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1. Introduction

In order to improve interactions between the human (operator) and the robot (teleoperator) in
human centered robotic systems, e.g. Telepresence Systems as seen in Figure 1, it is important
to equip the robotic platform with multimodal human-like sensing, e.g. vision, haptic and
audition.
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Fig. 1. Schematic view of the telepresence scenario.

Recently, robotic binaural hearing approaches based on Head-Related Transfer Functions
(HRTFs) have become a promising technique to enable sound localization on mobile robotic
platforms. Robotic platforms would benefit from this human like sound localization approach
because of its noise-tolerance and the ability to localize sounds in a three-dimensional
environment with only two microphones.
As seen in Figure 2, HRTFs describe spectral changes of sound waves when they enter the
ear canal, due to diffraction and reflection of the human body, i.e. the head, shoulders, torso
and ears. In far field applications, they can be considered as functions of two spatial variables
(elevation and azimuth) and frequency. HRTFs can be regarded as direction dependent filters,
as diffraction and reflexion properties of the human body are different for each direction. Since
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the geometric features of the body differ from person to person, HRTFs are unique for each
individual (Blauert, 1997).

Fig. 2. HRTFs over varying azimuth and constant elevation

The problem of HRTF-based sound localization on mobile robotic platforms can be separated
into three main parts, namely the HRTF-based localization algorithms, the HRTF data
reduction and the application of predictors that improve the localization performance.
For robotic HRTF-based localization, an incoming sound signal is reflected, diffracted and
scattered by the robot’s torso, shoulders, head and pinnae, dependent on the direction of the
sound source. Thus both left and right perceived signals have been altered through the robot’s
HRTF, which the robot has learned to associate with a specific direction. We have investigated
several HRTF-based sound localization algorithms, which are compared in the first section.
Due to its high dimensionality, it is inefficient to utilize the robot’s original HRTFs. Therefore,
the second section will provide a comparison of HRTF reduction techniques. Once the HRTF
dataset has been reduced and restored, it serves as the basis for localization.
HRTF localization is computational very expensive, therefore, it is advantageous to reduce
the search region for sound sources to a region of interest (ROI). Given a HRTF dataset, it
is necessary to check the presence of each HRTF in the perceived signal individually. Simply
applying a brute force search will localize the sound source but may be inefficient. To improve
upon this, a search region may be defined, determines which HRTF-subset is to be searched
and in what order to evaluate the HRTFs.
The evaluation of the respective approaches is made by conducting comprehensive numerical
experiments.
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2. HRTF Localization Algorithms

In this section, we briefly describe four HRTF-based sound localization algorithms, namely
the Matched Filtering Approach, the Source Cancellation Approach, the Reference Signal
Approach and the Cross Convolution Approach. These algorithms return the position of the
sound source using the recorded ear signals and a stored HRTF database. As illustrated in
Figure 3, the unknown signal S emitted from a source is filtered by the corresponding left and
right HRTFs, denoted by HL,i0

and HR,i0
, before being captured by a humanoid robot, i.e., the

left and right microphone recordings XL and XR are constructed as

XL = HL,i0
· S,

XR = HR,i0
· S.

(1)

The key idea of the HRTF-based localization algorithms is to identify a pair of HRTFs
corresponding to the emitting position of the source, such that correlation between left and
right microphone observations is maximized.

Fig. 3. Single-Source HRTF Model

2.1 Matched Filtering Approach

The Matched Filtering Approach seeks to reverse the HR,i0
and HL,i0

-filtering of the unknown
sound source S as illustrated in Figure 3. A schematic view of the Matched Filtering Approach
is given in Figure 4.

Fig. 4. Schematic view of the Matched Filtering Approach

The localization algorithm is based on the fact that filtering XL and XR with the inverse of
the correct emitting HRTFs yields identical signals S̃R,i and S̃L,i, i.e. the original mono sound
signal S in an ideal case:
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S̃L,i =H−1
L,i · XL

=H−1
R,i · XR

=S̃R,i ⇐⇒ i = i0.

(2)

In real case, the sound source can be localized by maximizing the cross-correlation between
S̃R,i and S̃L,i,

arg max
i

{(
S̃R,i

)
⊕

(
S̃L,i

)}
, (3)

where i is the index of HRTFs in the database and ⊕ denotes a cross-correlation operation.
Unfortunately the inversion of HRTFs can be problematic due to instability. This is mainly
due to the linear-phase component of HRTFs responsible for encoding ITDs. Hence a
stable approximation must be made of the instable version, retaining all direction-dependent
information. One method is to use outer-inner factorization, converting an unstable inverse
into an anti-causal and bounded inverse (Keyrouz et al., 2006).

2.2 Source Cancellation Algorithm

The Source Cancellation Algorithm is an extension of the Matched Filtering Approach.

Equivalently to cross-correlating all pairs XL · H−1
L,i and XR · H−1

R,i , the problem can be restated

as a cross-correlation between all pairs XL
XR

and
HL,i

HR,i
. The improvement is that the ratio of

HRTFs does not need to be inverted and can be precomputed and stored in memory (Keyrouz
& Diepold, 2006; Usman et al., 2008).

arg max
i

{(
XL

XR

)
⊕

(
HL,i

HR,i

)}
(4)

2.3 Reference Signal Approach

X
R
= S⋅ H

R ,i0

X
L
= S⋅ H

L,i0

X
R ,out

= S⋅ α

X
L,out

= S⋅ β

Fig. 5. Schematic view of the Reference Signal Approach setup

This approach uses four microphones as shown in Figure 5: two for the HRTF-filtered signals
(XL and XR) and two outside the ear canal for original sound signals (XL,out and XR,out). The
previous algorithms used two microphones, each receiving the HRTF-filtered mono sound
signals. The four signals now captured are:

XL = S · HL (5)

XR = S · HR (6)
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XL,out = S · α (7)

XR,out = S · β (8)

α and β represent time delay and attenuation elements that occur due to the heads shadowing.

From these signals three ratios are calculated. XL
XL,out

and XR
XR,out

are the left and right HRTFs

respectively and XL
XR

is the ratio between the left and right HRTFs. The three ratios are

then cross correlated with the respective reference HRTFs (HRTF ratios in case of XL
XR

). The
cross-correlation coefficients are summed, and the HRTF pair yielding the maximum sum

arg max
i

{(
XL

XL,out
⊕ HL,i

)
+

(
XL

XR
⊕

HL,i

HR,i

)
+

(
XR

XR,out
⊕ HR,i

)}
(9)

defines the incident direction (Keyrouz & Abou Saleh, 2007). The advantage of this system
is that HRTFs can be directly calculated yet retain the original undistorted sound signals
XL,out and XR,out. Thus the direction-dependent filter can alter the incident spectra without
regard to the contained information, possibly allowing for better localization. However, the
need for four microphones diverges from the concept of binaural localization, exhibiting more
hardware and consequently higher costs.

2.4 Convolution Based Approach

To avoid the instability problem, this approach is to exploit the associative property
of convolution operator (Usman et al., 2008). Figure 6 illustrates the single-source
cross-convolution localization approach. Namely, left and right observations S̃R,i and S̃L,i

are filtered with a pair of contralateral HRTFs. The filtered observations turn to be identical at
the correct source position for the ideal case:

S̃L,i =HR,i · XL

=HR,i · HL,i0
· S

=HL,i · HR,i0
· S

=HL,i · XR

=S̃R,i ⇐⇒ i = i0.

(10)

Similar to the matched filtering approach, the source can be localized in real case by solving
the following problem:

arg max
i

{(
S̃R,i

)
⊕

(
S̃L,i

)}
. (11)

2.5 Numerical Comparison

In this section, the previously described localization algorithms are compared by numerical
simulations. We use the CIPIC database (Algazi et al., 2001) for our HRTF-based localization
experiments. The spatial resolution of the database is 1250 sampling points (Ne = 50 in
elevation and Na = 25 in azimut) and the length is 200 samples.
In each experiment, generic and real-world test signals are virtually synthesized to the 1250
directions of the database, using the corresponding HRTF. The algorithms are then used to
localized the signals and a localization success rate is computed. Noise robustness of the
algorithm is investigated by different signal-to-noise ratios (SNRs) of the test signals. It
should be noted that testing of the localization performance is rigorous, meaning, that we
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Fig. 6. Schematic view of the cross-convolution approach

do not apply any preprocessing to avoid e.g. instability of HRTF inversion. The localization
algorithms are implemented as described above.
Figure 7 shows the achieved localization results of the simulation. The Convolution Based
Algorithm, where no HRTF-inversion has to be computed, outperforms the other algorithms
in terms of noise robustness and localization success. Furthermore, the best localization results
are achieved with white Gaussian noise sources as these ideally cover the entire frequency
spectrum. A more realistic sound source is music. It can be seen in Figure 7(d), that the
localization performance is slightly degraded compared to the white Gaussian sound sources.
The reason for this is that music generally does not inhabit the entire frequency spectrum
equally. Speech signals are even more sparse than music resulting in localization success rates
worse than for music signals.
Due to the results of the numerical comparison of the different HRTF-based localization
algorithms, only the Convolution Based Approach will be utilized to evaluate HRTF data
reduction techniques in Section 3 and predictors in Section 4.

3. HRTF Data reduction techniques

In general, as illustrated in Figure 8, each HRTF dataset can be represented as a three-way
array H ∈ R

Na×Ne×Nt .
The dimensions Na and Ne are the spatial resolutions of azimuth and elevation, respectively,
and Nt the time sample size. By a Matlab-like notation, in this section we denote H(i, j, k) ∈ R

the (i, j, k)-th entry of H, H(l, m, :) ∈ R
Nt the vector with a fixed pair of (l, m) of H and

H(l, :, :) ∈ R
Ne×Nt the l-th slide (matrix) of H along the azimuth direction.

3.1 Principal Component Analysis (PCA)

Principal Component Analysis expresses high-dimensional data in a lower dimension, thus
removing information yet retaining the critical features. PCA uses statistics to extract the
adequately named principal components from a signal (in essence being the information that
defines the target signal).
The dimensionality reduction of HRIRs by using PCA is described as follows. First of all, we
construct the matrix

H := [vec(H(:, :, 1))⊤, . . . , vec(H(:, :, Nt))
⊤] ∈ R

Nt×(Na ·Ne), (12)
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(a) Matched Filtering Approach (b) Source Cancellation Approach

(c) Reference Signal Approach (d) Convolution Based Approach

Fig. 7. Comparison of HRTF-based sound localization algorithms.

where the operator vec(·) puts a matrix into a vector form. Let H = [h1, . . . , hNt
]. The mean

value of columns of H is then computed by

µ = 1
Nt

Nt

∑
i=1

hi. (13)

After centering each row of H, i.e. computing Ĥ = [ĥ1, . . . , ĥNt
] ∈ R

Nt×(Na ·Ne) where ĥi =

hi − µ for i = 1, . . . , Nt, the covariance matrix of Ĥ is computed as follows

C := 1
Nt

ĤĤ⊤. (14)

Fig. 8. HRIR dataset represented as a three-way array
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Now we compute the eigenvalue decomposition of C and select q eigenvectors {x1, . . . , xq}

corresponding to the q largest eigenvalues. Then by denoting X = [x1, . . . , xq] ∈ R
Nt×q, the

HRIR dataset can be reduced by the following

H̃ = X⊤Ĥ ∈ R
q×(Na ·Ne). (15)

Note, that the storage space for the reduced HRIR dataset depends on the value of q. Finally
to reconstruct the HRIR dataset one need to compute

Hr = XH̃ + µ ∈ R
Nt×(Na ·Ne). (16)

We refer to (Jolliffe, 2002) for further discussions on PCA.

3.2 Tensor-SVD of three-way array

Fig. 9. Schematic view of the Tensor-SVD.

Unlike the PCA algorithm vectorizing the HRIR dataset, Tensor-SVD keeps the structure of
the original 3D dataset intact. As shown in Figure 9, given a HRIR dataset H ∈ R

Na×Ne×Nt ,

Tensor-SVD computes its best multilinear rank − (ra, re, rt) approximation Ĥ ∈ R
Na×Ne×Nt ,

where Na > ra, Ne > re and Nt > rt, by solving the following minimization problem

min
Ĥ∈RNa×Ne×Nt

∥∥∥H− Ĥ
∥∥∥

F
, (17)

where ‖ · ‖F denotes the Frobenius norm of tensors. The rank − (ra, re, rt) tensor Ĥ can be
decomposed as a trilinear multiplication of a rank − (ra, re, rt) core tensor C ∈ R

ra×re×rt with
three full-rank matrices X ∈ R

Na×ra , Y ∈ R
Ne×re and Z ∈ R

Nt×rt , which is defined by

Ĥ = (X, Y, Z) · C (18)

where the (i, j, k)-th entry of Ĥ is computed by

Ĥ(i, j, k) =
ra

∑
α=1

re

∑
β=1

rt

∑
γ=1

xiαyjβzkγC(α, β, γ). (19)

Thus without loss of generality, the minimization problem as defined in (17) is equivalent to
the following

min
X,Y,Z,C

‖H − (X, Y, Z) · C‖F ,

s.t. X⊤X = Ira , Y⊤Y = Ire and Z⊤Z = Irt .
(20)

We refer to (Savas & Lim, 2008) for Tensor-SVD algorithms and further discussions.
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3.3 Generalized Low Rank Approximations of Matrices

Fig. 10. Schematic view of the Generalized Low Rank Approximations of Matrices

Similar to Tensor-SVD, GLRAM methods, shown in Figure 10 do not require destruction of a
3D tensor. Instead of compressing along all three directions as Tensor-SVD, GLRAM methods
work with two pre-selected directions of a 3D data array.
Given a HRIR dataset H ∈ R

Na×Ne×Nt , we assume to compress H in the first two directions.
Then the task of GLRAM is to approximate slides (matrices) H(:, :, i), for i = 1, . . . , Nt, of H
along the third direction by a set of low rank matrices {XMiY

⊤} ⊂ R
Na×Ne , for i = 1, . . . , Nt,

where the matrices X ∈ R
Na×ra and Y ∈ R

Ne×re are of full rank, and the set of matrices {Mi} ⊂
R

ra×re with Na > ra and Ne > re. This can be formulated as the following optimization
problem

min
X,Y,{Mi}

Nt
i=1

Nt

∑
i=1

∥∥∥(H(:, :, i)− XMiY
⊤)

∥∥∥
F

,

s.t. X⊤X = Ira and Y⊤Y = Ire .

(21)

Here, by abuse of notations, ‖ · ‖F denotes the Frobenius norm of matrices. Let us construct
a 3D array M ∈ R

ra×re×Nt by assigning M(:, :, i) = Mi for i = 1, . . . , Nt. The minimization
problem as defined in (21) can be reformulated in a Tensor-SVD style, i.e.

min
X,Y,M

‖H − (X, Y, INt
) ·M‖F ,

s.t. X⊤X = Ira and Y⊤Y = Ire .
(22)

We refer to (Ye, 2005) for more details on GLRAM algorithms.
GLRAM methods work on two pre-selected directions out of three. There are then in total three different
combinations of directions to implement GLRAM on an HRIR dataset. Performance of GLRAM in
different directions might vary significantly. This issue will be investigated and discussed in section
3.5.

3.4 Diffuse Field Equalization (DFE)

A technique that provides good compression performance is diffuse field equalization. The
technique reduces the number of samples per HRIR, yet retains the original characteristics.
We define the matrix H containing the HRTFs as

H := [vec(H(:, :, 1)), . . . , vec(H(:, :, Nt))] ∈ R(Na ·Ne)×Nt , (23)
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where the operator vec(·) puts a matrix into a vector form. Let H = [h1, . . . , h(Na ·Ne)].
DFE removes the time delay at the beginning of each HRTF and then calculates the average
power spectrum from all HRTFs, which then is deconvolved from each HRTF, thus removing

direction-independent information. The average power h̃ is computed by

h̃ = F−1{
1

(Na · Ne)

(Na ·Ne)

∑
i=1

|F{hi}|
2}, (24)

where F{·} denotes the fourier transform. Then, h̃ is shifted circularily by half the kernel
length:

h̃1 = [h̃(
Nt

2
+ 1 . . . Nt) h̃(1 . . .

Nt

2
)]. (25)

The filter kernel h̃1 is inverted and minimum phase reconstruction is applied, yielding h̃−1
1 .

The diffused field equalized dataset is retrieved by

hDFE = [(h1 ∗ h̃−1
1 ), . . . , (h(Na ·Ne) ∗ h̃−1

1 )]. (26)

After retrieving the dataset hDFE the time delay samples at the beginning of each HRIR can
be removed. To achieve higher compression of the dataset, also samples at the end of each
HRTFs, which do not contain crucial direction dependent information, can be removed. For
further information on DFE see (Moeller, 1992).

3.5 Numerical Comparison

In this section, PCA, GLRAM, Tensor-SVD and Diffused Field Equalization are applied
to a HRTF-based sound localization problem, in order to evaluate performance of these
methods for data reduction. In each experiment, left and right ear KEMAR HRTF are
reduced with one of the introduced reduction methods. A test signal, which is white noise
is virtually synthesized using the corresponding original HRTF. The convolution based sound
localization algorithm as descirbed in Section 2.4, is fed with the restored databases and used
to localize the signals. Finally, the localization success rate is computed.
As already mentioned, GLRAM works on two preselected directions out of three. Therefore,
we conduct localization experiments for a subset of directions (35 randomly chosen locations)
to detect a combination of well working parameters for GLRAM. After finding a suitable
combination of the variables, localization experiments for all 1250 directions are conducted.
Firstly, the dataset is reduced for the first two directions, i.e. elevation and azimuth. The
contour plot given in Figure 11(a) shows the localization success rate for a fixed pair of
values (Nra , Nre ). Similar results with respect to the pairs (Nra , Nrt ) and (Nre , Nrt ) are ploted in
Figure 11(b) and Figure 11(c), respectively. Clearly, applying GLRAM on the pair of (Nre , Nrt )
outperforms the other two combinations.
The application of GLRAM in the directions of elevation and time performs best, therefore,
we compare this optimal GLRAM with the standard PCA and Tensor-SVD. As mentioned in
section 3.3, GLRAM is a simple form of Tensor-SVD with leaving one direction out. Thus, we
investigate the effect of additionally reducing the third direction, whereas the dimensions in
elevation and time are fixed to the parameters of the optimal GLRAM. Figure 13 shows that
additionally decreasing the dimension in azimuth leads to a huge loss of localization accuracy.
After determining the optimal parameters for GLRAM, the simulations are conducted for
all 1250 directions of the CIPIC dataset. Figure 12 shows the localization success rate in
dependency of the compression rate for GLRAM and PCA. It can be seen that an optimized
GLRAM outperforms the standard PCA in terms of compression.
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(a) GLRAM on (azimuth, elevation) (b) GLRAM on (azimuth, time)

(c) GLRAM on (elevation, time)

Fig. 11. Contour plots of localization success rate of using GLRAM in different settings.

Fig. 12. Comparison between DFE, PCA and GLRAM

4. Predictors for HRTF sound localization

To reduce the computational costs of HRTF-based sound localization, especially for moving
sound sources, it is advantageous to determine a region of interest (ROI) as illustrated in
Figure 15. A ROI constricts the 3D search space around the robotic platform leading to a
reduced set of eligible HRTFs.
Various tracking models have been implemented in microphone sound localization. Primarily
they predict the path of a sound source as it is traveling and thus acquiring faster and more
accurate non-ambiguous localization results (Belcher et al., 2003; Ward et al., 2003). Most of
these filters are updated periodically in scans. In this section, three predictors, namely Time
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Delay of Arrival, Kalman filter and Particle filter, are briefly introduced to determine a ROI to
reduce the set of eligible HRTFs to be processed to localize moving sound sources.

4.1 Time Delay of Arrival

The time delay between the two signals xi[n] and xj[n] is found when the cross-correlation
value Rij(τ) is maximal. Given that τ has been determined, the time delay is calculated by

∆T =
τ

fs
, (27)

where fs is the sampling rate. Knowing the geometry (distance between the robot’s ears) of the
microphones and the delays between microphone pairs, a number of locations for the sound
source can be disregarded (Brandstein & Ward, 2001; Kwok et al., 2005; Potamitis et al., 2004;
Valin et al., 2003). Then, an HRTF-based localization algorithm only evaluates the remaining
possible locations of the source.

4.2 Kalman Filter

The Kalman filter is a frequently used predictor (usage for microphone array localization
described in (Belcher et al., 2003)). The discrete version exhibits two main states: time update
(prediction) and measurement update (correction). The Kalman filter predicts the state of xk

at time k given the linear stochastic difference equation

xk = Axk−1 + Buk−1 + wk−1 (28)

and measurement
zk = Hxk + vk. (29)

Matrices A, B and H provide relation from discrete time k− 1 to k for their respective variables
x (the state) and u (optional control input). w and v add noise to the model. A set of time and
measurement update equations are used to predict the next state (Kalman, 1960). The state
vector is defined by current location coordinates x and y and the velocity components vx and
vy (Potamitis et al., 2004; Usman et al., 2008). Note that here the predictor is applied to two
dimensional space.

x = [x, vx, y, vy]
T (30)

An unreliable location estimate during initialization of the the Kalman filter may be a source
of error. To improve upon this, particle filters have been implemented in (Chen & Rui, 2004).

Fig. 13. Localization success rate by Tensor-SVD
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Fig. 14. Schematic view of the application of predictors in HRTF-based localization.

4.3 Particle Filter

The particle filter bases itself on the idea of randomly generating samples from a distribution
and assigning weights to each to define their reliability. The particles and their associated
weights define an averaged center which is the predicted value for the next step. Each weight
wi

k is associated to a particle xi in iteration k. A set of N particles is initially drawn from

a distribution q(xi|x
i
k−1, zk) with zk being the current observed value. For each particle the

weight is calculated by

wi
k = wi

k−1

p(zk|x
i
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
0:k−1, z1:k)

. (31)

Once all weights are calculated, their sum is normalized. To determine the predicted value,
the weighted average of the particles is taken:

x̄ =
1

N

N

∑
i=1

wi
k · xi (32)

Over time it may occur that very few particles possess most of the weight. This case requires
resampling to protect from particle degeneration. The variance of the weights is used as a
measure to check for this case and if required, the set of weights is exchanged with a better
approximation (Gordon et al., 1993).
Many particle filter variations exist, such as the Monte Carlo approximations and Sampling
Importance Resampling. However a particle filter may find only a local optimum and thus
never reaching the global optimum. Evolutionary estimation is proposed in (Kwok et al.,
2005) to overcome such problems. Initially a set of potential speaker locations are estimated
and then a heuristic search is performed. The speaker locations are called chromosomes and
can only move within a defined region. After the initialization, the Time Delay of Arrival
(TDOA) is evaluated for each potential location as well as each microphone. The difference vi

between expected and actual TDOAs is used to define a fitness function for each chromosome
i together with error variance σ2

τ :

ωi = e
−0.5

v2
i

σ2
τ (33)

ωi is then scaled such that ∑
n
i=1 ωi = 1 → ω̃i The new estimate of source location is given by

sx =
n

∑
i=1

ω̃isxi. (34)
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(a) Time Delay of Arrival

(b) Particle Filter

(c) Kalman Filter

Fig. 15. Comparison of predictors for HRTF Sound Localization.
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Chromosomes are then selected according to a linearly spaced pointer spanning the fitness
magnitude scale, with higher fitness chromosomes being selected more often. The latter
chromosomes receive less mutation as compared to weaker chromosomes depending on rg,
the zero mean Gaussian random number variance, and dm, the distance for mutation (Kwok
et al., 2005).

sxi+1 = sxi + rgdm (35)

4.4 Numerical comparison

This section gives a performance overview of the applied predictors in a HRTF-based sound
localization scenario. We simulate moving sound by virtually synthesizing a sound source,
which is white noise, using different pairs of HRTFs. This way, a random path of 500 different
source positions is generated, simulating a moving sound source. Then, Time Delay of Arrival,
the Kalman filter and the Particle filter seek to reduce the search region for the HRTF-based
sound localization to a region of interest. The Convolution Based Algorithm is utilized to
localize the moving sound source. The experiments were conducted three times with different
speed of the sound source.
Figure 15 summarizes the results of applying predictors to HRTF-based sound localization.
The left plots show the localization success rates in dependency of the size of the region of
interest. In the right plots the number of directions that have to be evaluated within the
localization algorithms are shown. The bigger the region of interest, the more HRTF-pairs
have to be utilized to maximize the cross correlation (11) resulting in a higher processing time.
On the other hand, the smaller the region of interest, the higher the danger of excluding the
HRTF pair that is maximizing the cross correlation (11), leading to false localization results.
Our simulation results show that the number of HRTFs to be evaluated for the Convolution
Based Algorithm can be significantly reduced to speed up HRTF-based localization for
moving sources. Time Delay of Arrival is reducing the search region to 500 directions while
reaching hundred percent correct localization of the path, meaning all 500 source positions are
detected correctly for the different speeds of the sources. Particle- and Kalman filter are able
to reduce the search region to 130 directions in case of sound sources with a speed of 20deg/s.
For slower sources, only 60 directions need to be taken into account.
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