( , , ) ( ) ( )

                           ( , , ) ( , , )

                                     ( , , )

x y z

x y z

ik x x ik y y ik z z

BL x y z

x y x k k k

x y z

f x y z dxdydzf x y z A k T k e dk dk dk

dxdydzf x y z p x x y y z z

f x y z

− − − − − −=

= − − −

= ⊗

∫ ∫

∫

( , , )p x y z

 (2.11)  

Where the function ( , , )p x y z  is defined as  

 
'

1 '

'

, ,

( , , ) ( ( , , ))     

( , , ) [ ( ) ( )]
x y z

x y z

x y z k k k

p x y z F P k k k and

P k k k A k T k

−=

=
  (2.12) 

From the equation (2.11) and (2.12), we can see that if the size of the aperture is infinite, the 

image is the result of the convolution between object reflection coefficient and the 

function ( , , )p x y z . So ( , , )p x y z  is the point spread function (PSF) of the imaging system, 

which is determined by the excited signal and the frequency response of transducer. 

Obviously under the condition that k  is infinite and ( ) ( )A k T k  is equal to one, ( , , )p x y z  

turns to be Dirac delta function and ( , , )BLf x y z  is the object ( , , )f x y z . Generally, The 

bandwidth of ( )T k and ( )A k is limited and ( , , )p x y z  is pulse in three dimension. So 

( , , )f x y z  only presents some useful information of the object.  

2.2 Simulation results 

In equation (2.8), function '( , , )x yR k k k is the received signal by transducer in the domain of 

frequency spectrum k and the domain of space spectrum ( , )x yk k . In practice, the received 

signal is expressed by '( , , )e er x y t in the domain of time t  and the domain of space ( , )x y . So 

in the first step the algorithm 3D Fourier transform is used in order to change '( , , )e er x y t  

to '( , , )x yR k k k . It means the weighting process can be realized by Fourier transform over 

transducer surface and the time parameter. 

But there is still a little difference between Fourier transform and the weighting process. 

First we know the number of wave k is positive for constructing imaging, but the result of 
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Fourier transform contains information of positive and negative k . Secondly the results of 

Fourier transform include the information part which corresponds to maxxk k>  and maxyk k> , 

and obviously the part has no physics meaning for the weighting result '( , , )x yR k k k . 

Considering the two condition, '( , , )x yR k k k can be obtained from the modified Fourier 

transform results of the received signal '( , , )r x y t  under the condition  below:  

 max max' 0              0           
( , , )

( ( , , ))        

x y

x y

k or k k or k k
R k k k

F r x y t otherwise

⎧ < > >⎪= ⎨
⎪⎩

   (13)  

1( )F− ⋅   is a inverse Fourier transform. Based on the study above, the system of HFR method 

can be simplified into Fig.2.2. 
 

 

Fig. 2.2. The new solution to the realization of HFR method, which consists of three parts 
mainly, two 3D FFT and parameter match 

In Fig.2.2 the system consists of three parts, two FFT chips and one parameter match chip. 

The received signal is imputed into the first FFT chip to get the signal '( , , )x yR k k k , then 

processed by parameter match unit which changes '( , , )x yR k k k  to the spectrum '( , , )BL x y zF k k k  

of the image, and at last step the image ( , , )BLf x y z   is obtained from '( , , )BL x y zF k k k  by the 

second FFT chip. 
 

 

Fig. 2.3. Simulation of 2D B-mode image with log compressed over 40db scale. (a) is 
obtained by original HFR method, and (b) is obtained by the new method 

To verify the new process, a simulation in two dimension was performed to construct image 
by the HFR method. In the simulation, the phantom consists of eight point scatters objects. 
The linear array transducers is a 2.5 MHz array of 64 elements and a dimension of 38.4 mm 
with an inter-element space of 0.6 mm. Two-way (pulse-echo) spectra of the arrays are 
assumed to be proportional to the Blackman window function with a fractional bandwidth 
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of about 81% that is typical for a modern array. The simulation results shows in Fig.2.3 and 
Fig.2.4. In the figures, Fig.2.3a is obtained by original HFR process (IEEE Trans on UFFC, 
44(4), 1997, pp. 839-856) and Fig.2.3b is obtained by the new process. It can be seen that the 
two results are the same. 
 

 

Fig. 2.4. The sidelobe along lateral direction 

2.3 Conclusion 
This section presents a theory analysis, which is based on angular spectrum principle, to 
simplify the HFR imaging system presented by Lu. Besides a new imaging mode is 
proposed, which use several transmission events to synthesize the image. In every 
transmission event, array beam with different parameters is used as excited signal. The 
constructed image has very high resolution and contrast, and meanwhile the imaging 
system still hold high frame rate to some extent.  

3. Construction of High Frame Rate ultrasonic images with Fourier transform 
in any kind of acoustic field 

In HFR method, a plane wave was used to illuminate an area for either 2D or 3D imaging. 
The drawback of this method is that the area illuminated is only as wide as the size of the 
aperture of the array transducer. In this section, a generic HFR method is developed. 2D 
high frame rate images can be constructed using the Fourier transform with a single 
transmission of an ultrasound pulse from an array under different transmission filed as long 
as the transmission filed is known. To verify our theory, computer simulations have been 
performed in the non-plane wave field. The field is cylindrical field defined by zero order 
Hankle function and produced by a linear array. The image with sector format and lower 
sidelobes is obtained. The simulation results are consistent with our theory. 

3.1 Theories 

For simplicity, we discuss our new method in the two dimension (2D). Let us assume that 

there is a linear array at the position z=0 (Fig.3.1), and the transmitted field is ( , , )p x z k  where 

2 /k f cπ= . f  means frequency and c is acoustic speed.  If there is a scatter at the position 

which the coordination is (x,z), and the reflection coefficient is ( , )f x z , The echo signal, 

which object scatter reflects, is as follow:  
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 '( , , ) ( , ) ( , , ) ( )f x z k f x z p x z k T k=   (3.1)  

where ( )T k  is spectra, which is related to the spectrum of excited signal and the frequency 

response of the transducer.  
 

 

Fig. 3.1. The diagram of the transducer 

The received signal to an element of the transducer can be obtained by the equation (3.2)  

 '

,

( , 0, ) ( , , ) ( , ; , 0, )e e e e

x z

r x z k f x z k H x z x z k dxdz= = =∫   (3.2)  

Here ( , 0)e ex z = is the position’s coordination of an element of the transducer, k is wave 

number, ( , ; , 0, )e eH x z x z k=  is transmission function, which is determined by Rayleigh-

Sommerfield diffraction theory and presents the relationship between source point ( , )x y  

and observed point ( , )e ex y . The function ( , 0, )e er x z k=  means the received signal echoed by 

the object to be imaged. 

Under a certain frequency component k , Using signal x ejk xe  to weight the received signal 

 
'

( , ) ( , 0, )

( , , ) ( , ; , 0, )

x e

x e

jk x
x z e e e

l

jk x
e e e

l l

R k k r x z k e dx

dxdzf x z k e H x z x z k dx

= =

= =

∫

∫ ∫
    (3.3)  

If the l, the size of the transducer is infinite, the result of the integrate over l is  

 ( , ; , 0, ) x yx e
jk x jk yjk x

e e ee H x z x z k dx e
+= =∫    (3.4)  

Here 

 2 2 2
z xk k k= −    (3.5)  

This means that the transducer at the position 0z = , which is excited by the weight 

signal x ejk xe , produces the plane wave x yjk x k y
e

+
 in the field. From the equation (3.4) and (3.4), 

we have  
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 '

,

( , ) ( , , ) x zik x ik z
x z

x z

R k k f x z k e dxdz+= ∫   (3.6)  

Make inverse Fourier transform for the weighted signal ( , )x zR k k  to get the imaging under 

the frequency component k  and the transmitted filed ( , , )p x z k ; 

 { }' ' '( , , ) ( , )x zf x z k F R k k=   (3.7)   

where {}F ⋅  is Fourier transform. Remove the information of transmitted filed.  

 '' ' ' ' ' ' 1 ' '( , , ) ( , , ) ( , , )f x z k f x z k p x z k−=   (3.8)  

Sum the imaging '' ' '( , , )f x z k  over all frequency components to get final imaging.  

 ''' ' ' '' ' '( , ) ( , , )
k

f x z f x z k=∑     (3.9)  

We can prove that equation (3.9) is a good approximation of the object function ( , )f x z . 

Especially when the transmitted filed is plane wave, it is the original HFR method. 

3.2 Simulation results 

From the theoretical analysis above, the simulation process is divided into several steps as 
follows: 

1. According to the transmitted signal and the boundary of the transducer, calculate the 

distribution of the acoustic filed ( , , )p x z k ;  

2. According to the equation (3.3) and (3.5), using signal x ejk xe  to weight the received 

signal ( , 0, )e er x z k=  to get the spectrum signal ( , )x zR k k ; 

3. Using equation (3.7) to get imaging '( , , )f x z k , which is at the frequency component k; 

4. Remove the imaging’s phase caused by ( , , )p x z k  according to equation (3.8) to get 

signal ''( , , )f x z k ; 

Sum the imaging ''( , , )f x z k for all frequency components to get final imaging '''( , )f x y  by 

equation (3.9); 
Fig.3.1 shows the block diagram of the experiment. Assume the transmitted field is 

cylindrical function determined by zero order Hankel function. By adjusting the phase and 

amplitude of excited signal over the linear transducer according to the equation (3.10), the 

linear transducer produces the transmission filed as follows:  

 

2 2

2 2
( , , )

jk x ze
p x z k

k x z

+

=
+

  (3.10)  

The number of the transducer arrays is 128. The length of the transducer is 37mm. The 

central frequency of the transducer is 2.5MHz and the bandwidth is about 80 percent of the 

central frequency. The frequency response function T(k) is assumed to be Blackman 

window, which is adopted in most literature’s simulation condition. The image is produced 

at the depth which z is equal to 50mm.  Fig.3.2 is the result of the simulation for one scatters 

located at (0,50). Fig3.2.a is the images of the object, which is Log compressed over 40db. In 
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order to observe the sidelobes, Fig3.2.b gives the plot line along lateral direction. Fig.3.2c 

gives the plot line along axial direction. From the figures, we can see that the sidelobes are 

about below -40db, which the resolution is about 1.2mm in the lateral direction, and 0.8 in 

the axial direction. Fig.3.3 is another result of the simulation for seven scatters. The scatters 

are on the part of a circle, among which the central point scatters is equal to 50mm far away 

from the surface of transducer. Fig3.3.a is the imaging of the object, which is Log 

compressed over 40db. Fig3.3.b shows the sidelobes along x direction. Though the size of 

array is only 37mm, the distance in the images along lateral direction from left point scatter 

to the right scatter is about 58mm, which is larger than the size of the transducer. Obviously 

the imaging is impossible to be obtained for original HFR method. 

 

 

Fig. 3.2. Simulation results of Fig1. 1’s one scatterer. (a). The 40db log compressed image and 
(b) and (c) sidelobes along the lateral and the axial direction 
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Fig. 3.3. Simulation results of seven scatters. (a). The diagram of the transducer and seven 
scatterers, (b). the 40 db log compressed image, (c). the sidelobes along x direction 

3.3 Conclusion 
Though the method is analyzed in the two dimensions, it can be obviously used in the three 
dimensions.  So the method gives an effective way to construct images with sector form (2D) 
and pyramidal form (3D) by the linear array based on the Fourier transformer. Like the 
original HFR method, the system can construct images with only one time transmission, and 
the quality of the imaging is high. Compared to the original Fourier transform method, it is 
effective in any kind of acoustic field, though the principle of the method and the original 
HFR method is the same. In original HFR method, the kernel function of the Fourier 
transform contains the information of the transmission field because the transmission waves 
and weighting waves are the same kind beams, which belong to array beams. In our new 
method we extend the kind of transmission field from plane wave or array beams to other 
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kind wave, such as cylindrical wave. As the weighting signal is not the same form as the 
transmission filed, it is difficult to combine the transmission filed and weighted signal 
together in the kernel function of the Fourier transform. As a result we have to repeat the 
Fourier transform process under different frequency component and make the summation 
over different frequency results.  So the shortcoming of the method is obvious compared to 
the original HFR method, namely its quantity of the computation is high. If some kind of 
quick arithmetic is found, the method will be more effective in practice.  
Because the original HFR method assumes the transmission filed to be the plane wave or 
array beams although it is impossible actually due to diffraction property in physics, the 
assumption makes results obtained by original HFR method a little disturbed when the 
distance between object and transducer is some large. For our method if the transmission 
filed is pre-known exactly by some method, such as simulation or measurement, the better 
results can be obtained because the new method can cancel the effects of transmission filed.  

4. High Frame Rate 2D and 3D imaging with a curved or cylindrical array 

The cylindrical transducer, circle or curve transducer and linear transducer are commonly 
used in ultrasonic imaging system. The advantages and disadvantages between them are 
different. One characteristic of the cylindrical or circle transducer is the transducer can 
illuminate a sector or pyramidal area of the object. The scanning format is primarily useful 
for cardiac imaging to avoid interference from the ribs. Since this kind of transducer is 
nonlinear transducer, the method of constructed images is a little different from the linear 
transducer’s method. 

4.1 Theoretical preliminaries 

In the section, a new imaging method (Fourier method and radial matched filter) for a pulse 
system will be developed and formulas for construction of 2D and 3D images will be 
derived with zero order Hankle function. 

4.1.1 3D images construction 

To simplify the analysis, we assume that the sampling of the array along each direction is 
regarded as continuous, our results, based on this assumption, should closely approximate 
that of a sampled aperture as long as the Nyquist criterion is met to avoid spatial aliasing . A 
sufficient condition for this criterion to be satisfied is a half-wavelength spacing of elements 
along the arrays. For simplicity, we will also neglect the diffraction patterns of the 
individual elements; they are assumed to be behaving as point sources and receivers. 
Although we assume continuously sampled, the simulation results shows similar principles 
can be applied to arrays of discrete elements of finite size. 
For the generality, we discuss the method in three-dimension in the cylindrical coordinate 
system. Fig.4.1 shows a cylindrical transducer. Though the filed produced by cylindrical 
transducer is much more complex than the plane wave, we still can get simple form under 
some reasonable assumption. The simplest mode of the filed form produced by the 
cylindrical transducer is zero order Hankle function. If the kr is relatively large, the acoustic 
pressure, which is presented by zero order Hankle function, can be estimated by:  

 ( , ) ( )
ikre

p r k A k
kr

≈   (4.1)  
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Where k is wave number, 2 2r x y= +  represents radial coordinate, ( )A k is related to the 

spectrum of the signal and the response of the transducer frequency and can be presented 

by the Blackman windows . 
Based on the Rayleigh-Sommerfeld diffraction theory, the received signal for an element for 
all scatterers is easily given by  

 2 2 22 cos( ) ( )

1 22 2 2

1
( , , )

( , , ) ( , ) ( ) cos( , )
2 cos( ) ( )

e e e e

e e

ik r r rr z z

V e e e e

R k z
i

e
rdrd dzf r z p r k T k n n

r r rr z z

θ θ

θ
λ

θ θ
θ θ

+ − − + −

= ×

+ − − + −
∫∫∫

j j
  (4.2)  

where λ is wavelength, and 2 /kλ π= . θ  is azimuthal angle, z is axial axis, which is 

perpendicular to the plane defined by r  andθ . 2 2 22 cos( ) ( )e e e e er r rr z z r rθ θ+ − − + − = −
j j

is 

the distance between the scatterer and the transducer element, where ( , , )e e e er r zθ=
j

 is the 

coordinate of transducer element, ( , , )r r zθ=
j

is the coordinate of the scatters. ( , , )f r zθ is the 

function of reflection coefficient of the object, ( , , )e eR k zθ= means the received signal for the 

element at er
j

, 1n
f

is an unit vector which direction is from (0, , )e ezθ  to ( , , )e e er zθ , and 2n
f

is 

another unit vector which the direction is from ( , , )r zθ to ( , , )e e er zθ . Our objective is to 

image the reflectivity function ( , , )f r zθ , which is the inverse problem of equation (4.2).  
After some mathematical manipulations, one can easily find the following  

 2 2 22 cos( ) ( )

2 2 2

( , , ) ( ) ( )
2

( , , ) ( cos( ) )
2 cos( ) ( )

e e e e

e e

ikr ik r r rr z z

e e

V e e e e

k
R k z A k T k

i

e
drd dzf r z r r r

r r rr z z

θ θ

θ
π

θ θ θ θ
θ θ

+ + − − + −

= ×

− −
+ − − + −∫∫∫

 (4.3)  

Even if Equation.(4.3) is similar to Equation.(4.2), it is still different because the equation 
(4.3) includes cylindrical field information, and based on which the image can be 
constructed by only one transmission. …. It is obvious that equation (4.3) is the convolution 

form over ,zθ , so we have  

 ,( , , ) ( , , ) ( , , , )
e

e e z

r

R k z drf r z h k r zθθ θ θ
∞

= ∗∫    (4.4)  

where ,zθ∗ means convolution operator over ,zθ . ( , , , )h k r zθ is defined as 

 

2 2 22 cos

2 2 2
( , , , ) ( ) ( ) ( cos )

2 2 cos

e eikr ik r r rr z

e

e e

k e
h k r z A k T k r r r

i r r rr z

θ

θ θ
π θ

+ + − +

= −
+ − +

 (4.5)  

The equation (4.5) is system transform function, which transforms the object function 

( , , )f r zθ  to the received signal ( , , )e eR k zθ . In the study, the exact form is used to construct 

image instead of an approximate form. 

From equation (4.4), using Fourier transform theory, we have another expression in 

spectrum , zk kθ  domain.  
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 { },( , , ) ( , , ) ( , , ) ( , , , )
e

z z z z

r

R k k k F R k z drF r k k H k r k kθ θ θ θθ
∞

= = ∫# # #    (4.6)  

where ( , , )zR k k kθ
#  is the Fourier transform of ( , , )R k zθ  in terms of ,zθ , ( , , , )zH k r k kθ

# is the 

Fourier transform of ( , , , )h k r zθ . It is clear that Eq. (4.6) establishes a relationship between 

the Fourier transform of measured signal and the Fourier transform of object function. 

However, this relationship is established through the integration over r, which is the radial 

axis of the object function in the cylindrical coordinates. In the following section, we will use 

some mathematical manipulation to find and establish a more direct relationship between 

the Fourier transforms of these two functions. 

From (4.5), it is clear that the filter function ( , , , )zH k r k kθ
# contains an oscillating term of k and 

r. This term may play a role of decreasing the integration in terms of either k or r. If such 

oscillation term can be removed under some conditions, we may be able to construct images. 

Multiplying the conjugate of ( , , , )zH k r k kθ
# , * '( , , , )zH k r k kθ

# , to both sides of (4.6), we have:  

 ' '( , , ) ( , , , ) ( , , ) ( , , , ) ( , , , )
e

z z z z z

r

R k k k H k r k k drF r k k H k r k k H k r k kθ θ θ θ θ

∞
∗ ∗= ∫# # # # #  (4.7)  

Integrating over wave number k  for on both side of (4.7), one obtains:  

 

' ' '

'

( , , ) ( , , ) ( , , , )

           ( , , ) ( , , , )
e

z z z

z z

r

R r k k dkR k k k H k r k k

drF r k k G r r k k

θ θ θ

θ θ

∞
∗

−∞
∞

=

=

∫

∫

# # #

#
  (4.8)  

where 

 ' '( , , , ) ( , , , ) ( , , , )z z zG r r k k dkH k r k k H k r k kθ θ θ

∞
∗

−∞

= ∫ # #   (4.9)  

Equation (4.8) establishes a relationship between the measured signal, ' '( , , )zR r k kθ
# , which is 

known, and the Fourier transform of the object function, ( , , )zF r k kθ
# . After inverse Fourier 

transform over , zk kθ  for equation (4.8), we have 

 { }' 1 ' '
, ,( , , ) ( , , ) ( , , ) ( , , , )

z

e

k k z z

r

f r z F R r k k drf r z g r r z
θ θ θθ θ θ

∞
−= = ∗∫#   (4.10)  

What is the relationship between '( , , )f r zθ  and ( , , )f r zθ ? In order to answer the question, 

let us consider the function '( , , , )g r r zθ , which is inverse Fourier transform of '( , , , )zG r r k kθ  

in (4.9) and see its role in the constructed images. Fig4.2 and Fig4.3 shows the simulation of 

the distribution of the function '( , , , )g r r zθ . From the results of the simulation, two 

important properties can be seen. First it is clear that '( , , , )g r r zθ peaks sharply only when r  

is equal to 'r . Second, '( , , , )g r r zθ   is symmetric to both 'r  and r . This gives us the 

following approximate relationship:  

 ' ' '( , , , ) ( , , )g r r z g r r zθ θ≈ −   (4.11)  
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From equation (4.10) and (4.11), we can reasonably assume:  

 ' ' ' '
, , ,( , , ) ( , , ) ( , , ) ( , , ) ( , , )

e

z r z

r

f r z drf r z g r r z f r z g r zθ θθ θ θ θ θ
∞

= ∗ − = ∗∫   (4.12)  

Obviously the function '( , , )g r zθ  can be treated as the point spread function of the imaging 

system. For a perfect imaging system, '( , , )g r zθ  is a Dirac-Delta function in space domain 

( , , )r zθ . So the image '( , , )f r zθ  is object function '( , , )f r zθ . From the simulation in Figs.4.2 

and 4.3 we see that '( , , )f r zθ  has a sharp point spread function in the space domain ( , , )r zθ  

(please note that only one-way PSF is shown in Figs. 4.2 and 4.3 for high frame rate 

imaging), which is similar to the Derac-Delta function. Based on the analysis above, we have 

the answer for the question above:  

 '( , , ) ( , , )f r z f r zθ θ≈   (4.13) 

4.1.2 2D image construction 

A 2D image in any orientation (including both B-mode and C-mode images) can be readily 
obtained from 3D images with equation (4.6), (4.8) and (4.10). However, 3D imaging is more 
complex and generally requires more computation. In the following, the formulas that are 
simplified from (4.6), (4.8) and (4.4.10) and are suitable for conventional B-mode imaging and a 
C-mode imaging will be derived. In B-mode imaging, objects are assumed to be independent 
of z (along the axial direction) and in C-mode imaging, objects are assumed to be a thin layer 

located at a radial direction 0r r= away from the transducer, where 0r is a constant. 

C-mode imaging assumes the object function ( , , )f r zθ  represents a thin layer that is in 

parallel with the surface of the cylindrical transducer. This is indicated mathematically as 
follows:  

 ( )
0( , ) ( , , ) ( )Cf z f r z r rθ θ δ= −   (4.14)  

where δ is the Dirac-Delta function and ( )( , )Cf zθ  is a transverse object function. Thus (4.8) 

can be simplified as:  

 '
0 0( , , ) ( , , ) ( , , , )z z zR r k k R k k k H k r k k dkθ θ θ

∞
∗

−∞

= ∫# # #  (4.15)  

Following the discussion in 3D case above, we obtain the constructed image:  

 { }' 1 '
0 , 0 0( , , ) ( , , ) ( , , )

zk k zf r z F R r k k f r z
θ θθ θ−= ≈#   (4.16)  

To summarize, the steps to construct a C-mode image are as follows: Perform a 2D Fourier 

transform of received echo signals to get the spectrum in terms of θ and z, multiply the 

results with 0( , , , )zH k r k kθ
∗# and integrate over k, and then the images is constructed with an 

inverse Fourier transform over both kθ and zk .  

A similar approach can be used to construct a 2D B-mode image, i.e., an image along both r 

andθ dimension with a fixed z (or object is uniform along z ). Under this condition, 
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( , , )f r zθ can be replaced with ( , )f r θ . For simplicity, without loosing generality, we assume 

0z = . From (4.4), we have:  

 ( , ) ( , ) ( , , )
e

e

r

R k f r h k r drθθ θ θ
∞

= ⊗∫    (4.17)  

After the Fourier transform of ( , )eR k θ in terms of eθ , from (8), we obtain:  

 ' ' '( , ) ( , ) ( , , )R r k R k k H k r k dkθ θ θ

∞
∗

−∞

= ∫# # #    (4.18)  

Instead of 2D, 1D inverse Fourier transform is used to construct the image:  

 { }' 1 '( , ) ( , ) ( , )kf r F R r k f r
θ θθ θ−= ≈#   (4.19)  

4.2 Simulation results 

The simulation of pulse-echo imaging is performed in the three-dimension. In the 
simulations, Rayleigh-Sommerfeld diffraction formula is used. The parameters of the 
cylindrical transducer for the simulation are as follows (Fig.4.1): The transducer is 
broadband and its center frequency is 1.5MHz. The bandwidth of the transducer is about 
81% of the center frequency. [assume that the combined transmit and receive transfer 
function is proportional to the Blackman window function], The background medium is 
assumed to be water that has a speed of sound of 1500m/s given the wavelength of 1 mm at 
the central frequency. The objects are assumed to be composed of point scatters. The radius 

of the cylindrical transducer is 40mm; the range of the angle is from 045−  to 045 , and the 

range of transducer along the z-axis is from –25mm to 25mm. The inter-element distance of 

the array transducer is assumed to be 00.7087  along angle direction and 0.3927 mm 

along z direction. So the element number of the discrete transducer is 128 128× . In 

transmission, all the array elements are connected electronically to transmit the cylindrical 
wave, which is approximated by zero order Hankle function. Echoes from object (Fig.4.1) 
are received with the same array and processed to construct imaging by the several steps 
below based on the previous analysis. 

1. Do Fourier transform of received signal (see (4.6)) in terms of θ  and z , i.e., 

{ },( , , ) ( , , )z zR k k k F R k zθ θ θ=#  

2. Multiply the results with the known function, '( , , , )zH k r k kθ
∗#  (see (4.7)).  

3. Integrate the result over k according to (4.8).  
4. Performing an inverse Fourier transform according to (4.10) to construct image.  
The objects used for the construction are shown in Fig.4.1 and Fig.4.4 and are composed of 
either a single point scatter or nine point scatters which form a cross shape in the plane 

defined by r θ−  and the plane defined by z θ− . The geometry center of the object is located 

at 0( , , ) ( ,0,0)r z rθ = . Results of the pulse-echo images are given in Fig.4.2, Fig.4.3 and Fig.4.5, 

Fig.4.6   

Fig.4.2d, e and f show the image for one scatter which position is ( , , ) (90 ,0,0)r z mmθ = . 

Because the radius of the transducer is 40mm, the nearest distance between the scatter and 
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the surface of transducer is 50mm. To see the sidelobes of the constructed images, line plots 

of the single point scatter along r, z and θ  direction in the z θ−  plane, r θ− plane and z r−  

plane are shown in Fig.4.3. From the results it can be seen that imaging is very similar to the 

result of PSF. This means that the approximations (4.10) due to a finite temporal bandwidth 

and limited spatial Fourier-domain coverage that are typical in medical ultrasonic imaging 

do not significantly affect the equality of constructed images in terms of spatial resolutions, 

sidelobes, and contrast. 

Fig.4.5 shows the images for nine scatters. The nearest distance between surface of the 

transducer and the geometry center of the object is chosen to be 50mm ( 0r =90mm), 100mm 

( 0r =140mm) and 200mm ( 0r =240mm), respectively. An interesting phenomenon is that 

simulation shows the sidelobes and resolution of the images of the object, of which the 

geometry center is at different distance, is nearly the same (Fig.4.6). The reason is that the 

transmitted field keeps the same form as the theory prediction along r direction if the filed is 

cylindrical wave. Though the side lobe and resolution in the r and θ direction is the same for 

the larger area, the sidelobe rises  and the resolution is lower in the regular coordinate 

system when r becomes larger because of the relationships cos( ), sin( )z r x rθ θ= = . 

4.3 Conclusion 

In this section a new 3D images system in cylindrical coordinate has been developed with 
cylindrical wave beams (zero order Hankle function). This computation is much less than 
conventional delay and sum method, so the method has a potential to achieve a high image 
frame rate and can be implemented with relatively simple inexpensive hardware because 
the FFT and IFFT algorithm can be used.  Computer simulation with the new method has 
been carried out to construct 3D images. Though the aperture geometry of the transducer is 
only part of a cylinder, and the transmitted filed is not exact zero order Hankle function, the 
results of the simulation still match theoretical prediction. So the new imaging method is 
robust and is not sensitive to various limitations imposed by practical system. In addition, 
though the discussion above is mainly for 2D cylindrical transducer in three-dimension in 
the cylindrical coordinate system, the method can be used directly for the 1D curve 
transducer in two-dimension in the polar coordinate system obviously.  
 

 

Fig. 4.1. Transducer in the cylindrical coordinate system. The radius of the transducer is 

40er mm= , and the range of axial axis ez  is from –25mm~25mm, the range of azimuthal 

angle eθ  is from 045−  to 045 .  There are 128 128zN Nθ = ×   elements 
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Fig. 4.2. Calculated PSF, { }' ; 1 ' '
,( , , ) ( , , )

zk k zg r r z F G r r k k
θ θθ −− = − , and the image constructed 

from one scatterer (Fig. 4.1) where ' 90r mm= .  (a) shows the distribution of PSF in the plane 

90( , )r mmzθ = .(b) shows the distribution of PSF in the plane 0( , )zr θ = . (c) shows the distribution 

of PSF in the plane 0( , )r z θ = . (d) shows the constructed image of the scatter in the 

plane 90( , )rzθ = .  (e) shows the image of the scatter in the plane 0( , )zr θ = . (f) shows the image of 

the scatter in the plane 0( , )r z θ = . The images are log compressed over 40db 
 

 

Fig. 4.5. The images for Fig.4.4. (a), (b) and (c) show images where the geometry center is 

equal to 90mm, 140mm and 240mm by C-mode( z θ− plane) respectively. (d),(e) and (f) 

show images where the geometry center is equal to 90mm, 140mm and 240mm by B-

mode( r θ− plane), respectively. The images are log compressed over 40db 
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Fig. 4.3. Sidelobe of PSF and constructed image of one scatter in Fig.4.2. (a) and (b) show 

sidelobe in the plane 90( , )rzθ =  along z direction and θ direction, respectively.  (c) and (d) 

show sidelobe in the plane 0( , )zr θ =  along r direction and θ direction, respectively.  (e) and (f) 

show sidelobe in the plane 0( , )zr θ =  along z direction and r direction, respectively 
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Fig. 4.4. The objects used for construction of images, which contains nine scatters and the 

geometry center is ( , , ) (90,0,0)r zθ = , (140,0,0)  or (240,0,0)  

 

 

Fig. 4.6. Plots line shows sidelobe for Fig.4.5 along θ direction in the B-mode image 
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