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1. Introduction

Many systems using microphone arrays have been tried in order to localize sound sources.
Conventional techniques, such as MUSIC, CSP, and so on (e.g., (Johnson & Dudgeon, 1996;
Omologo & Svaizer, 1996; Asano et al., 2000; Denda et al., 2006)), use simultaneous phase
information from microphone arrays to estimate the direction of the arriving signal. There
have also been studies on binaural source localization based on interaural differences,
such as interaural level difference and interaural time difference (e.g., (Keyrouz et al., 2006;
Takimoto et al., 2006)). However, microphone-array-based systems may not be suitable in
some cases because of their size and cost. Therefore, single-channel techniques are of interest,
especially in small-device-based scenarios.
The problem of single-microphone source separation is one of the most challenging
scenarios in the field of signal processing, and some techniques have been described (e.g.,
(Kristiansson et al., 2004; Raj et al., 2006; Jang et al., 2003; Nakatani & Juang, 2006)). In our
previous work (Takiguchi et al., 2001; Takiguchi & Nishimura, 2004), we proposed HMM
(Hidden Markov Model) separation for reverberant speech recognition, where the observed
(reverberant) speech is separated into the acoustic transfer function and the clean speech
HMM. Using HMM separation, it is possible to estimate the acoustic transfer function using
some adaptation data (only several words) uttered from a given position. For this reason,
measurement of impulse responses is not required. Because the characteristics of the acoustic
transfer function depend on each position, the obtained acoustic transfer function can be used
to localize the talker.
In this paper, we will discuss a new talker localization method using only a single microphone.
In our previous work (Takiguchi et al., 2001) for reverberant speech recognition, HMM
separation required texts of a user’s utterances in order to estimate the acoustic transfer
function. However, it is difficult to obtain texts of utterances for talker-localization estimation
tasks. In this paper, the acoustic transfer function is estimated from observed (reverberant)
speech using a clean speech model without having to rely on user utterance texts, where a
GMM (Gaussian Mixture Model) is used to model clean speech features. This estimation is
performed in the cepstral domain employing an approach based upon maximum likelihood.
This is possible because the cepstral parameters are an effective representation for retaining
useful clean speech information. The results of our talker-localization experiments show the
effectiveness of our method.

 

Single-Channel Sound Source Localization 
Based on Discrimination of Acoustic 

Transfer Functions 

3

www.intechopen.com



Estimation of the frame sequence data

of the acoustic transfer function using

the clean speech model

(Each training position)

Single mic.

Observed speech

from each position

‚‚‚
C30?s

GMMs for each position
C60?s

s

Training of the acoustic transfer

function GMM for each position using

)(s

n
H

)(ˆ s
H

Clean speech GMM

(Trained using the

clean speech database)

)(s
O

S
n

argmax * +
),|Pr(

S
HO ns* + ?s

Ĥ
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Fig. 1. Training process for the acoustic transfer function GMM

2. Estimation of the acoustic transfer function

2.1 System overview

Figure 1 shows the training process for the acoustic transfer function GMM. First, we record

the reverberant speech data O(θ) from each position θ in order to build the GMM of the
acoustic transfer function for θ. Next, the frame sequence of the acoustic transfer function

Ĥ(θ) is estimated from the reverberant speech O(θ) (any utterance) using the clean-speech
acoustic model, where a GMM is used to model the clean speech feature:

Ĥ(θ) = argmax
H

Pr(O(θ)|H, λS). (1)

Here, λS denotes the set of GMM parameters for clean speech, while the suffix S represents
the clean speech in the cepstral domain. The clean speech GMM enables us to estimate the
acoustic transfer function from the observed speech without needing to have user utterance
texts (i.e., text-independent acoustic transfer estimation). Using the estimated frame sequence

data of the acoustic transfer function Ĥ(θ), the acoustic transfer function GMM for each

position λ
(θ)
H is trained.

Figure 2 shows the talker localization process. For test data, the talker position θ̂ is estimated
based on discrimination of the acoustic transfer function, where the GMMs of the acoustic
transfer function are used. First, the frame sequence of the acoustic transfer function
Ĥ is estimated from the test data (any utterance) using the clean-speech acoustic model.
Then, from among the GMMs corresponding to each position, we find a GMM having the
maximum-likelihood in regard to Ĥ:

θ̂ = argmax
θ

Pr(Ĥ|λ
(θ)
H ), (2)

where λ
(θ)
H denotes the estimated acoustic transfer function GMM for direction θ (location).
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2.2 Cepstrum representation of reverberant speech

The observed signal (reverberant speech), o(t), in a room environment is generally considered
as the convolution of clean speech and the acoustic transfer function:

o(t) =
L−1

∑
l=0

s(t − l)h(l) (3)

where s(t) is a clean speech signal and h(l) is an acoustic transfer function (room impulse
response) from the sound source to the microphone. The length of the acoustic transfer
function is L. The spectral analysis of the acoustic modeling is generally carried out using
short-term windowing. If the length L is shorter than that of the window, the observed
complex spectrum is generally represented by

O(ω; n) = S(ω; n) · H(ω; n). (4)

However, since the length of the acoustic transfer function is greater than that of the window,
the observed spectrum is approximately represented by O(ω; n) ≈ S(ω; n) · H(ω; n). Here
O(ω; n), S(ω; n), and H(ω; n) are the short-term linear complex spectra in analysis window
n. Applying the logarithm transform to the power spectrum, we get

log |O(ω; n)|2 ≈ log |S(ω; n)|2 + log |H(ω; n)|2. (5)

In speech recognition, cepstral parameters are an effective representation when it comes to
retaining useful speech information. Therefore, we use the cepstrum for acoustic modeling
that is necessary to estimate the acoustic transfer function. The cepstrum of the observed
signal is given by the inverse Fourier transform of the log spectrum:

Ocep(t; n) ≈ Scep(t; n) + Hcep(t; n) (6)

where Ocep, Scep, and Hcep are cepstra for the observed signal, clean speech signal, and acoustic
transfer function, respectively. In this paper, we introduce a GMM (Gaussian Mixture Model)
of the acoustic transfer function to deal with the influence of a room impulse response.
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Fig. 3. Difference between acoustic transfer functions obtained by subtraction of
short-term-analysis-based speech features in the cepstrum domain

2.3 Difference of acoustic transfer functions

Figure 3 shows the mean values of the cepstrum, H′
cep, that were computed for each word

using the following equations:

Hcep(t; n) ≈ Ocep(t; n)− Scep(t; n) (7)

H′
cep(t) =

1

N

N

∑
n

Hcep(t; n) (8)

where t is the cepstral index. Reverberant speech, O, was created using linear convolution
of clean speech and impulse response. The impulse responses were taken from the RWCP
sound scene database (Nakamura, 2001), where the loudspeaker was located at 30 and 90
degrees from the microphone. The lengths of the impulse responses are 300 msec and 0
msec. The reverberant speech and clean speech were processed using a 32-msec Hamming
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window, and then for each frame, n, a set of 16 MFCCs was computed. The 10th and 11th
cepstral coefficients for 216 words are plotted in Figure 3. As shown in this figure (300
msec) a difference between the two acoustic transfer functions (30 and 90 degrees) appears
in the cepstral domain. The difference shown will be useful for sound source localization
estimation. On the other hand, in the case of the 0 msec impulse response, the influence of
the microphone and the loudspeaker characteristics are a significant problem. Therefore, it is
difficult to discriminate between each position for the 0 msec impulse response.
Also, this figure shows that the variability of the acoustic transfer function in the cepstral
domain appears to be large for the reverberant speech. When the length of the impulse
response is shorter than the analysis window used for the spectral analysis of speech,
the acoustic transfer function obtained by subtraction of short-term-analysis-based speech
features in the cepstrum domain comes to be constant over the whole utterance. However,
as the length of the impulse response for the room reverberation becomes longer than the
analysis window, the variability of the acoustic transfer function obtained by the short-term
analysis will become large, with acoustic transfer function being approximately represented
by Equation (7). To compensate for this variability, a GMM is employed to model the acoustic
transfer function.

3. Maximum-likelihood-based parameter estimation

This section presents a new method for estimating the GMM (Gaussian Mixture Model) of the
acoustic transfer function. The estimation is implemented by maximizing the likelihood of
the training data from a user’s position. In (Sankar & Lee, 1996), a maximum-likelihood (ML)
estimation method to decrease the acoustic mismatch for a telephone channel was described,
and in (Kristiansson et al., 2001) channel distortion and noise are simultaneously estimated
using an expectation maximization (EM) method. In this paper, we introduce the utilization
of the GMM of the acoustic transfer function based on the ML estimation approach to deal
with a room impulse response.
The frame sequence of the acoustic transfer function in (6) is estimated in an ML manner by
using the expectation maximization (EM) algorithm, which maximizes the likelihood of the
observed speech:

Ĥ = argmax
H

Pr(O|H, λS). (9)

Here, λS denotes the set of clean speech GMM parameters, while the suffix S represents the
clean speech in the cepstral domain. The EM algorithm is a two-step iterative procedure. In
the first step, called the expectation step, the following auxiliary function is computed.

Q(Ĥ|H)

= E[log Pr(O, c|Ĥ, λS)|H, λS]

= ∑
c

Pr(O, c|H, λS)

Pr(O|H, λS)
· log Pr(O, c|Ĥ, λS) (10)

Here c represents the unobserved mixture component labels corresponding to the observation
sequence O.
The joint probability of observing sequences O and c can be calculated as

Pr(O, c|Ĥ, λS) = ∏
n(v)

wc
n(v)

Pr(On(v) |Ĥ, λS) (11)
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where w is the mixture weight and On(v) is the cepstrum at the n-th frame for the v-th training
data (observation data). Since we consider the acoustic transfer function as additive noise in
the cepstral domain, the mean to mixture k in the model λO is derived by adding the acoustic
transfer function. Therefore, (11) can be written as

Pr(O, c|Ĥ, λS)

= ∏
n(v)

wc
n(v)

· N(On(v) ; µ
(S)
k

n(v)
+ Ĥn(v) , Σ

(S)
k

n(v)
) (12)

where N(O; µ, Σ) denotes the multivariate Gaussian distribution. It is straightforward to
derive that (Juang, 1985)

Q(Ĥ|H)

= ∑
k

∑
n(v)

Pr(On(v) , cn(v) = k|λS) log wk

+∑
k

∑
n(v)

Pr(On(v) , cn(v) = k|λS)

· log N(On(v) ; µ
(S)
k + Ĥn(v) , Σ

(S)
k ) (13)

Here µ
(S)
k and Σ

(S)
k are the k-th mean vector and the (diagonal) covariance matrix in the clean

speech GMM, respectively. It is possible to train those parameters by using a clean speech
database.
Next, we focus only on the term involving H.

Q(Ĥ|H)

= ∑
k

∑
n(v)

Pr(On(v) , cn(v) = k|λS)

· log N(On(v) ; µ
(S)
k + Ĥn(v) , Σ

(S)
k )

= −∑
k

∑
n(v)

γk,n(v)

D

∑
d=1

{

1

2
log(2π)Dσ

(S)2

k,d

+
(On(v) ,d − µ

(S)
k,d − Ĥn(v) ,d)

2

2σ
(S)2

k,d

⎫

⎬



(14)

γk,n(v) = Pr(On(v) , k|λS) (15)

Here D is the dimension of the observation vector On, and µ
(S)
k,d and σ

(S)2

k,d are the d-th mean

value and the d-th diagonal variance value of the k-th component in the clean speech GMM,
respectively.
The maximization step (M-step) in the EM algorithm becomes “max Q(Ĥ|H)”. The
re-estimation formula can, therefore, be derived, knowing that ∂Q(Ĥ|H)/∂Ĥ = 0 as

Ĥn(v) ,d =

∑
k

γk,n(v)

On(v) ,d − µ
(S)
k,d

σ
(S)2

k,d

∑
k

γk,n(v)

σ
(S)2

k,d

(16)
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After calculating the frame sequence data of the acoustic transfer function for all training data
(several words), the GMM for the acoustic transfer function is created. The m-th mean vector

and covariance matrix in the acoustic transfer function GMM (λ
(θ)
H ) for the direction (location)

θ can be represented using the term Ĥn as follows:

µ
(H)
m = ∑

v
∑
n(v)

γm,n(v) Ĥn(v)

γm
(17)

Σ
(H)
m

= ∑
v

∑
n(v)

γm,n(v) (Ĥn(v) − µ
(H)
m )T(Ĥn(v) − µ

(H)
m )

γm
(18)

Here n(v) denotes the frame number for v-th training data.
Finally, using the estimated GMM of the acoustic transfer function, the estimation of talker
localization is handled in an ML framework:

θ̂ = argmax
θ

Pr(Ĥ|λ
(θ)
H ), (19)

where λ
(θ)
H denotes the estimated GMM for θ direction (location), and a GMM having

the maximum-likelihood is found for each test data from among the estimated GMMs
corresponding to each position.

4. Experiments

4.1 Simulation experimental conditions

The new talker localization method was evaluated in both a simulated reverberant
environment and a real environment. In the simulated environment, the reverberant
speech was simulated by a linear convolution of clean speech and impulse response. The
impulse response was taken from the RWCP database in real acoustical environments
(Nakamura, 2001). The reverberation time was 300 msec, and the distance to the microphone
was about 2 meters. The size of the recording room was about 6.7 m×4.2 m (width×depth).
Figure 4 and Fig. 5 show the experimental room environment and the impulse response (90
degrees), respectively.
The speech signal was sampled at 12 kHz and windowed with a 32-msec Hamming window
every 8 msec. The experiment utilized the speech data of four males in the ATR Japanese
speech database. The clean speech GMM (speaker-dependent model) was trained using 2,620
words and has 64 Gaussian mixture components. The test data for one location consisted of
1,000 words, and 16-order MFCCs (Mel-Frequency Cepstral Coefficients) were used as feature
vectors. The total number of test data for one location was 1,000 (words) × 4 (males). The
number of training data for the acoustic transfer function GMM was 10 words and 50 words.
The speech data for training the clean speech model, training the acoustic transfer function
and testing were spoken by the same speakers but had different text utterances respectively.
The speaker’s position for training and testing consisted of three positions (30, 90, and 130
degrees), five positions (10, 50, 90, 130, and 170 degrees), seven positions (30, 50, 70, ..., 130
and 150 degrees) and nine positions (10, 30, 50, 70, ..., 150, and 170 degrees). Then, for each
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set of test data, we found a GMM having the maximum-likelihood from among those GMMs
corresponding to each position. These experiments were carried out for each speaker, and the
localization accuracy was averaged by four talkers.

4.2 Performance in a simulated reverberant environment

Figure 6 shows the localization accuracy in the three-position estimation task, where 50 words
are used for the estimation of the acoustic transfer function. As can be seen from this figure,
by increasing the number of Gaussian mixture components for the acoustic transfer function,
the localization accuracy is improved. We can expect that the GMM for the acoustic transfer
function is effective for carrying out localization estimation.
Figure 7 shows the results for a different number of training data, where the number of
Gaussian mixture components for the acoustic transfer function is 16. The performance of
the training using ten words may be a bit poor due to the lack of data for estimating the
acoustic transfer function. Increasing the amount of training data (50 words) improves in the
performance.
In the proposed method, the frame sequence of the acoustic transfer function is separated
from the observed speech using (16), and the GMM of the acoustic transfer function is trained
by (17) and (18) using the separated sequence data. On the other hand, a simple way to carry

46 Advances in Sound Localization

www.intechopen.com



:205

:403
:40; :504

:603

9:

9;

:2

:3

:4

:5

:6

:7

3"okz 4"okz 6"okz :"okz 38"okz
Pwodgt"qh"okzvwtgu

N
qe
cn
k¦
cv
kq
p"
ce
ew

tc
e{
"]'

_

Fig. 6. Effect of increasing the number of mixtures in modeling acoustic transfer function
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out voice (talker) localization may be to use the GMM of the observed speech without the
separation of the acoustic transfer function. The GMM of the observed speech can be derived
in a similar way as in (17) and (18).

µ
(O)
m = ∑

v
∑
n(v)

γm,n(v)On(v)

γm
(20)

Σ
(O)
m = ∑

v
∑
n(v)

γm,n(v) (On(v) − µ
(O)
m )T(On(v) − µ

(O)
m )

γm
(21)

The GMM of the observed speech includes not only the acoustic transfer function but also
clean speech, which is meaningless information for sound source localization. Figure 8 shows
the comparison of four methods. The first method is our proposed method and the second
is the method using GMM of the observed speech without the separation of the acoustic
transfer function. The third is a simpler method that uses the cepstral mean of the observed
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Fig. 8. Performance comparison of the proposed method using GMM of the acoustic transfer
function, a method using GMM of observed speech, that using the cepstral mean of observed
speech, and CSP algorithm based on two microphones

speech instead of GMM. (Then, the position that has the minimum distance from the learned
cepstral mean to that of the test data is selected as the talker’s position.) And the fourth is
a CSP (Cross-power Spectrum Phase) algorithm based on two microphones, where the CSP
uses simultaneous phase information from microphone arrays to estimate the location of the
arriving signal (Omologo & Svaizer, 1996). As shown in this figure, the use of the GMM of
the observed speech had a higher accuracy than that of the mean of the observed speech.
And, the use of the GMM of the acoustic transfer function results in a higher accuracy than
that of GMM of the observed speech. The proposed method separates the acoustic transfer
function from the short observed speech signal, so the GMM of the acoustic transfer function
will not be affected greatly by the characteristics of the clean speech (phoneme). As it did with
each test word, it is able to achieve good performance regardless of the content of the speech
utterance. But the localization accuracy of the methods using just one microphone decreases
as the number of training positions increases. On the other hand, the CSP algorithm based
on two microphones has high accuracy even in the 9-position task. As the proposed method
(single microphone only) uses the acoustic transfer function estimated from a user’s utterance,
the accuracy is low.

4.3 Performance in simulated noisy reverberant environments and using a

Speaker-independent speech model

Figure 9 shows the localization accuracy for noisy environments. The observed speech data
was simulated by adding pink noise to clean speech convoluted using the impulse response
so that the signal to noise ratio (SNR) were 25 dB, 15 dB and 5 dB. As shown in Figure 9, the
localization accuracy at the SNR of 25 dB decreases about 30 % in comparison to that in a
noiseless environment. The localization accuracy decreases further as the SNR decreases.
Figure 10 shows the comparison of the performance between a speaker-dependent speech
model and a speaker-independent speech model. For training a speaker-independent clean
speech model and a speaker-independent acoustic transfer function model, the speech data
spoken by four males in the ASJ Japanese speech database were used. Then, the clean speech
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GMM was trained using 160 sentences (40 sentences × 4 males) and it has 256 Gaussian
mixture components. The acoustic transfer function for training locations was estimated by
this clean speech model from 10 sentences for each male. The total number of training data for
the acoustic transfer function GMM was 40 (10 sentences × 4 males) sentences. For training
the speaker-dependent model and testing, the speech data spoken by four males in the ATR
Japanese speech database were used in the same way as described in section 4.1. The speech
data for the test were provided by the same speakers used to train the speaker-dependent
model, but different speakers were used to train the speaker-independent model. Both
the speaker-dependent GMM and the speaker-independent GMM for the acoustic transfer
function have 16 Gaussian mixture components. As shown in Figure 10, the localization
accuracy of the speaker-independent speech model decreases about 20 % in comparison to
the speaker-dependent speech model.

4.4 Performance using Speaker-dependent speech model in a real environment

The proposed method, which uses a speaker-dependent speech model, was also evaluated in a
real environment. The distance to the microphone was 1.5 m and the height of the microphone
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was about 0.45 m. The size of the recording room was about 5.5 m × 3.6 m × 2.7 m (width ×
depth × height). Figure 11 depicts the room environment of the experiment. The experiment
used speech data, spoken by two males, in the ASJ Japanese speech database. The clean
speech GMM (speaker-dependent model) was trained using 40 sentences and has 64 Gaussian
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mixture components. The test data for one location consisted of 200, 100 and 66 segments,
where one segment has a length of 1, 2 and 3 sec, respectively. The number of training data
for the acoustic transfer function was 10 sentences. The speech data for training the clean
speech model, training the acoustic transfer function, and testing were spoken by the same
speakers, but they had different text utterances respectively. The experiments were carried
out for each speaker and the localization accuracy of the two speakers was averaged.
Figure 12 shows the comparison of the performance using different test segment lengths.
There were three speaker positions for training and testing (45, 90 and 135 degrees) and one
loudspeaker (BOSE Mediamate II) was used for each position. As shown in this figure, the
longer the length of the segment was, the more the localization accuracy increased, since
the mean of estimated acoustic transfer function became stable. Figure 13 shows the effect
when the orientation of the speaker changed from that of the speaker for training. There were
five speaker positions for training (45, 65, 90, 115 and 135 degrees). There were two speaker
positions for the test (45 and 90 degrees), and the orientation of the speaker changed to 0, 45
and 90 degrees, as shown in Figure 14. As shown in Figure 13, as the orientation of speaker
changed, the localization accuracy decreased. Figure 15 shows the plot of acoustic transfer
function estimated for each position and orientation of speaker. The plot of the training data
is the mean value of all training data, and that for the test data is the mean value of test data
per 40 seconds. As shown in Figure 15, as the orientation of the speaker changed from that
for training, the estimated acoustic transfer functions were distributed over the distance away
from the position of training data. As a result, these estimated acoustic transfer functions were
not correctly recognized.

5. Conclusion

This paper has described a voice (talker) localization method using a single microphone.
The sequence of the acoustic transfer function is estimated by maximizing the likelihood of
training data uttered from a position, where the cepstral parameters are used to effectively
represent useful clean speech information. The GMM of the acoustic transfer function
based on the ML estimation approach is introduced to deal with a room impulse response.
The experiment results in a room environment confirmed its effectiveness for location
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Fig. 15. Mean acoustic transfer function values for five positions (top graph) and mean
acoustic transfer function values for three speaker orientations (0 deg, 45 deg, and 90 deg) at
a position of 45 deg and 90 deg (bottom graph)

estimation tasks. But the proposed method requires the measurement of speech for each
room environment in advance, and the localization accuracy decreases as the number of
training positions increases. In addition, not only the position of speaker but also various
factors (e.g., orientation of the speaker) affect the acoustic transfer function. Future work will
include efforts to improve both localization estimation from more locations and estimation
when the conditions other than speaker position change. We also hope to improve the
localization accuracy in noisy environments and for speaker-independent speech models.
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Also, we will investigate a text-independent technique based on HMM in the modeling of
the speech content.
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