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1. Introduction 

Many published papers [17, 44] on the map building of Autonomous Mobile Robots (AMRs) 
do not consider the question of autonomous exploration at all. This is, of course, often just a 
choice of research focus; effort is expended on the mechanics of map construction from sensor 
data without worrying about how the sensing positions were selected. Or the map is provided 
by the operator [7, 11] for any other applications. In our view, the autonomous exploration 
skill is an extremely important capability for a truly AMR. For example: as it is desired to build 
a map of unknown environments without human intervention, AMRs should be equipped 
with a skill of autonomous exploration which includes the competence of path finding, 
obstacle avoidance and monitor progress towards reaching a goal location or target. 
Several possible strategies for exploration of unknown environment are described in the 
robotics literature. The following categorization is taken from Lee [24]: 

1. Human Control – mobile motion is controlled by human operator. 
2. Reactive Control – the mobile robot movement is relied on the perception system. 
3. Approaching the unknown – the mobile robot move into the region that it knows 

least in the environment.  
4. Optimal search strategies – the approach is focused on to search the shortest path 

for seeking the goal. 
In the first category, the robot is guided around the environment by a human operator. This 
requires human intervention in the map building process. Therefore, it is not suitable for an 
autonomous exploration mobile robot. 
For reactive exploration approach (2nd category), the sensory data (perception space) is used to 
calculate or determine the control actions (action space). The sensory data may be the distance 
information from infrared, sonar or laser range finder type sensors, visual information or 
processed information obtained after appropriate fusion of multiple sensor outputs. The 
control actions are usually a change in steering angle and setting a translation velocity of the 
robot that will avoid collisions with the obstacles on its way and reach the desired target. Pre-
designed or adaptive systems based on fuzzy logic [15, 26, 28, 31, 40-41, 45-46, 48-49], neural-
networks [9, 33-35, 38, 51] or combination of them [27] are designed by this reactive navigation 

Source: Mobile Robots: Perception & Navigation, Book edited by: Sascha Kolski, ISBN 3-86611-283-1, pp. 704, February 2007, Plv/ARS, Germany
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approach. Since a totally reactive behavior uses only locally available environment 
information, without any memory of the previously encountered situations, the autonomous 
robots are found to suffer from local minima situations. For that reason, a reactive approach 
cannot be applied to autonomous exploration robot independently. 
In the strategy of approaching the unknown (3rd category), a mobile robot tries to move 
towards the regions of its environment about which it knows least. A mobile robot uses the 
perception sensor information to search the new territory and move towards that area. This 
process is repeated until the whole environment has been covered. Global grid model is used 
in some of map building system to represent the environment. Thrun [44] developed a system 
trained by an artificial neural network to translate neighboring groups of sonar readings onto 
occupancy values in the grid and then control the mobile robot to explore directed towards to 
an areas of high uncertainty in global grid map. However, this system required offline training 
by the robot simulator though neural network and the algorithm depended on the assumption 
that environment was rectilinear. In terms of topological maps approach for exploration, 
Edlinger and Weiss [12] developed a robot equipped with laser range finder to detect obstacle-
free segments from the scans and it created topological relations between those scans. A 
similar approach proposed by Yamauchi [50] required an accurate laser range finder sensing 
to detect the open space. Recently, Duckett [10] proposed an exploration system to build a 
topological map which is augmented with metric information concerning the distance and 
angles between connected places. A trained neural network was used to detect an open space 
in the environment via sonar sensors and infrared sensor. The open space areas were added to 
a stack of unexplored locations which were visited in turn until the whole environment had 
been covered by the robot. This system was tested successfully in a middle-scale indoor 
environment with Nomad 200 mobile robot [36]. However, this approach relies on a set of 
sonar sensors and infrared sensors mounted on the rotating robot’s turret (which can be 
rotated independently relative to the base of the robot). It needs to stop the robot on every 1m 
place in environment to scan and search the possible areas of uncharted territory in all 
directions. This means that the system would work with Nomad 200 mobile robot only and 
not suitable for the mobile robot which without rotating turret. 
For the fourth category (Optimal search strategies), many researchers have provided 
mathematical analyses of strategies which are minimized the length of the path traveled by the 
robot during exploration. It is similar to the well-known traveling salesman problem [14]. 
In the last two decades, many researchers proposed robust and successful reactive 
navigation controller, such as behavior-based method [32, 40, 45, 49] and model-based 
method [2, 21-22, 30]. However, while reactive navigation approaches are often very robust, 
they cannot be guarantee to navigate all areas in an unknown environment. Therefore, the 
approaches based on reactive control (2nd category) and approaching the unknown (3rd

category) would seem the most promising for autonomous exploration via mobile robot. 
Therefore, a novel mixing approach combined the reactive approach with approaching the 
unknown strategy will be presented in this paper. 
Our approach is closest in spirit to that of Edlinger and Weiss [12] and Duckett [10], though 
it does not require an accurate laser range finder for perception system, a rotating robot’s 
turret and a set of training for setting the open space detection neural network system. A 
simple and real-time system is designed for detecting an open free space via a Bayesian 
update theory [1] instead of pre-trained system or accurate sensing system. Reactive 
navigation scheme is applied to start the exploration by using a predefined Hierarchical 
Fused Fuzzy System (HFFS) [4, 20, 23]. Those proposed algorithm would generate a metric 
topological map model after the exploration. 
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In studying the problem of feature based SLAM, a number of specific problems should be 
considered. These include feature extraction, data association, map management and 
computation complexity. 
In recent times, a number of research groups have attempted to implement real-time SLAM 
approach successfully with SICK laser scanner [3, 8, 16, 29] in indoor environments. The 
main advantage of the SICK laser scanner is that the sensor measurements from one robot 
position can be directly correlated to measurements taken from a nearby position. In 
contrast, the sonar sensor measurements are usually too noisy, ambiguous and spurious and 
hence it is difficult to apply the above technique to work properly. Also, it is a common 
belief that mobile robot navigation and mapping in indoor environments is far more 
difficult with sonar than with laser measurements. An alternative methodology [5, 6] to 
overcome limitations of the sonar sensor is to develop advanced custom-made sonar arrays 
that allow extracting and initializing geometric features from a single robot position. Most 
recently, some researchers [25, 43] have addressed this issue with a ring of sonar sensors 
successfully. Tardos et al. (2002) [43] proposed a new technique for perceptual feature 
extraction technique by using Hough Transform and map joining technique with two 
statistically independent and uncorrelated maps. On the other hand, Leonard et al. (2002) 
[25] proposed a feature initialization technique from multiple uncertain vantage points and 
focused on its state estimation aspects. Both these two algorithms were successfully applied 
to solve the SLAM problem with 24 sonar sensors in a circular array. The SLAM problem for 
non-circular or restricted sonar sensor array has not been addressed. This particular 
problem is addressed by the authors’ pervious work [19].  
The rest of this chapter is organized as follows: Section 2 states an overall framework of the 
proposed SLAM algorithm is described. Section 3 presents the complete implementation of 
the proposed autonomous exploration and mapping system. The performance of the 
proposed algorithm will be tested via robot simulator and physical mobile robot Pioneer 
2DX in Section 4. Finally, the chapter will be concluded in Section 5. 

2. Overall framework of the proposed SLAM with feature tracking algorithm 

The authors’ pervious proposed SLAM algorithm [19] which incorporate with conventional 
SLAM (which is introduced in appendix), enhanced adaptive fuzzy clustering EAFC feature 
extraction scheme [17], overlapping comparison technique and feature tracking scheme. The 
overall framework of this novel SLAM algorithm with feature tracking scheme is shown in 
the Figure 1. A step-by-step procedure for updating the estimated robot pose and map 
feature are presented as follows: 

1. Obtain the control action and sensor measurements from the odometric sensor and 
sonar sensor respectively.  

2. Store the sensor measurements in Overlapping sliding window sonar buffer.  
3. Use the control action (odometric measurement) and present estimated robot pose 

to perform a SLAM prediction process (it is calculated by equation (A.3) to (A.5)).  
4. Check the buffer is full (go to step 5). If the buffer is not empty (go to step 7). 
5. To extract the two overlapping segments in the different group of buffer and 

calculate the comparison values.  
6. To perform a “Feature Initialization” process (the map state matrix )|( kkX

m
 and 

covariance matrix )|( kkP  are updated by equation (A.11) and (A.12), respectively) 

if the related overlapping segments comparison values are satisfied.  
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7. To perform a “Data Association” process to calculate sensor measurement 
prediction value. If the sensors can match with the existing feature in the map, go 
to step 10. Otherwise, go to next step. 

8. Feature Tracking Scheme: Extend the current tracking feature in the map and 
repeat the “Data Association” again if the related comparison values are satisfied.  

9. If the related sensor is matched, store the extended feature in the map. If not 
match, just forgo it.  

10. Use the prediction value obtained in step 3 to perform the SLAM updating process 
(it is calculated by equation (A.6) to (A.10)). 

11. The estimated robot pose and map are updated and their covariance as well. Go 
back to step 1. 

3. Autonomous exploration strategy 

In the proposed exploration system, two core components are required: a reactive 
navigation scheme by using hierarchical fused fuzzy system (section 3.1) and a navigation 
point generation system (section 3.2). When the mobile robot starts to navigate the 
environment, a point-mark will be placed on the acquired map sequentially. The map can be 
learned by either one of standard segment-based map building technique [13, 17, 43]. 

Fig. 1. The overall framework of the proposed SLAM.



Effective Method for Autonomous Simultaneous Localization and Map Building in 
Unknown Indoor Environments 501

The moving actions are relied on the reactive navigation system to control the mobile robot 
to navigate in the environment by wall following and collision avoiding technique until the 
mobile robot travels back to the traveled point-mark. On every point-mark, the open space 
evaluation system examines the eight given directions (45° apart each direction) for 
detecting possible areas of uncharted. An open space probability value is assigned and 
stored in each given direction at each traveled point-mark. In addition, the acquired map 
will be used to update if the open space is free or not. If the open space in a given direction 
at a traveled point-mark is occupied by a segment (map model), then this direction will be 
stated as not open space, otherwise it is registered as open space (the corresponding 
variables are described in section 2.2). When the mobile robot travels back to the traveled 
point-mark, subsequent movements by the mobile robot is required to validate whether the 
open space in a given direction at each point-mark actually free or not. Therefore, “A*” 
heuristic search algorithm [36] is used for planning routines in all traveled point-marks. 
This process guarantees finding the shortest path to the target location (which is the 
traveled point-mark still contain an open space in those given direction) from all the other 
traveled point-marks. Note, when the shortest path is generated by a path planning 
algorithm, the robot’s heading is steered by the current robot direction to the next node on 
the path to the target location with constant velocity at a fixed sampling time. If the given 
direction at the traveled point-marked is stated as open space, a reactive navigation scheme 
will be activated again to explore in this given direction. The whole process is repeated until 
all the open space in a given direction at each traveled point-mark in the map are traveled 
or cleared by the robot or map feature, respectively. 

3.1 Reactive navigation via HFFS 

HFFS [4, 20, 23] uses smaller number of rules to represent the same amount knowledge, 
have higher mutually related interactions due to their cross-coupling between each element 
and level. Due to these properties, this structure is applied to design a reactive navigation 
controller to control the mobile robot to achieve some task, such as: keep off obstacles and 
wall or corridor following. 
The schematic diagram of the HFFS is shown in Figure 2. In this system, six 2-input / 1-
output fuzzy system are used. This HFFS consist 7 inputs and 2 outputs and the total 
number of rules are 60 only. 
The strategy of creating the fuzzy rules is that decision should try to move forward, 
navigate along a corridor and at corner, keep off and parallel to wall and avoid obstacle. The 
antecedent variables to the HFFS are 5 sides’ sonar sensors reading (i.e. left and right side, 
left and right front corner and front side) and 2 changes of side sensor readings (left and 
right).
The input sensor readings are fuzzified using the fuzzy set definitions as shown in Figure 
3a. The variable is partitioned in three fuzzy sets namely, VN (very near), NR (near) and FR 
(far). The sensor readings are normalized between 0 and 1. The input membership function 
for the two changes of side sensor readings is shown in Figure 3b. Furthermore, the variable 
is partitioned in three fuzzy sets namely, N (negative), Z (zero) and P (positive). The change 
of side sensor reading is normalized between –1 and 1. The input L_M and R_M inside the 
HFFS are fuzzified using the fuzzy membership functions as shown in Figure 3c and they 
are normalized between –1 and 1. The labels of each subset are N (negative), Z (zero), VS 
(very slow), M (medium) and F (fast). Since normalized input variables are used. Four input 
scaling factors should be used, such as L_S’ and R_S’ sensor reading scaling factor 

Sσ , F_S’ 
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sensor reading scaling factor 
Fσ , change of side sensor reading (∆L_S and ∆R_S) scaling 

factor
S∆

σ  and L_M and R_M velocity scaling factor 
Vσ .

Σ

Σ

Σ

Σ

Σ

∆ 

∆ 

Σ

Σ

∆ 

∆ 

  ∆ ∆

          ∆ ∆

Fig. 2. The HFFS reactive navigation structure. 

The singleton fuzzy set is used for the all output variables (L_M, L_M’, R_M, R_M”, ∆L_M 

and ∆R_M) in HFFS and it is shown in Figure 4. The fuzzy partition names for L_M, L_M’, 

R_M and R_M” are same as that used in input L_M or R_M. The normalized ∆L_M and 
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∆R_M are partitioned into five fuzzy sets, namely NL (negative large), NS (negative small), 
Z (zero), PS (positive small) and PL (positive large). All the output variables are normalized 
between –1 and 1. The output scaling factor for the motor velocity L_M’ & R_M’ and the 

change of motor velocity ∆L_M & ∆R_M are stated as 
Vσ  (same as the input scaling factor 

used in L_M and R_M) and 
V∆

σ , respectively. In the present implementation the center 

average de-fuzzifier [47] is used for its fast computation. 

a) Fuzzy set definition for input variable sensor reading. 

∆ ∆ 

b) Fuzzy set definition for input variable change of side sensor readings. 

c) Fuzzy set definition for input variable motor velocity. 

Figure 3 Input membership functions corresponding to HFFS. 
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a) Output consequences for motor velocity L_M, L_M’, R_M and R_M’. 

∆ ∆

b) Output consequences for the change of motor velocity ∆L_M and ∆R_M . 

Fig. 4. Output consequences corresponding to the HFFS. 

The corresponding fuzzy rule tables used in HFFS are shown in Table 1. From the rule table 
(Table 1c), we defined that the robot will turn right when both sides’ sensor readings are 
equal or a nearer obstacle occupied in left side. 

R_S’
O/P: L_M / R_M 

VN NR FR 

VN Z / Z VS / Z M / N 

NR Z / VS M / M F / M L_S’ 

FR N / M M / F F / F 

a) Fuzzy rule base for FLC-1 and FLC-2 in HFFS. 

L_M or R_M 
O/P: ∆L_M or ∆R_M

N Z VS M F 

N X X X PS PL 

Z X X X Z Z 
∆L_S 

or

∆R_S P X X X NS NL 

b) Fuzzy rule base for FLC-3 and FLC_4 in HFFS. 

L_M / R_M 
O/P: L_M’ / R_M’ 

N Z VS M F 

VN N N Z A1 / B1  A1 / B1

NR N VS Z A2 / B2 A2 / B2F_S’   

FR N VS VS M F 

c) Fuzzy rule base for FLC-5 and FLC_6 in HFFS. 

Table 1. Fuzzy rule tables for the proposed HFFS reactive navigation controller. 
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3.2 Navigation point generation system 

The objective of this system is to place and store a point-mark on the traveled robot 
trajectory and hence to search all possible open space on the mapping environment. Before 
we describe the system, few types of points and terms are introduced in Table 2. The main 
feature of this navigation point generation system is to arrange the navigation point in 
unevenly distribution. Different to the navigation system proposed by Duckett [10]. Duckett 
[10] suggests adding a “place” (equivalent to navigation point used in here) at every certain 
distance (1 m is used in their experiment). Therefore, the resulting topological path was 
distributed evenly and some of redundant “place” or navigation point was occurred. In 
contrast, we suggest adding a confirmed navigation point in a required region. For example: 
if the mobile robot navigates in a long corridor, few navigation points are required to 
represent the free path. Therefore, 8 possible free space directions and its related free space 
probability are assigned at each confirmed navigation point. We can compare their state (8 
free space probability) of navigation point to past navigation point to verify their similarity 
when the mobile robot navigated in an unknown environment. The calculation of free space 
probability in a given direction at each navigation point is discussed in section 3.2.3 

Symbol Definition 

T_NPn nth Test Navigation Point 

P_NP Potential Navigation Point 

Cd_NP Confirmed Navigation Point 

L_Cd_NP Last Cd_NP 

N_Cd_NP The Nearest Cd_NP to the current robot location 

T_Cd_NP[i] 

where i = 0, 1, 2, 3 

ith recent Traveled Cd_NP 

(The most recent Cd_NP is represented by i = 0) 

E_Cd_NP The Extra Past Cd_NP, 

i.e. At time k E_Cd_NP ≠T_Cd_NP[i] for i = 0, 1, 2, 3. 

FreeSpaceCoverRadius The maximum free space coverage radius 

MinNavTravelDis The minimum specified traveled displacement 

Table 2. The Various symbols in Navigation point generation system. 

In addition, three terms will be attached in each given direction at each Cd_NP, such as 
“FreeSpaceProbability (= 0 ~ 1)”, “IsOpenSpace (= True or False)” and “IsExplored (= True 
or False)”. 
Figure 5 is a flow chart of the entire navigation point generation system. It is designed to 
allow direct translation into an implementation. In Figure 5, two types of line are used, i.e. 
dashed-line and solid-line. The dashed-line stated that the process should go to next step 
within same sampling interval. In contrast, the solid-line stated that the next step would be 
executed at next sampling interval. The flow of the algorithm is regulated by the state 
variables described in Table 2. The significance of some parts of the flow chart necessitates 
discussion. These regions have been labeled in Figure 4 and are described as following:  

A The state of the last confirmed navigation point (L_Cd_NP) is updated by 10 
sampling robot steps before it go to next step. The state of Cd_NP updating process 
will be discussed in section 3.2.1. 

B When Condition 1 (which stated in Figure 4) is satisfied, a new confirmed 
navigation point (Cd_NP) is registered and reset the variable n (which states the 
total number of test navigation point) to 1. And then calculate and update the state 
of this new registered Cd_NP in next sampling interval. 
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C When the current test navigation point (T_NPn) is similar to the extra past 
confirmed navigation point (E_Cd_NP), then reset the current test navigation point 
and set n to 1. After that, register a new test navigation point in next sampling 
interval.

D If the current test navigation point is not similar to the current potential navigation 
point, then search the nearest confirmed navigation point (Cd_NP) in the list 
relative to the current potential navigation point. If this resulting point is similar to 
the current potential point and their distance is smaller than “MinNavTravelDis”, 
then reset the current test navigation point and set n to 1. 

3.2.1 Process for updating the state of confirmed navigation point (Cd_NP) 

As mentioned that as before, three variables are attached in each given direction of each 
confirmed navigation point (Cd_NP). One floating point variable, i.e. 
“FreeSpaceProbability”. The updating process of this variable will be introduced in section 
3.2.3. Two Boolean variables, i.e. “IsOpenSpace” and “IsExplored”, and the updating 
condition are discussed as follows: 
“IsOpenSpace” This Boolean variable can be stated that the given direction of confirmed 
navigation point is open or not. And it can be determined by the  “FreeSpaceProbability”. If 
the free space probability is more than or equal to 0.5, then this given direction is open 
(IsOpenSpace = True). Otherwise, “IsOpenSpace” is equal to “False”. On the other hand, 
this Boolean variable can be also updated by the acquired map model. Since a segment-
based map is extracted by either one of segment-based map building technique 
simultaneously. (The corresponding map building will be discussed in section 4.) A simple 
logical updating algorithm is applied. If the given direction of confirmed navigation point is 
occupied by a segment, then the Boolean variable can be stated as “False”. Otherwise, it is 
registered as “True”. 
“IsExplored” This Boolean variable states that the given direction of confirmed navigation 
point is explored or not. Three conditions are used to update this variable and are shown as 
following: 

1. If the distance between two confirmed navigation points is smaller than 
FreeSpaceCoverRadius, then these Boolean variables (in the corresponding given 
direction at the two confirmed navigation points are registered as “True” (i.e. 
IsExpored = True).  

2. If the distance between the current robot position and the corresponding 
confirmed navigation point is smaller than FreeSpaceCoverRadius, then it is 
stated as “True”. 

3. If the term “IsOpenSpace” is stated as “False” in a given direction at the 
corresponding confirmed navigation point, then the term “IsExplored” is equal to 
True in the same direction at the corresponding confirmed navigation point. 

3.2.2 Redundant confirmed navigation point removing process 

As we want to reduce the redundant confirmed navigation point in the map, a redundant 
point removing process is needed. In this process, we compare the T_Cd_NP[0] and 
T_Cd_NP[1]. If it is similar and the distance between T_Cd_NP[0] and T_Cd_NP[2] is 
smaller than FreeSpaceCoverRadius , then remove the T_Cd_NP[1]. The visualization of the 
proposed exploration algorithm is shown in Figure 6. 



Effective Method for Autonomous Simultaneous Localization and Map Building in 
Unknown Indoor Environments 507

Fig. 5. The flow chart of the proposed navigation point generation system. 
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Fig. 6. The visualization of exploration algorithm. 
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3.2.3 Open space evaluation system 

To evaluate areas of free space, we have developed a simple and efficient mechanism which 
uses a Bayesian update rule and sonar sensor model pdf to calculate the value of 
“FreeSpaceProbability” in a given direction at each point-mark (T_NP or Cd_NP). From 

equation (A-2), the sonar probability model ),|( θzrp  can be calculated. r  is the sensor 

range reading. z  represents the true parameter space range value (here we use the value of 

“FreeSpaceCoverRadius”). θ  represents the azimuth angle measured with respect to the 

beam central axis (here we calculated as sonar beam angle Sθ  subtract the given direction at 

a point-mark, all angles are referred to the global reference frame). In this application, the 

value εk  and ok  become a constant in equation (A-2). i.e. εk = zero or very small real 

number and εk = 0.6. The variance of radial rσ  and angular 
θ

σ  is equal to 250mm and 

12.5°, respectively. After a sampling for all sonar sensors (16 sonar sensors used here), the 
probability is fused together by Bayes’s theorem [1]. The value of “FreeSpaceProbability” in 
given direction is calculated as below: 

==
==

jNavDir
jj

jj
j

NavDirPNavDirrp

FREENavDirPFREENavDirrp
rFREENavDirP

][]|[

][]|[
]|[  (1) 

for j = 0, 1, 2, …, 7. 

where ]|[ FREENavDirrp j =  corresponds to sensor pdf (for calculate the probability of 

free space, it is calculated as )),|(1( θzrp− ),

][ FREENavDirP j =  is prior presented free space probability of a given direction at a point-

mark jNavDir ,

]|[ rFREENavDirP j =  is new presented free space probability of jNavDir  based on r

observations.
The whole process is repeated until the robot has traveled far away from the point-mark 
with certain distance (300mm in these experiment). After the open space evaluation process 
is complete, 8 probability values (see bottom right in Figure 6) are attached in the point-
mark (T_NPn or Cd_NP) for representing the free space probability values in given 
direction. Furthermore, another function for this open space evaluation system is aimed to a 
mobile robot escaping from a “U-trap” (see the upper part in Figure 6). We can detect a “U-
trap” situation from the following 2 conditions: 

1. L_S’<600mm and R_S’<600mm 
2. An “IsOpenSpace[i]” in point T_Cd_NP[0] is equal FALSE, where i is equal to the 

direction (0 ~ 7) which is pointed to the current position of mobile robot. 
If a “U-trap” is detected, the reactive navigation system will be disabled until the mobile 

robot is rotated for certain degree (120° in these experiments). 

4. Experimental Results 

In order to evaluate the performance of the proposed autonomous exploration strategy, 
several experiments were conducted. In the first two experiments, we applied the proposed 
reactive navigation system only to control a Pioneer 2DX mobile robot to navigate along a 
corridor and at corners. For third experiment, the complete autonomous exploration 



510 Mobile Robots, Perception & Navigation

strategy was conducted in a localization error free (no slippage or wheel drift error) mobile 
robot simulator platform (Pioneer simulator). For fourth experiment, the autonomous 
SLAM experiment was conducted in a well constructed unknown indoor environment with 
Pioneer 2DX mobile robot. 
All of experiments were implemented in robot software “Saphira” [42] on a Pentium 4 1.6 
GHz with 256RAM PC computer and it is communicated to the Pioneer 2DX mobile robot 
via wireless modem. Also, all sonar sensors measurements were limited up to 3 meters to 
reduce the uncertainty for map building process. In our proposed exploration scheme, two 
sides sensors and front sonar sensors array are used only. They are arranged in 5 input 
groups as shown in Figure 7 (i.e. L_S, L_F_S, F_S, R_F_S and R_S). The 10 sensors were 
categorized into 5 inputs for HFFS reactive navigation system and it is allocated as follows: 
Left side: L_S = min(S16,S1)
Left front corner: L_F_S = min(S2,S3)
Front side: F_S = min(S4,S5)
Right front corner: R_F_S = min(S6,S7)
Right side: R_S = min(S8,S9)

Fig. 7. Sensors arrangement for HFFS reactive navigation system. 

The values (range) from direction left to right (i.e. L_S, L_F_S, F_S, R_F_S and R_S) were used 
as the input of the HFFS reactive navigation system and the outputs of the system were the 
linear velocity of the left (L_M”) and right (R_M”) driving motor of the mobile robot. For 

scaling factor Sσ , a simple adoption scheme was used and it is formulated as follows: 
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where MAXσ  is the maximum defined range value and is equal to FreeSpaceCoverRadius 

and

λ  is a forgetting factor (0.7 in these experiments). 

The initial value )0(Sσ  is defined as 1500mm. The setting of reminding input and output 

scaling factors are stated as follows: 
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Fσ  is defined as FreeSpaceCoverRadius. 

S∆σ  is defined as 100mm (designed by human experience). 

Vσ  is defined as 200mm/s (predefined maximum translation velocity). 

V∆σ  is defined as 20mm/s (designed by human experience). 

The sampling time for the proposed autonomous exploration strategy is 1s in all the 
following experiments. 

4.1 Experiments with a real robot 

In the first experiment, the system was tested in a long corridor with 1.5m widths. The objective 
of this experiment was to verify the performance when a mobile robot navigated along a 
corridor. Therefore, the minimum range value of the left and right side group sensors are plotted 
against time and it is shown in Figure 8a. In Figure 8a) and b), shows that the Pioneer 2DX 
mobile robot navigated along towards the middle of corridor with a smooth trajectory. 
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a) Left and Right wall distance measured by the left and right sonar. 

        

        
b) Snap shots of a Pioneer 2DX navigating along a corridor. 

Fig. 8. The performance of the proposed HFFS reactive navigation system while navigates 
along a corridor. 
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In the second experiment, the proposed reactive navigation system was used to control a 
Pioneer 2DX navigating in a more complex area where is located at the outside of our 
research laboratory in the university. Figure 9 shows the robot’s information and the robot 
trajectory during navigation. At starting of the navigation (low bottom left in Figure 9b), the 
mobile robot traveled along a corridor. Then the mobile robot turned to right side when the 
robot’s front sensor detected an obstacle (at time 70s, see Figure 9a). Then the mobile robot 
started to follow a set of lockers (by wall following behavior) until it’s front sensor detect an 
obstacle again. Finally, it started to follow right hand side object at time 140s. 
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Fig. 9. The robot’s information and robot trajectory while a Pioneer 2DX navigated at corner. 



Effective Method for Autonomous Simultaneous Localization and Map Building in 
Unknown Indoor Environments 513

From the above two experiments, it can be demonstrated that the proposed HFFS reactive 

navigation system can achieve the goal of multi-behavior (such as: navigate along a 

corridor and at corner, keep off and parallel to wall and avoid obstacle) mobile robot 

controller. In the next experiment, the complete autonomous exploration strategy is 

applied to control a mobile robot for navigating in an unknown environment via robot 

simulator. 

4.2 Experiment with a robot simulator 

In this experiment, the EAFC segment-based map building algorithm [15] was adopted 

to extract the map information from raw sonar data. This map building algorithm is 

the authors’ pervious work [17]. Other than that algorithm, we can also apply fuzzy 

sonar maps [13] (which was proposed by Gasos and Martin 1996) or Hough transform 

with sonar arc (which was proposed by Tardos et. al. 2002) for extracting a segment-

based map. For the parameters setting in autonomous exploration strategy, it was 

selected as follow: “FreeSpaceCoverRadius” = 2500mm and “MinNavTravelDis” = 

800mm.

The advantage for using a robot simulator to verify our proposed autonomous exploration 

strategy is that the localization error can be disabled or neglected. Since the localization 

problem will arise an error or affect the accuracy in the planning process. The Pioneer 

Simulator [42] can simulate several different types of typical noise that occur during robot 

navigation and sensor perception. To achieve the goal of this experiment, the percentage of 

encoder jitter, angle jitter and angle drift in robot simulator is reduced to zero. Nevertheless, 

the sonar sensor uncertainty is still occurring in the system. Figure 10 shows the navigation 

point-marks and the unexplored direction at each Cd_NP superposed on the actual map 

when the Pioneer 2DX navigates in the simulation world. We can see that the mobile robot 

can navigate in all regions in the unknown environment. Also, the navigation point-marks 

are distributed unevenly in the navigation environment. The raw sonar data and extracted 

map by EAFC during the autonomous navigation are shown in Figure 11 a) and b), 

respectively.

4.3 Autonomous SLAM experiment

In this experiment, the autonomous exploration strategy was combined with the SLAM 

algorithm [19] to form an effective SLAM algorithm. Basically, this effective SLAM 

algorithm is similar to the algorithm that was tested in section 4.2 except the map 

information (for aiming the navigation point generation system) is replaced by the SLAM 

map. An overview of the system architecture is shown in Figure 12. Since this was a real-

time experiment, it was difficult to obtain a ground truth robot trajectory. Therefore, we 

used the authors’ previous proposed fuzzy tuned extended Kalman filter FT-EKF model-

based localization algorithm [18] to measure the robot trajectory during the autonomous 

SLAM process for comparison. The system was tested in our research office (8 × 8 m) and 

the floor plan.. The total trajectory of the mobile robot was around 30m, lasting around 20 

minutes 

The sampling rate of SLAM process and autonomous exploration strategy was 1000ms. The 

parameters settings for the autonomous exploration strategy were selected as: 

“FreeSpaceCoverRadius” = 2000mm and “MinNavTravelDis” = 700mm. 
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Fig. 10. Snap Shots for the Pioneer 2DX mobile robot navigating in the simulation 
world.
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a) Raw sonar data during navigation. 

b) (black line) Extracted line segments superposed on (gray line) real map. 

Fig. 11. Robot trajectory, navigation point-marks, extracted map, raw data and real map 
captured from the robot software Saphira. 
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Fig. 12. Overall architecture of the proposed autonomous SLAM mechanism. 

At the start of the experiment, the Pioneer 2DX was placed at end of the corridor (shown in 
lower left corner in Figure 13a). After all the given directions at each navigation point were 
navigated, the mobile robot traveled back to the starting position. The final global map 
acquired at end of the experiment is shown in Figure 13b. In addition, 25 line features and 
16 navigation points were extracted in the final map and the final absolute position error in 
X and Y is 50mm and 64mm (measured by hand and relative to actual position), 
respectively. For comparison purposes, the odometric wake, the SLAM wake, extracted 
navigation points and map model are superimposed on the hand measured map model.  

a) Sonar returns, navigation points and autonomous SLAM estimated wake obtained during 
the experiment. (Captured from the robot software “Saphira”.) The range threshold of all 
sonar sensors is 1500mm. Therefore, a lot of ambiguous and noise measurements were filtered. 
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b) Extracted map model and navigation points superposed on the real map. 

Fig. 13. Robot trajectory, navigation point-marks, extracted map, raw data and real map 
during the autonomous SLAM experiment. 

To further analyze the consistency of our integrated approach, Figure 14 shows a 
comparison between the error in the autonomous SLAM pose versus model-based FT-EKF 

robot pose along with the 2-sigma (2σ) uncertainty bounds logged from the SLAM process. 

It is clearly demonstrated that those errors remain inside their 2σ uncertainly bounds at the 
most of time. From this on-line integrated experiment, we conclude that this approach can 
fulfill the three essential missions of mobile robot and those are operated in real time and 
simultaneously. Figure 15 shows snap shots captured from the robot software “Saphira”, 
during the experiment. 
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5. Conclusions 

In this chapter, a new autonomous exploration strategy for mobile robot was presented and 
extensively tested via simulation and experimental trials. The essential mechanisms used 
included a HFFS reactive navigation scheme, EAFC map extraction algorithm, SLAM 
process, an open space evaluation system cooperating with probability theory and Bayesian 
update rule and a novel navigation point generation system. The proposed autonomous 
exploration algorithm is a version of combination of a robust reactive navigation scheme 
and approaching the unknown strategy which ensure that the mobile robot to explore the 
entire region in an unknown environment automatically. 
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Effective Method for Autonomous Simultaneous Localization and Map Building in 
Unknown Indoor Environments 519

(1)    (2) 

(3)    (4) 

(5)    (6) 

(7)    (8) 

Fig. 15. Snap shots during autonomous SLAM process via Pioneer 2DX mobile robot. 
(Captured from the robot software “Saphira”.) The black robot (a bit bigger) represents the 
robot position estimated by odometric. The gray robot represents the robot position 
estimated by SLAM process. 
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In addition in this chapter, a metric topological map model is advocated for facilitating the 
path planning process during the autonomous exploration. Moreover, the map model 
extracted from an EAFC map building algorithm (metric map model) is aimed to generate 
the navigation point or node on the navigation path. Therefore, a hybrid map model is 
proposed for autonomous map building in an unknown indoor environment. An 
autonomous map building algorithm was tested in a simulation world (section 4.2). On the 
other hand, a successful on-line autonomous SLAM experiment (section 4.3) was conducted 
for a mobile robot to map an indoor and unknown environment. 
Basically, this chapter concluded the pervious work: a SLAM problem solved by 
overlapping sliding window sonar buffer [Ip and Rad 2003] and EAFC feature initialization 
technique []Ip and Rad] combined with a novel autonomous exploration strategy to 
formulate an autonomous SLAM mechanism. Experimental studies demonstrated that the 
mobile robot was able to build a segment-based map and topological map (a list of 
navigation points) in real time without human intervention. 
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