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1. Introduction  

Silicon carbide (SiC) waveguides operating at the microwave range are presently being 
developed for advantageous use in high-temperature, high-voltage, high-power, high 
critical breakdown field and high-radiation conditions. SiC does not feel the impact of any 
acids or molten salts up to 800°C. Additionally SiC devices may be placed very close 
together, providing high device packing density for integrated circuits.  
SiC has superior properties for high-power electronic devices, compared to silicon.  
A change of technology from silicon to SiC will revolutionize the power electronics. 
Wireless sensors for high temperature applications such as oil drilling and mining, 
automobiles, and jet engine performance monitoring require circuits built on the wide 
bandgap semiconductor SiC. The fabrication of single mode SiC waveguides and the 
measurement of their propagation loss is reported in (Pandraud et al., 2007).  
There are not enough works proposing the investigations of SiC waveguides. We list here as 
an example some articles. The characteristics of microwave transmission lines on 4H-High 
Purity Semi-Insulating SiC and 6H, p-type SiC were presented as a function of temperature 
and frequency in (Ponchak et al, 2004). An investigation of the SiC pressure transducer 
characteristics of microelectromechanical systems on temperature is given in (Okojie et al., 
2006). The high-temperature pressure transducers like this are required to measure pressure 
fluctuations in the combustor chamber of jet and gas turbine engines. SiC waveguides have 
also successfully been used as the microwave absorbers (Zhang, 2006). 
The compelling system benefits of using SiC  Schottky diodes, power MOSFETs, PiN diodes 
have resulted in rapid commercial adoption of this new technology by the power supply 
industry. The characteristics of SiC high temperature devices are reviewed in (Agarwal  et 
al., 2006). 
Numerical studies of SiC waveguides are described in an extremely limited number of 
articles (Gric et al., 2010; Nickelson et al., 2009; Nickelson et al., 2008). The main difficulty 
faced by researchers in theoretical calculations of the SiC waveguides is large values of 
material losses and their dependence on the frequency and the temperature. We would like 
to draw your attention to the fact that we take the constitutive parameters of the SiC 
material from the experimental data of article (Baeraky, 2002) at certain temperatures. Then 
for the frequency dependence, we take into account through the dependence of the 
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imaginary part of the complex permittivity of semiconductor SiC material on the specific 
resistivity and the frequency by the conventional formula (Asmontas et al., 2009). 
We would like to underline also that there are theoretical methods for calculation of strong 
lossy waveguides, but these methods were usually used for the electrodynamical analysis of 
metamaterial waveguides (Smith et al., 2005; Chen et al., 2006; Asmontas et al, 2009; Gric et 
al., 2010; Nickelson et al., 2008) or other lossy material waveguides (Bucinskas et al., 2010; 
Asmontas et al., 2010; Nickelson et al., 2009; Swillam et al., 2008; Nickelson et al., 2008; 
Asmontas et al., 2006).  
In this chapter we present the electrodynamical analysis of open rectangular and circular 
waveguides. The waveguide is called the open when there is no metal screen. In sections 2 
and 3 we give a short description of the Singular Integral Equations’ (SIE) method and of the 
partial area method that we have used to solve the electrodynamical problems. Our method 
SIE for solving the Maxwell’s equations is pretty universal and allowed us to analyze open 
waveguides with any arbitrary cross-sections in the electrodynamically rigorously way  
(by taking into account the edge condition and the condition at infinity). The false roots did 
not occur applying the SIE method. The waveguide media can be made of strongly lossy 
materials. 
In order to determine the complex roots of the waveguide dispersion equations we have 
used the Müller’s method. All the algorithms have been tested by comparing the obtained 
results with the results from some published sources. Some of the comparisons are 
presented in section 4. 
Both of the methods allow solving Maxwell’s equations rigorously and are suitable for 
making the full electrodynamical analysis. We are able to calculate the dispersion 
characteristics including the losses of all the modes propagating in the investigated 
waveguide and the distributions of the electromagnetic (EM) fields inside and outside of the 
waveguides. We used our computer algorithms based on two mentioned methods with 3D 
graphical visualization in the MATLAB language. 

 
2. The SIE method  

In this section, we describe the SIE method for solving Maxwell’s equations in the rigorous 
problem formulation (Nickelson et al., 2009; Nickelson & Shugurov, 2005). Using the SIE 
method, it is possible to rigorously investigate to investigate the dispersion characteristics of 
main and higher modes in regular waveguides of arbitrary cross–section geometry 
containing piecewise homogeneous materials as well as the distribution of the EM field 
inside and outside of waveguides  electrodynamically.. 
Our proposed method consists of finding the solution of differential equations with a point–
source. Then the fundamental solution of the differential equations is used in the integral 
representation of the general solution for each particular boundary problem. The integral 
representation automatically satisfies Maxwell’s differential equations and has the unknown 
density functions μe and μh, which are found using the proper boundary conditions. To 
present the fields in the integral form we use the solutions of Maxwell’s equations with 
electric je


 and magnetic jh


 point sources: 

jh
HCurl E = -μ μ0 r t





 
,      je

ECurl H = ε ε0 r t





 
      (1) 

where 

E  is the electric field strength vector and 


H  is the magnetic field strength vector. 

Also εr  is the relative permittivity and μr  is the relative permeability of the medium. The 
electric and magnetic constants ε0 , μ0   are called the permittivity and the permeability of a 
vacuum. The dependence on time t and on the longitudinal coordinate z  are assumed in the 
form   exp i ωt - hz . Here h=h’-h’’i is the complex longitudinal propagation constant, 
where h’ is the real part (phase constant), h’=2π/λw, λw is the wavelength of investigated 
mode and h” is the imaginary part (attenuation constant). The magnitude ω=2πf is the cyclic 
operating frequency and i is the imaginary unit (i2=-1). Because of the equations linearity the 
general solution is a sum of solutions when j 0h 


, j 0e 


 and j 0h 


, and j 0e 


. The 

transversal components Ex, Ey, Hx, Hy of the EM field are being expressed through the 
longitudinal components Ez, Hz of EM field  from Maxwell’s equations as follows: 
 

 

H Ez zμ μ iω + ih0 r y xE =x Δ

 
  , 

H Ez z-μ μ iω + ih0 r x yE =y Δ

 
  , (2) 

 

E Hz z-ε ε iω + ih0 r y xH =x Δ

 
  , 

E Hz zε ε iω + ih0 r x yH =y Δ

 
  , (3) 

 

where 2 2Δ = h - k ε μr r . 
The longitudinal components Ez, Hz, satisfy scalar wave equations, which are Helmholtz’s 
equations: 

 

    2 2Δ + k H = 0, Δ + k E = 0,z z               (4) 

 

here 
2 2

2 2x y
 

 
 

 is the transversal Laplacian. Other magnitudes are 


2 2 2

k = -Δ = k ε μ - hr r , k=ω/c and c is the light velocity in a vacuum. The fundamental 
solution of the second order differential equations (4) in the cylindrical coordinates (or in the 
polar coordinates, since the dependence on the longitudinal coordinate has already been 
determined) is the Hankel function of the zeroth order. 
In Fig. 1 the points of the contour L where we satisfy the boundary conditions on the 

boundary line, dividing the media with the constitutive parameters of SiC: SiCεr , SiC
r  and 

an environment area aεr , a
r  are shown.  

The problem is formulated in this way. We have in the complex plane a piecewise smooth 
contours L (Fig.1). The contour subdivides the plane into two areas; the inner +S  and the 
outer S– one. These areas according to the physical problem are characterized by different 
electrophysical parameters: the area +S  has the constitutive parameters εrSiC, μrSiC and S– has 
the constitutive parameters εra, μra  of ambient air. Magnitudes εrSiC = Re (εrSiC) - Im (εrSiC) and 
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imaginary part of the complex permittivity of semiconductor SiC material on the specific 
resistivity and the frequency by the conventional formula (Asmontas et al., 2009). 
We would like to underline also that there are theoretical methods for calculation of strong 
lossy waveguides, but these methods were usually used for the electrodynamical analysis of 
metamaterial waveguides (Smith et al., 2005; Chen et al., 2006; Asmontas et al, 2009; Gric et 
al., 2010; Nickelson et al., 2008) or other lossy material waveguides (Bucinskas et al., 2010; 
Asmontas et al., 2010; Nickelson et al., 2009; Swillam et al., 2008; Nickelson et al., 2008; 
Asmontas et al., 2006).  
In this chapter we present the electrodynamical analysis of open rectangular and circular 
waveguides. The waveguide is called the open when there is no metal screen. In sections 2 
and 3 we give a short description of the Singular Integral Equations’ (SIE) method and of the 
partial area method that we have used to solve the electrodynamical problems. Our method 
SIE for solving the Maxwell’s equations is pretty universal and allowed us to analyze open 
waveguides with any arbitrary cross-sections in the electrodynamically rigorously way  
(by taking into account the edge condition and the condition at infinity). The false roots did 
not occur applying the SIE method. The waveguide media can be made of strongly lossy 
materials. 
In order to determine the complex roots of the waveguide dispersion equations we have 
used the Müller’s method. All the algorithms have been tested by comparing the obtained 
results with the results from some published sources. Some of the comparisons are 
presented in section 4. 
Both of the methods allow solving Maxwell’s equations rigorously and are suitable for 
making the full electrodynamical analysis. We are able to calculate the dispersion 
characteristics including the losses of all the modes propagating in the investigated 
waveguide and the distributions of the electromagnetic (EM) fields inside and outside of the 
waveguides. We used our computer algorithms based on two mentioned methods with 3D 
graphical visualization in the MATLAB language. 

 
2. The SIE method  

In this section, we describe the SIE method for solving Maxwell’s equations in the rigorous 
problem formulation (Nickelson et al., 2009; Nickelson & Shugurov, 2005). Using the SIE 
method, it is possible to rigorously investigate to investigate the dispersion characteristics of 
main and higher modes in regular waveguides of arbitrary cross–section geometry 
containing piecewise homogeneous materials as well as the distribution of the EM field 
inside and outside of waveguides  electrodynamically.. 
Our proposed method consists of finding the solution of differential equations with a point–
source. Then the fundamental solution of the differential equations is used in the integral 
representation of the general solution for each particular boundary problem. The integral 
representation automatically satisfies Maxwell’s differential equations and has the unknown 
density functions μe and μh, which are found using the proper boundary conditions. To 
present the fields in the integral form we use the solutions of Maxwell’s equations with 
electric je


 and magnetic jh


 point sources: 

jh
HCurl E = -μ μ0 r t





 
,      je

ECurl H = ε ε0 r t





 
      (1) 

where 

E  is the electric field strength vector and 


H  is the magnetic field strength vector. 

Also εr  is the relative permittivity and μr  is the relative permeability of the medium. The 
electric and magnetic constants ε0 , μ0   are called the permittivity and the permeability of a 
vacuum. The dependence on time t and on the longitudinal coordinate z  are assumed in the 
form   exp i ωt - hz . Here h=h’-h’’i is the complex longitudinal propagation constant, 
where h’ is the real part (phase constant), h’=2π/λw, λw is the wavelength of investigated 
mode and h” is the imaginary part (attenuation constant). The magnitude ω=2πf is the cyclic 
operating frequency and i is the imaginary unit (i2=-1). Because of the equations linearity the 
general solution is a sum of solutions when j 0h 


, j 0e 


 and j 0h 


, and j 0e 


. The 

transversal components Ex, Ey, Hx, Hy of the EM field are being expressed through the 
longitudinal components Ez, Hz of EM field  from Maxwell’s equations as follows: 
 

 

H Ez zμ μ iω + ih0 r y xE =x Δ

 
  , 

H Ez z-μ μ iω + ih0 r x yE =y Δ

 
  , (2) 

 

E Hz z-ε ε iω + ih0 r y xH =x Δ

 
  , 

E Hz zε ε iω + ih0 r x yH =y Δ

 
  , (3) 

 

where 2 2Δ = h - k ε μr r . 
The longitudinal components Ez, Hz, satisfy scalar wave equations, which are Helmholtz’s 
equations: 

 

    2 2Δ + k H = 0, Δ + k E = 0,z z               (4) 

 

here 
2 2

2 2x y
 

 
 

 is the transversal Laplacian. Other magnitudes are 


2 2 2

k = -Δ = k ε μ - hr r , k=ω/c and c is the light velocity in a vacuum. The fundamental 
solution of the second order differential equations (4) in the cylindrical coordinates (or in the 
polar coordinates, since the dependence on the longitudinal coordinate has already been 
determined) is the Hankel function of the zeroth order. 
In Fig. 1 the points of the contour L where we satisfy the boundary conditions on the 

boundary line, dividing the media with the constitutive parameters of SiC: SiCεr , SiC
r  and 

an environment area aεr , a
r  are shown.  

The problem is formulated in this way. We have in the complex plane a piecewise smooth 
contours L (Fig.1). The contour subdivides the plane into two areas; the inner +S  and the 
outer S– one. These areas according to the physical problem are characterized by different 
electrophysical parameters: the area +S  has the constitutive parameters εrSiC, μrSiC and S– has 
the constitutive parameters εra, μra  of ambient air. Magnitudes εrSiC = Re (εrSiC) - Im (εrSiC) and 
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μrSiC = Re (μrSiC) - Im (μrSiC)  are the complex permittivity and the complex permeability of 
the SiC medium. The positive direction of going round the contour is when the area +S  is on 
the left side.  
 

 
Fig. 1. Waveguide arbitrary cross section and designations for explaining the SIE method. 
 
One has to determine in area +S  solutions of Helmholtz’s equation (4), which satisfy the 
boundary conditions for the tangent components of the electric and magnetic fields: 
 
 + -E = Etan tanL L ,  (5) 

 + -H = Htan tanL L .  (6) 

 
In the present work all boundary conditions are satisfied including the edge condition at the 
angular points of the waveguide cross-section counter and the condition at infinity.  
The longitudinal components of the electric field and the magnetic field at the contour 
points that satisfied to the Helmholtz’s equations (4) have the form: 
 

  

L

2E (r) = μ (r )H (k r )ds,z e s 0    (7) 

  

L

2H (r) = μ (r )H (k r )ds,z h s 0    (8) 

 

where E (r)z , H (r)z   are the longitudinal components of the electric field and the magnetic 

field of the propagating microwave. Here r = ix + jy
   is the radius vector of the point, where 

the EM fields are determined, where 
 
i, j  are the unit vectors. The magnitudes μ (r )e s

  and 

sr


SiC SiC
r r, 

r
a a
r r, 

r'

 
E ︵r ︶,H ︵r ︶L 

S-  +S  

  
E(r),H(r)

μ (r )sh
  are the unknown functions satisfying Hölder condition (Gakhov, 1977). 

Here (2)H (k r )0   is the Hankel function of the zeroth order and the second kind, where 

r = r - rs   . The magnitude r = ix + jys s s
  is the radius vector (Fig. 1). Here ds is an element 

of the contour L and the magnitude s is the arc abscissa. 
The expressions of all the electric field components which satisfy the boundary conditions 
are presented below. We apply the Krylov–Bogoliubov method whereby the contour L is 
divided into n segments and the integration along a contour L is replaced by a sum of 
integrals over the segments  j=1…n. The expressions of all electric field components for the 
area +S  and S  are presented below: 
 

 s j

  

 
 
n

( ) H (k r )ds
j 1 L

E
+ +
z e

(2)
0 , (9) 

  


 - -

z e

n- (2)= (s ) (k r )j 0
j=1 L

E H ds . (10) 

 

We obtain that the transversal components of the electric field Ex, Ey after substituting 
formula (9) and (10) in the formulae (2) are: 
 

                            
    

     
ΔL

n2 y - y+ (2) sSiC + + + + 0E = - iμ μ k k μ (s ) H (k r ) dsx r0 jh 1 rj=1

 (11) 

x
  
                       

        
 

   


  +
h

ΔL

n2 SiC-x 2μ μ ωcosθ(2) s+ + + + 0 0 r+ ih k k μ (s ) H (k r ) ds - μ (s ),j je 1 2rj=1 +k

 

 

 
                             

    
ΔL

n+ 2 y - y(2) s+ + + + 0E = ih k k μ (s ) H (k r ) dsy e j 1 rj=1

 (12) 

 

x
  
                                                 

 

      


 
ΔL

-2 SiCn -x 2μ μ ωcosθ(2) s rSiC + + +0 0iμ μ ω k k μ s H (k r ) ds - μ (s ),r0 j jh h1 2rj=1 +k

 

 
                                       

        
ΔL

-n2 y - y- (2) sa 0E = - iμ μ ω k k μ s H (k r ) dsx r0 jh 1 rj=1

    (13) 

x
                          
       

 

       


 
ΔL

n a2 -x 2μ μ ωcosθs(2) r0 0+ ih k k μ (s ) H (k r ) ds + μ (s ),e j jh1 2rj=1 k

 , 
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μrSiC = Re (μrSiC) - Im (μrSiC)  are the complex permittivity and the complex permeability of 
the SiC medium. The positive direction of going round the contour is when the area +S  is on 
the left side.  
 

 
Fig. 1. Waveguide arbitrary cross section and designations for explaining the SIE method. 
 
One has to determine in area +S  solutions of Helmholtz’s equation (4), which satisfy the 
boundary conditions for the tangent components of the electric and magnetic fields: 
 
 + -E = Etan tanL L ,  (5) 

 + -H = Htan tanL L .  (6) 

 
In the present work all boundary conditions are satisfied including the edge condition at the 
angular points of the waveguide cross-section counter and the condition at infinity.  
The longitudinal components of the electric field and the magnetic field at the contour 
points that satisfied to the Helmholtz’s equations (4) have the form: 
 

  

L

2E (r) = μ (r )H (k r )ds,z e s 0    (7) 

  

L

2H (r) = μ (r )H (k r )ds,z h s 0    (8) 

 

where E (r)z , H (r)z   are the longitudinal components of the electric field and the magnetic 

field of the propagating microwave. Here r = ix + jy
   is the radius vector of the point, where 

the EM fields are determined, where 
 
i, j  are the unit vectors. The magnitudes μ (r )e s

  and 

sr


SiC SiC
r r, 

r
a a
r r, 

r'

 
E ︵r ︶,H ︵r ︶L 

S-  +S  

  
E(r),H(r)

μ (r )sh
  are the unknown functions satisfying Hölder condition (Gakhov, 1977). 

Here (2)H (k r )0   is the Hankel function of the zeroth order and the second kind, where 

r = r - rs   . The magnitude r = ix + jys s s
  is the radius vector (Fig. 1). Here ds is an element 

of the contour L and the magnitude s is the arc abscissa. 
The expressions of all the electric field components which satisfy the boundary conditions 
are presented below. We apply the Krylov–Bogoliubov method whereby the contour L is 
divided into n segments and the integration along a contour L is replaced by a sum of 
integrals over the segments  j=1…n. The expressions of all electric field components for the 
area +S  and S  are presented below: 
 

 s j

  

 
 
n

( ) H (k r )ds
j 1 L

E
+ +
z e

(2)
0 , (9) 

  


 - -

z e

n- (2)= (s ) (k r )j 0
j=1 L

E H ds . (10) 

 

We obtain that the transversal components of the electric field Ex, Ey after substituting 
formula (9) and (10) in the formulae (2) are: 
 

                            
    

     
ΔL
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The field components and the values of the functions μ (s )e j  and μ (s )jh   are noted in the 

upper–right corner with the sign corresponding to different waveguide area, for instance, 

the functions +μ (s )e j , +μ (s )jh  or μ (s )e j
 , μ (s )h j

  (Fig.1). These functions at the same contour 

point are different for the field components in the areas +S  and S , i.e. +μ (s ) μ (s )j h jh
 . The 

magnitude (2)H0  is the Hankel function of the zeroth order and of the second kind, (2)H1  is 

the Hankel function of the first order and of the second kind. Here 2 SiC SiC 2
r rk k ε μ h 

+  

and 2 2 a
r r
ak h k ε μ    are the transversal propagation constants of the SiC medium in the 

area +S  and in the air area S , correspondingly (Fig.1). The segment of the contour L is 
ΔL=L/n, where the limits of integration in the formulae (9-14) are the ends of the segment ΔL. 
The angle θ is equal to g·90° with g from 1 to 4, if the contour of the waveguide cross-section is 
a rectangular one, then the result can be cos θ=±1 and sin θ=±1 in the formulae (11-14).  
We obtain the transversal components of the magnetic field Hx and Hy using SIE method in 
the form analogical formulae (9) – (12) after substituting formula (8) in the formulae (3).  
After we know all EM wave component representations in the integral form we substitute the 
component representations to the boundary conditions (5) and (6). We obtain the homogeneous 

system of algebraic equations with the unknowns +μ (s )e j , +μ (s )jh , μ (s )e j
   and μ (s )h j

 . The 

condition of solvability is obtained by setting the determinant of the system equal to zero. The 
roots of the system allowed us to determine the complex propagation constants of the main and 
higher modes of the waveguide. After obtaining the propagation constant of some required 
mode, the determination of the electric and magnetic fields of the mode becomes possible. For 
the correct formulated problem (Gakhov, 1977) the solution is one–valued and stable with 
respect to small changes of the coefficients and the contour form (Nickelson & Shugurov, 2005).  

 
3. The partial area method  

The presentation of longitudinal components of the electric SiCEz  and magnetic SiCHz  
fields that satisfies Maxwell’s equations in the SiC medium (Nickelson et al., 2008; Nickelson 
et al., 2007) are as follows: 
 

                         SiC +E = A J k r exp(im ),z 1 m   SiC +H = B J k r exp(im )z 1 m  ,   (15) 

where Jm is the Bessel function of the m−th order, A1 and B1 are unknown arbitrary 

amplitudes. The longitudinal components of the electric field aEz  and the magnetic field 
aHz  that satisfy Maxwell’s equations in the ambient waveguide medium (in air) are as 

follows:  
 

                           (2)aE = A H k r exp(im )z 2 m
   ,  (2)aH = B H k r exp(im ),z 2 m

         (16) 
 

where A2 and B2 are unknown arbitrary amplitudes, (2)Hm  is the Hankel function of the 
m−th order and the second kind, r is the radius of the circular SiC waveguide, m is the 
azimuthal index characterizing azimuthal variations of the field, φ is the azimuthal angle.  
A further solution is carried out under the scheme of section 2 of present work. The 
resulting solution is the dispersion equation in the determinant form: 
 

   (2)+A J k r - A H k r = 0,1 m 2 m


   

   (2)+B J k r - B H k r = 0,1 m 2 m

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SiCiωμ μmh + ' +0 rA J k r + B J k r1 m 1 m2 +k+k r
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

 
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     

,
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 
   

 


  
     

SiCiωε εmh + ' +0 rB J k r - A J k r1 m 1 m2 +k+k r

aiωε εmh (2) (2)0 r- B H k r + A H k r = 0.2 m 2 m2 kk r

 (17) 

 

We have used the Müller’s method to find the complex roots. The roots of the dispersion 
equation give the propagation constants of waveguide modes. After obtaining the 
propagation constants of desired modes we can determine the EM field of these modes. 

 
4. Validation of the computer softwares 

We validated all our algorithms. Some of the validation results are presented in this section. 
We have created the computer software based on the method SIE (Section 2) in the 
MATLAB language. This software let us calculate the dispersion characteristics of 
waveguides with complicated cross-sectional shapes as well as the 3D EM field 
distributions. The computer software was validated by comparison with data from different 
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After we know all EM wave component representations in the integral form we substitute the 
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condition of solvability is obtained by setting the determinant of the system equal to zero. The 
roots of the system allowed us to determine the complex propagation constants of the main and 
higher modes of the waveguide. After obtaining the propagation constant of some required 
mode, the determination of the electric and magnetic fields of the mode becomes possible. For 
the correct formulated problem (Gakhov, 1977) the solution is one–valued and stable with 
respect to small changes of the coefficients and the contour form (Nickelson & Shugurov, 2005).  

 
3. The partial area method  

The presentation of longitudinal components of the electric SiCEz  and magnetic SiCHz  
fields that satisfies Maxwell’s equations in the SiC medium (Nickelson et al., 2008; Nickelson 
et al., 2007) are as follows: 
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where Jm is the Bessel function of the m−th order, A1 and B1 are unknown arbitrary 

amplitudes. The longitudinal components of the electric field aEz  and the magnetic field 
aHz  that satisfy Maxwell’s equations in the ambient waveguide medium (in air) are as 
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   ,  (2)aH = B H k r exp(im ),z 2 m

         (16) 
 

where A2 and B2 are unknown arbitrary amplitudes, (2)Hm  is the Hankel function of the 
m−th order and the second kind, r is the radius of the circular SiC waveguide, m is the 
azimuthal index characterizing azimuthal variations of the field, φ is the azimuthal angle.  
A further solution is carried out under the scheme of section 2 of present work. The 
resulting solution is the dispersion equation in the determinant form: 
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We have used the Müller’s method to find the complex roots. The roots of the dispersion 
equation give the propagation constants of waveguide modes. After obtaining the 
propagation constants of desired modes we can determine the EM field of these modes. 

 
4. Validation of the computer softwares 

We validated all our algorithms. Some of the validation results are presented in this section. 
We have created the computer software based on the method SIE (Section 2) in the 
MATLAB language. This software let us calculate the dispersion characteristics of 
waveguides with complicated cross-sectional shapes as well as the 3D EM field 
distributions. The computer software was validated by comparison with data from different 
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published sources, for example, the dispersion characteristics of the rectangular dielectric 
waveguide (Ikeuchi et al., 1981) and the modified microstrip line (Nickelson & Shugurov, 
2005). In Figs. 2 and 3 we see that an agreement of the compared results is very good. In Fig. 
2 the dispersion characteristics of the rectangular waveguide with sizes (15x5)·10-3 m and  
the waveguide material permittivity equal to 2.06 are presented. Our calculations are the 
solid lines and the results from (Ikeuchi et al., 1981) are presented with points.  
The dimensions of the microstrip line (Fig. 3) are given by: d=3.17·10-3 m, w=3.043·10-3 m,  
l1=l2=5·10-3 m, t=3·10-6 m. The permittivity of the microstrip line substrate is 11.8.  
 

 
Fig. 2. Comparison of the dispersion 
characteristics of the rectangular dielectric 
waveguide calculated by SIE algorithm 
presented here and data from (Ikeuchi et. 
al., 1981) 
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Fig. 3. Comparison of the microstrip line 
dispersion characteristics calculated by SIE 
algorithm and data from (Nickelson & 
Shugurov, 2005). 

 

 
(a)            (b) 

Fig. 4. The dispersion characteristics of the circular cylindrical dielectric waveguide: (a) – the 
hybrid modes and  (b) – the axis-symmetric modes. The results taken from (Kim, 2004) are 
presented with solid lines and our calculations are presented with points.  
 
In Fig. 3 our calculations are shown with dots (the main mode), with triangles (the first 
higher mode) and with circles (the second higher mode). In Fig. 3 the data from the book 
(Nickelson & Shugurov, 2005) is shown by the solid line (the main mode), dashed line (the 
first higher mode), dash-dotted line (the second higher mode). 

 

We have also created the computer software on the basis of the partial area method (section 
3) in the MATLAB language for calculations of the dispersion characteristics and the 2D 
&3D EM field distributions of circular waveguides. This software was validated by 
comparison with data from different published sources, for example, with (Kim, 2004). In 
Fig. 4 are shown dispersion characteristics of the circular cylindrical dielectric waveguide 
with a radius equal to 10-2 m and the permittivity of the dielectric equal to 4. In Fig. 4 (a) is 
shown six modes with the azimuth index m=1, are presented and in Fig 4 (b) six modes with 
the azimuth index m=0 are given. In Fig. 4. we see the good agreement between the 
simulations and the experimental results.  
In Fig. 5 we demonstrate the validation of our computer program for calculations of the EM 
fields. We see that in work by (Kajfez & Kishk, 2002) the distribution of the electric field was 
presented by the arrows whose lengths are proportional to the intensity of the electric field 
at different points (Fig. 5(a)).  
 

   
(a)                                                            (b) 

Fig. 5. The electric field distributions of the TM01 mode propagating in the dielectric waveguide: 
(a) – (Kajfez & Kishk 2002) and  (b) –  our calculations are presented by the strength lines  
 
In our electric field distribution, the electric field strength lines are proportional to the 
electric field intensity and also have directions. As far as the TE01 mode is characterized by 
the azimuth index m = 0, we should not see any variations of the electric field by the radius. 
In Fig. 5 (b) we see that the electric field has the radial nature and there are no variations of 
the electric field along the circular the radius. 
The validation of our computer programs was made for different types of the waves having 
the different number of variations by the radius and the different azimuthal index. The 
distributions of the electric fields of other modes are also correct. It should be noticed that we 
have validation our computer programs for calculation of losses in the waveguide slowly 
increasing the losses of the material from Im (εr) = 0 and Im (μr) = 0 up to the required values.  

 
5. The rectangular SiC waveguide 

In this chapter we present the investigations of the electrodynamical characteristics of the 
open waveguides using the algorithm that is described in Section 2. Here we present our 
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published sources, for example, the dispersion characteristics of the rectangular dielectric 
waveguide (Ikeuchi et al., 1981) and the modified microstrip line (Nickelson & Shugurov, 
2005). In Figs. 2 and 3 we see that an agreement of the compared results is very good. In Fig. 
2 the dispersion characteristics of the rectangular waveguide with sizes (15x5)·10-3 m and  
the waveguide material permittivity equal to 2.06 are presented. Our calculations are the 
solid lines and the results from (Ikeuchi et al., 1981) are presented with points.  
The dimensions of the microstrip line (Fig. 3) are given by: d=3.17·10-3 m, w=3.043·10-3 m,  
l1=l2=5·10-3 m, t=3·10-6 m. The permittivity of the microstrip line substrate is 11.8.  
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characteristics of the rectangular dielectric 
waveguide calculated by SIE algorithm 
presented here and data from (Ikeuchi et. 
al., 1981) 
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Fig. 3. Comparison of the microstrip line 
dispersion characteristics calculated by SIE 
algorithm and data from (Nickelson & 
Shugurov, 2005). 
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Fig. 4. The dispersion characteristics of the circular cylindrical dielectric waveguide: (a) – the 
hybrid modes and  (b) – the axis-symmetric modes. The results taken from (Kim, 2004) are 
presented with solid lines and our calculations are presented with points.  
 
In Fig. 3 our calculations are shown with dots (the main mode), with triangles (the first 
higher mode) and with circles (the second higher mode). In Fig. 3 the data from the book 
(Nickelson & Shugurov, 2005) is shown by the solid line (the main mode), dashed line (the 
first higher mode), dash-dotted line (the second higher mode). 
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3) in the MATLAB language for calculations of the dispersion characteristics and the 2D 
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comparison with data from different published sources, for example, with (Kim, 2004). In 
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with a radius equal to 10-2 m and the permittivity of the dielectric equal to 4. In Fig. 4 (a) is 
shown six modes with the azimuth index m=1, are presented and in Fig 4 (b) six modes with 
the azimuth index m=0 are given. In Fig. 4. we see the good agreement between the 
simulations and the experimental results.  
In Fig. 5 we demonstrate the validation of our computer program for calculations of the EM 
fields. We see that in work by (Kajfez & Kishk, 2002) the distribution of the electric field was 
presented by the arrows whose lengths are proportional to the intensity of the electric field 
at different points (Fig. 5(a)).  
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Fig. 5. The electric field distributions of the TM01 mode propagating in the dielectric waveguide: 
(a) – (Kajfez & Kishk 2002) and  (b) –  our calculations are presented by the strength lines  
 
In our electric field distribution, the electric field strength lines are proportional to the 
electric field intensity and also have directions. As far as the TE01 mode is characterized by 
the azimuth index m = 0, we should not see any variations of the electric field by the radius. 
In Fig. 5 (b) we see that the electric field has the radial nature and there are no variations of 
the electric field along the circular the radius. 
The validation of our computer programs was made for different types of the waves having 
the different number of variations by the radius and the different azimuthal index. The 
distributions of the electric fields of other modes are also correct. It should be noticed that we 
have validation our computer programs for calculation of losses in the waveguide slowly 
increasing the losses of the material from Im (εr) = 0 and Im (μr) = 0 up to the required values.  

 
5. The rectangular SiC waveguide 

In this chapter we present the investigations of the electrodynamical characteristics of the 
open waveguides using the algorithm that is described in Section 2. Here we present our 

www.intechopen.com



Properties and Applications of Silicon Carbide124
 

calculations of two SiC waveguides with different cross-sectional dimensions at different 
temperatures. We also present the distributions of the magnetic fields at the temperature of 
500°C. 

 
5.1. The investigation of the rectangular SiC waveguide with sizes  
(2.5x2.5)·10-3 m2 at T=500°C 
The dispersion characteristics of the rectangular SiC waveguide at the temperature 500 °C 
are presented in Fig. 6. The sizes of the rectangular SiC waveguide are 2.5x2.5 mm2. The 
dispersion characteristics of the main mode are shown by solid lines. The dispersion 
characteristics of the first higher mode are shown by dashed lines. Here the complex 
longitudinal propagation constant is h = h'-h''i, the phase constant h' = Re (h) [rad/m] and 
the attenuation constant h'' = Im (h) determines the waveguide losses [rad/mm = 
8.7dB/mm]. Here h’=2π/λw, where λw is the wavelength of the waveguide modes. In our 
calculations the azimuthal index is m = 1, because the main waveguide mode has the index 
equal to unity. The magnitude k is the wavenumber. The permittivity of the SiC material is 
6.5 – 0.5i at the temperature 500°C and the frequency f = 1.41 GHz (Baeraky, 2002). The 
values of the permittivity depend upon frequency (Asmontas et al., 2009).  
Concerning the fact that SiC is the material with large losses at certain temperatures and 
frequencies the complex roots of the dispersion equation were calculated by the Müller method.  
In Fig. 6(a) we see that the main and the first higher modes are slow waves (because 
h’/k > 1. The dependencies of losses of the both modes propagating in the rectangular SiC 
waveguide on the frequency range are pretty intricate (Fig. 6 (b)). The main mode has three 
loss maxima. We discovered that the minimum of the losses of the main mode is 
approximately at f=59 GHz. The losses of the first higher mode have the larger value at the 
frequency of 59 GHz. It means that the first higher mode is strongly absorbed in the 
waveguide at this frequency. Fig. 6 (b) shows the excellent properties of SiC waveguide at  
f = 59 GHz for creation of some devices on the base of the main mode. The SiC waveguide 
could be used for creation of single-mode devices. 
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(a)                                                                           (b) 

Fig. 6. The dispersion characteristics of the rectangular SiC waveguide:  (a) – the dependence 
of the normalized phase constant h'/k upon frequency and  (b) - the dependence of the 
attenuation constant  h’’ upon frequency  

 

The 3D magnetic field distribution of the main mode propagating in the rectangular SiC 
waveguide at T= 500°C and f=30 GHz is presented in Fig. 7.  
 

 
Fig. 7. The 3D vector magnetic field distribution of the main mode propagating in the open 
rectangular  SiC waveguide at T= 500°C and f=30GHz 
 
In Fig. 7 we see that the magnetic field of the main mode is distributed in the form of circles 
in the cross-section of the rectangular SiC waveguide. We can see the vertical magnetic field 
strength lines in the plane of a vertical waveguide wall along the z axis. The calculations 
were made with 100000 points in 3D space.  

 
5.2 The investigation of the rectangular SiC waveguide with sizes  
(3x3)·10-3 m2 at T=1000°C  

The SiC waveguide with sizes (3x3)·10-3 m2 has been analyzed at the temperature T = 1000°C 
(Fig. 8). The values of permittivities depend upon temperature and were taken from 
(Baeraky, 2002). The dispersion characteristics of the rectangular SiC waveguide are 
presented in Fig. 8. 
In Fig. 8(a) are shown the phase constants of two modes propagating in the circular 
waveguide with the azimuth index m=1 (Nickelson & Gric, 2009). We see that the cutoff 
frequency of the main mode is 21 GHz and the first higher mode is 27 GHz. In Fig. 8 (b) we 
see the dependences of losses of the main and the first higher modes on frequency. We see 
that the loss dependences have the waving character. When the frequency is lower than 30 
GHz, the losses of the main mode are larger than losses of the first higher mode at the same 
frequency interval. When the frequency is higher than 30 GHz, the losses of these modes 
have approximately the same values. Comparing the modes depicted in Fig. 8 with the 
analogue modes propagating in the circular dielectric waveguide, we should notice that the 
main mode is the hybrid HE11 mode and the first higher mode is the hybrid EH11 mode.  
Comparing Figs. 6 and 8 we see that the dispersion characteristics can be changed by 
changing temperatures and waveguide cross-section sizes. Especially, we would stress that 
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calculations of two SiC waveguides with different cross-sectional dimensions at different 
temperatures. We also present the distributions of the magnetic fields at the temperature of 
500°C. 

 
5.1. The investigation of the rectangular SiC waveguide with sizes  
(2.5x2.5)·10-3 m2 at T=500°C 
The dispersion characteristics of the rectangular SiC waveguide at the temperature 500 °C 
are presented in Fig. 6. The sizes of the rectangular SiC waveguide are 2.5x2.5 mm2. The 
dispersion characteristics of the main mode are shown by solid lines. The dispersion 
characteristics of the first higher mode are shown by dashed lines. Here the complex 
longitudinal propagation constant is h = h'-h''i, the phase constant h' = Re (h) [rad/m] and 
the attenuation constant h'' = Im (h) determines the waveguide losses [rad/mm = 
8.7dB/mm]. Here h’=2π/λw, where λw is the wavelength of the waveguide modes. In our 
calculations the azimuthal index is m = 1, because the main waveguide mode has the index 
equal to unity. The magnitude k is the wavenumber. The permittivity of the SiC material is 
6.5 – 0.5i at the temperature 500°C and the frequency f = 1.41 GHz (Baeraky, 2002). The 
values of the permittivity depend upon frequency (Asmontas et al., 2009).  
Concerning the fact that SiC is the material with large losses at certain temperatures and 
frequencies the complex roots of the dispersion equation were calculated by the Müller method.  
In Fig. 6(a) we see that the main and the first higher modes are slow waves (because 
h’/k > 1. The dependencies of losses of the both modes propagating in the rectangular SiC 
waveguide on the frequency range are pretty intricate (Fig. 6 (b)). The main mode has three 
loss maxima. We discovered that the minimum of the losses of the main mode is 
approximately at f=59 GHz. The losses of the first higher mode have the larger value at the 
frequency of 59 GHz. It means that the first higher mode is strongly absorbed in the 
waveguide at this frequency. Fig. 6 (b) shows the excellent properties of SiC waveguide at  
f = 59 GHz for creation of some devices on the base of the main mode. The SiC waveguide 
could be used for creation of single-mode devices. 
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Fig. 6. The dispersion characteristics of the rectangular SiC waveguide:  (a) – the dependence 
of the normalized phase constant h'/k upon frequency and  (b) - the dependence of the 
attenuation constant  h’’ upon frequency  

 

The 3D magnetic field distribution of the main mode propagating in the rectangular SiC 
waveguide at T= 500°C and f=30 GHz is presented in Fig. 7.  
 

 
Fig. 7. The 3D vector magnetic field distribution of the main mode propagating in the open 
rectangular  SiC waveguide at T= 500°C and f=30GHz 
 
In Fig. 7 we see that the magnetic field of the main mode is distributed in the form of circles 
in the cross-section of the rectangular SiC waveguide. We can see the vertical magnetic field 
strength lines in the plane of a vertical waveguide wall along the z axis. The calculations 
were made with 100000 points in 3D space.  

 
5.2 The investigation of the rectangular SiC waveguide with sizes  
(3x3)·10-3 m2 at T=1000°C  

The SiC waveguide with sizes (3x3)·10-3 m2 has been analyzed at the temperature T = 1000°C 
(Fig. 8). The values of permittivities depend upon temperature and were taken from 
(Baeraky, 2002). The dispersion characteristics of the rectangular SiC waveguide are 
presented in Fig. 8. 
In Fig. 8(a) are shown the phase constants of two modes propagating in the circular 
waveguide with the azimuth index m=1 (Nickelson & Gric, 2009). We see that the cutoff 
frequency of the main mode is 21 GHz and the first higher mode is 27 GHz. In Fig. 8 (b) we 
see the dependences of losses of the main and the first higher modes on frequency. We see 
that the loss dependences have the waving character. When the frequency is lower than 30 
GHz, the losses of the main mode are larger than losses of the first higher mode at the same 
frequency interval. When the frequency is higher than 30 GHz, the losses of these modes 
have approximately the same values. Comparing the modes depicted in Fig. 8 with the 
analogue modes propagating in the circular dielectric waveguide, we should notice that the 
main mode is the hybrid HE11 mode and the first higher mode is the hybrid EH11 mode.  
Comparing Figs. 6 and 8 we see that the dispersion characteristics can be changed by 
changing temperatures and waveguide cross-section sizes. Especially, we would stress that 
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the SiC waveguide operates in single-mode regime. And the waveguide broadband width is 
approximately 25%. 
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    (a)                 (b)   

Fig. 8. Dispersion characteristics of the main mode and the first higher mode of the 
rectangular SiC waveguide: (a) 往 dependence of the phase constants and (b) 往 dependence 
of the attenuation constants upon frequency. The main mode is denoted with points and the 
first higher mode is denoted with circles. 

 
6. The circular SiC waveguide 

Here we present the investigations of the electrodynamical characteristics of the open 
circular cylindrical waveguides using the algorithms presented in Chapter 3 (Gric et al., 
2010; Asmontas et al., 2009; Nickelson et al., 2009; Nickelson et al. 2008). We propose our 
calculations of the dispersion characteristics of the SiC waveguide with different sizes of 
their cross-sections at several different temperatures. We also give here the 2D electric field 
distributions and the 3D magnetic field distributions.  

 
6.1. The investigation of the circular cylindrical SiC waveguide with the radius  
2.5 mm at three temperatures T=500°C, 1000°C and 1500°C 
In Figs. 9 and 10 are presented the dispersion characteristics of the main and the first higher 
modes propagating in the open circular SiC waveguide at three different temperatures 
500°C (solid line with crosses), 1000°C (solid line with black), 1500°C (solid line with circles).  
The permittivity of the SiC is 6.5 – 0.5i when T=500°C, 7-1i when T=1000°C and 8-2i when 
T=1500°C at f =11 GHZ. In Fig. 9(a) we see that the value of phase constant increases with 
increasing frequency. Comparing the dependence of the phase constant at 500°C, 1000°C 
and 1500°C we see that the higher the temperature is, the higher the values of the phase 
constant are.  
The value of the attenuation constant increases with increasing the temperature and remains 
almost constant at frequencies above 20 GHz. This feature is important for operating of 
modulators and phase shifters which could be created on the basis of such waveguides. The 
EM signal propagating in the waveguide is not modulated by losses. 
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(a)                                                                (b) 

Fig. 9. The dispersion characteristics of the main mode propagating in the circular  SiC 
waveguide: (a) – the dependences of the normalized phase constant and (b)– the dependences of 
the  attenuation constant upon the frequency at the  temperatures 500°C, 1000°C and 1500°C.  
 
In Fig. 10 we present the dispersion characteristics of the first higher modes propagating in 
the circular SiC waveguide at three different temperatures. We see from Fig. 10 (a)  that at 
the low frequencies before 45 GHz the phase constant h’ can be higher at the temperature 
1000°C in comparison with h’ at the temperatures 500°C and 1500°C. Thus the tendency of 
dependences of the complex longitudinal propagation constants upon frequency is 
destroyed for the first higher mode. 
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(a)                                                           (b) 

Fig. 10. The dispersion characteristics of the first higher modes propagating in the circular SiC 
waveguide: (a) – the dependences of the normalized phase constant and  (b) –  the dependences 
of the  attenuation constant upon the frequency at the temperatures 500°C, 1000°C, 1500°C 
 
We see that the changes of attenuation constant curves (Fig. 10 (b) of the first higher mode 
are different compared to the same dependences of the main mode (Fig. 9(b)).  
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the SiC waveguide operates in single-mode regime. And the waveguide broadband width is 
approximately 25%. 
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Fig. 8. Dispersion characteristics of the main mode and the first higher mode of the 
rectangular SiC waveguide: (a) 往 dependence of the phase constants and (b) 往 dependence 
of the attenuation constants upon frequency. The main mode is denoted with points and the 
first higher mode is denoted with circles. 
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Here we present the investigations of the electrodynamical characteristics of the open 
circular cylindrical waveguides using the algorithms presented in Chapter 3 (Gric et al., 
2010; Asmontas et al., 2009; Nickelson et al., 2009; Nickelson et al. 2008). We propose our 
calculations of the dispersion characteristics of the SiC waveguide with different sizes of 
their cross-sections at several different temperatures. We also give here the 2D electric field 
distributions and the 3D magnetic field distributions.  

 
6.1. The investigation of the circular cylindrical SiC waveguide with the radius  
2.5 mm at three temperatures T=500°C, 1000°C and 1500°C 
In Figs. 9 and 10 are presented the dispersion characteristics of the main and the first higher 
modes propagating in the open circular SiC waveguide at three different temperatures 
500°C (solid line with crosses), 1000°C (solid line with black), 1500°C (solid line with circles).  
The permittivity of the SiC is 6.5 – 0.5i when T=500°C, 7-1i when T=1000°C and 8-2i when 
T=1500°C at f =11 GHZ. In Fig. 9(a) we see that the value of phase constant increases with 
increasing frequency. Comparing the dependence of the phase constant at 500°C, 1000°C 
and 1500°C we see that the higher the temperature is, the higher the values of the phase 
constant are.  
The value of the attenuation constant increases with increasing the temperature and remains 
almost constant at frequencies above 20 GHz. This feature is important for operating of 
modulators and phase shifters which could be created on the basis of such waveguides. The 
EM signal propagating in the waveguide is not modulated by losses. 
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(a)                                                                (b) 

Fig. 9. The dispersion characteristics of the main mode propagating in the circular  SiC 
waveguide: (a) – the dependences of the normalized phase constant and (b)– the dependences of 
the  attenuation constant upon the frequency at the  temperatures 500°C, 1000°C and 1500°C.  
 
In Fig. 10 we present the dispersion characteristics of the first higher modes propagating in 
the circular SiC waveguide at three different temperatures. We see from Fig. 10 (a)  that at 
the low frequencies before 45 GHz the phase constant h’ can be higher at the temperature 
1000°C in comparison with h’ at the temperatures 500°C and 1500°C. Thus the tendency of 
dependences of the complex longitudinal propagation constants upon frequency is 
destroyed for the first higher mode. 
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Fig. 10. The dispersion characteristics of the first higher modes propagating in the circular SiC 
waveguide: (a) – the dependences of the normalized phase constant and  (b) –  the dependences 
of the  attenuation constant upon the frequency at the temperatures 500°C, 1000°C, 1500°C 
 
We see that the changes of attenuation constant curves (Fig. 10 (b) of the first higher mode 
are different compared to the same dependences of the main mode (Fig. 9(b)).  
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We have calculated all EM field components with 600 points inside and outside of the SiC 
waveguide. The 3D vector magnetic field distributions of the main mode propagating in the 
circular SiC waveguide at two temperatures 500°C and 1500°C  and when f =  30 GHz are shown 
in Figs. 11 - 12. In Figs. 11(a) -12(a) the distribution of magnetic field lines in the waveguide cross-
section as well as the magnetic field line projections on the vertical xOz and horizontal yOz 
planes in the longitudinal directions are shown. In Figs. 11(b) -12(b) the distributions of 3D vector 
magnetic field lines in the space of front quarter between the vertical xOz and horizontal yOz 
planes are presented. Calculations were fulfilled in the 300 points of every cross-section.  

 
(a) 

 
(b) 

Fig. 11. The 3D  vector  magnetic field distributions of the main mode when T= 500 °C: (a) – 
the cross-section distribution of magnetic field lines as well as their  projections at horizontal 
and vertical planes and (b) –  the 3D vector magnetic field in the space of front quarter 

 

 

 
(a) 

 
(b) 

Fig. 12. The 3D vector magnetic field distributions of the main mode when T= 1500°C: (a) – 
the cross-section distribution of magnetic field lines as well as their  projections at horizontal 
and vertical planes and  (b) –  the 3D vector magnetic field in the space of front quarter  
 
The comparison of the magnetic fields at the temperatures  500°C, 1500°C (Fig. 11 and 12) 
shows that the magnetic field at 1500°C is weaker inside and outside of the waveguide. This 
happened due to the fact that the losses are larger at 1500°C. 
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We have calculated all EM field components with 600 points inside and outside of the SiC 
waveguide. The 3D vector magnetic field distributions of the main mode propagating in the 
circular SiC waveguide at two temperatures 500°C and 1500°C  and when f =  30 GHz are shown 
in Figs. 11 - 12. In Figs. 11(a) -12(a) the distribution of magnetic field lines in the waveguide cross-
section as well as the magnetic field line projections on the vertical xOz and horizontal yOz 
planes in the longitudinal directions are shown. In Figs. 11(b) -12(b) the distributions of 3D vector 
magnetic field lines in the space of front quarter between the vertical xOz and horizontal yOz 
planes are presented. Calculations were fulfilled in the 300 points of every cross-section.  
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(b) 

Fig. 11. The 3D  vector  magnetic field distributions of the main mode when T= 500 °C: (a) – 
the cross-section distribution of magnetic field lines as well as their  projections at horizontal 
and vertical planes and (b) –  the 3D vector magnetic field in the space of front quarter 

 

 

 
(a) 

 
(b) 

Fig. 12. The 3D vector magnetic field distributions of the main mode when T= 1500°C: (a) – 
the cross-section distribution of magnetic field lines as well as their  projections at horizontal 
and vertical planes and  (b) –  the 3D vector magnetic field in the space of front quarter  
 
The comparison of the magnetic fields at the temperatures  500°C, 1500°C (Fig. 11 and 12) 
shows that the magnetic field at 1500°C is weaker inside and outside of the waveguide. This 
happened due to the fact that the losses are larger at 1500°C. 
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6.2. The investigation of the circular SiC waveguide with radius  
3 mm at T = 1000°C 

Here we investigate the SiC rod waveguide (Nickelson et al., 2009). The radius of the SiC 
rod waveguide is 3 mm. The SiC waveguide has been analyzed at the temperature T = 
1000°C. The permittivity of the SiC material at this temperature is 7-1i  at f=11 GHz 
(Baeraky, 2002). The dependences of the phase constant and the attenuation constant of the 
SiC waveguide with the radius r=3 mm when T = 1000 °C on the operating frequency f are 
presented in Fig.13 (a) and (b). 
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                (a)                                                          (b) 

Fig. 13. Dispersion characteristics of the SiC waveguide: (a) – dependence of the phase 
constants and  (b) – dependence of the attenuation constant  upon frequency. The main 
mode is denoted with points,  the first higher mode is denoted with circles, the fast mode is 
denoted with triangles 
 

   
      (a)                                                                            (b) 

Fig. 14. The electric field distribution of the main mode propagating in the SiC waveguide at  
f = 55 GHz: (a) – the electric fields strength lines and (b) – the electric field intensities 
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The electric field distributions of all the propagated modes were calculated at the frequency 
f = 55 GHz. The obtained results are presented in Figs. 14 - 16. Here we present the electric 
field strength lines and the electric field intensities. The intensity of the electric field is 
expressed through a module of the transversal electric field components.  
In Fig. 14 we see that the electric field distribution of the main mode has one variation by 
radius. The strongest electric field of this mode concentrates in the centre of the waveguide 
at a small enough radius. 

   
(a)                                                                      (b) 

Fig. 15. The electric field distribution of the first higher slow mode propagating in the SiC 
waveguide at f =  55 GHz: (a) – the electric fields strength lines  and  (b) – the electric field 
intensities 

 

In Fig. 15 we see that the strongest electric field of this mode concentrates in the large part of 
the waveguide in the form of two twisted lobes. 

     
(a)                                                                       (b) 

Fig. 16. The electric field distribution of the second higher fast mode propagating in the SiC 
waveguide at f = 55 GHz: (a) – the electric fields strength lines and (b) – the electric field 
intensities 
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6.2. The investigation of the circular SiC waveguide with radius  
3 mm at T = 1000°C 

Here we investigate the SiC rod waveguide (Nickelson et al., 2009). The radius of the SiC 
rod waveguide is 3 mm. The SiC waveguide has been analyzed at the temperature T = 
1000°C. The permittivity of the SiC material at this temperature is 7-1i  at f=11 GHz 
(Baeraky, 2002). The dependences of the phase constant and the attenuation constant of the 
SiC waveguide with the radius r=3 mm when T = 1000 °C on the operating frequency f are 
presented in Fig.13 (a) and (b). 
 

 

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70
f, GHz

h'
, m

-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60 70
f, GHz

h'
', 

dB
/m

m

 
                (a)                                                          (b) 

Fig. 13. Dispersion characteristics of the SiC waveguide: (a) – dependence of the phase 
constants and  (b) – dependence of the attenuation constant  upon frequency. The main 
mode is denoted with points,  the first higher mode is denoted with circles, the fast mode is 
denoted with triangles 
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Fig. 14. The electric field distribution of the main mode propagating in the SiC waveguide at  
f = 55 GHz: (a) – the electric fields strength lines and (b) – the electric field intensities 
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The electric field distributions of all the propagated modes were calculated at the frequency 
f = 55 GHz. The obtained results are presented in Figs. 14 - 16. Here we present the electric 
field strength lines and the electric field intensities. The intensity of the electric field is 
expressed through a module of the transversal electric field components.  
In Fig. 14 we see that the electric field distribution of the main mode has one variation by 
radius. The strongest electric field of this mode concentrates in the centre of the waveguide 
at a small enough radius. 

   
(a)                                                                      (b) 

Fig. 15. The electric field distribution of the first higher slow mode propagating in the SiC 
waveguide at f =  55 GHz: (a) – the electric fields strength lines  and  (b) – the electric field 
intensities 

 

In Fig. 15 we see that the strongest electric field of this mode concentrates in the large part of 
the waveguide in the form of two twisted lobes. 

     
(a)                                                                       (b) 

Fig. 16. The electric field distribution of the second higher fast mode propagating in the SiC 
waveguide at f = 55 GHz: (a) – the electric fields strength lines and (b) – the electric field 
intensities 
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In Fig. 16 we see that the electric field distribution of the fast mode has two variations by 
radius. The strongest electric field of this mode concentrates in the centre of the waveguide 
in the form of two small lobes and outside it. We see that the electric field outside the 
waveguide is stronger in the places where the inner waveguide electric field is weaker. 

 
6.3.  The investigation of the circular SiC waveguide with radius  
2.5 mm  when T = 1800°C 
The dependences of the phase constant and the attenuation constant of the SiC waveguide 
with the radius r=2.5 mm when T = 18000C on the operating frequency f are presented in 
Figs. 17 (a) and (b). 
 

 
(a)                                                                (b) 

Fig. 17. Dispersion characteristics of the SiC waveguide: (a) –  dependence of the normalized 
phase constant and (b) – dependence of the normalized attenuation constant  upon 
frequency  
 
There are dispersion curves of three waveguide modes in Fig. 17. The main and first higher 
waveguide modes are slow modes, because their h’/k >1. The third depicted mode is a first 
fast mode because the value h’/k <1 for this mode.  
The cutoff frequencies of the two slow modes are fcut=12.5 GHz and 30 GHz respectively. 
The cutoff frequency of the first fast mode is fcut  = 46 GHz.  
The propagation losses of all analyzed modes (see Fig. 17 (b)) were calculated in the 
assumption that the imaginary part of the complex permittivity Im (εrSiC) is equal to 7 at the 
operating frequency 12.5 GHz. The value Im (εrSiC) decreases when the operating frequency f 
increases, because this magnitude is inversely proportional to the value f (Asmontas et al., 
2009). Analyzing the propagation losses of the slow and fast modes we see that the first slow 
mode has the largest propagation losses in the area of its cutoff frequency. We see peaks on 
the loss curves of the second and third modes. Our research has shown that the position of 
these peaks depends on the waveguide radius also. At smooth reduction of waveguide 
radius the peak of propagation losses will be smoothly displaced to the right side as a 
function of increasing frequencies. 
The electric field distributions of the slow and fast modes are presented in Figs. 18 − 20. The 
distributions of the electric field were calculated in 10000 points. The electric field strength 

 

lines are presented in Figs 18(a) − 20(a). Visualizations of the electric field intensity are 
shown in Figs 18(b) − 20(b). 
The values of the electric Er, Eφ, Ez and magnetic Hr, Hφ, Hz field components of these modes 
are summarized in Table 1. 
 

Table 1. The EM field components in the fixed point (r = 2.4 mm, φ=0, z=0) of the SiC 
waveguide cross-section when T = 18000C. 

 

      
(a)                                                                               (b) 

Fig. 18. The electric field distribution of the first slow mode propagating in the SiC 
waveguide at f = 15 GHz: (a) – the electric fields strength lines and (b) – the electric field 
intensities 
 

Slow modes 
The main  m = 1, f = 15 GHz 

Er, V/m Eφ, V/m Ez, V/m 
2.2·10-2 - 8·10-3i 3.9·10-2 + 4·10-2i 8·10-2 + 1.46·10-1i 

Hr, A/m Hφ, A/m Hz, A/m 
-5.943·10-4 – 6.49·10-4i -1.6·10-5 + 4.267·10-5i 4.148·10-4 - 4.424·10-4i 

The first 
higher 
 

m = 1, f = 50 GHz 
Er, V/m Eφ, V/m Ez, V/m 

1.349·10-4 - 1.582·10-4i 1.554·10-4 +1.204·10-4i 4.205·10-4+ 3.623·10-4i 
Hr, A/m Hφ, A/m Hz, A/m 

-1.604·10-6 -1.127·10-6i 1.32·10-6 -1.643·10-6i 8.011·10-7 -1.115·10-6i 

Fast mode 
The 
second 
higher  

m = 1, f = 51 GHz 
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Hr, A/m Hφ, A/m Hz, A/m 

-3.434·10-4  + 6.650·10-5i 10-3 - 10-3i -2.887·10-4 + 1.958·10-4i 
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In Fig. 16 we see that the electric field distribution of the fast mode has two variations by 
radius. The strongest electric field of this mode concentrates in the centre of the waveguide 
in the form of two small lobes and outside it. We see that the electric field outside the 
waveguide is stronger in the places where the inner waveguide electric field is weaker. 

 
6.3.  The investigation of the circular SiC waveguide with radius  
2.5 mm  when T = 1800°C 
The dependences of the phase constant and the attenuation constant of the SiC waveguide 
with the radius r=2.5 mm when T = 18000C on the operating frequency f are presented in 
Figs. 17 (a) and (b). 
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Fig. 17. Dispersion characteristics of the SiC waveguide: (a) –  dependence of the normalized 
phase constant and (b) – dependence of the normalized attenuation constant  upon 
frequency  
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The electric field distributions of the first slow mode (the main mode) are presented in Fig. 
18. We should notice that the electric field distribution of the first slow mode depicted in 
Fig. 18 (a) is rotated clockwise by 90 degrees respectively to the electric field distribution of 
the same mode propagated in the analogical waveguide made of lossless material SiC with 
Im (εrSiC)=0. In Fig. 18 (a) we can see that electric field strength lines are directed clockwise 
in the I and II quarters and counterclockwise in the III and IV quarters. The electric field 
strength lines are directed radially inside the SiC waveguide. We see that there is only one 
variation of the electric field on the waveguide radius. In Fig. 18 (b) we can see that the 
strongest electric field concentrates in the two areas. These ones are in the waveguide center 
and on the waveguide boundary. We see that the field is inhomogeneously distributed 
along the perimeter of the waveguide boundaries. 
 

 
(a)                                                                        (b) 

Fig. 19. The electric field distribution of the second slow mode propagating in the SiC 
waveguide at f = 50 GHz: (a) – the electric fields strength lines and (b) – the electric field 
intensities 
 
In Fig. 19 we can observe an interesting behavior of the electric field distribution of the 
second slow mode (the first higher waveguide mode) inside the SiC waveguide as well as 
outside it close to its boundary. In Fig. 19 (a) we see that there are two variations of the 
electric field on the waveguide radius. The electric field intensity distribution inside the 
waveguide has an intricate picture in the shape of two lobes. We see that when the distance 
from the waveguide becomes larger the electric field becomes smaller outside the 
waveguide. We should notice that there is a third slow mode (the third higher waveguide 
mode) in the frequency range of 1 – 100 GHz. The cutoff frequency of this mode is fcut = 51 
GHz. The third slow mode has two variations by the radius. The analysis of the third slow 
mode is beyond the present work. 
In Fig. 20 we can see the electric field distribution of the first fast mode propagating in the 
SiC waveguide. The electric field strength lines of the first fast mode (the second higher 
waveguide mode that we study here) have three variations along the radius Fig. 20(a). In 
Fig. 20(b) we can observe that the electric field distribution of the first fast mode inside the 

 

SiC waveguide is in the form of two lobes. The strongest electric field concentrates outside 
the waveguide. The number of variations of a field along the waveguide radius for all the 
modes corresponds to the current understanding about the main and higher modes of 
dielectric waveguides. 
 

 
(a)                                                                        (b) 

Fig. 20. The electric field distribution of the first fast mode propagating in the SiC waveguide 
at f = 51 GHz: (a) – the electric fields strength lines and (b) – the electric field intensities  
 
The comparison of Figs 18-20 shows us that the electric field distributions of different 
waveguide modes are strongly different. 

 
7. The hollow-core SiC waveguide 

The electrodynamical solution of the Helmholtz equation of analogical waveguides has 
already been presented in section 3 (Nickelson et al., 2008). We should mention that the 
argument of the Hankel function changes its sign if there is lossy material outside the 
waveguide. 
The dispersion characteristics of the main and the first higher modes propagating in the 
hollow-core SiC waveguide with r = 1 mm at the temperatures T equal to 20°C, 1250°C, 
1500°C, 1800°C are presented in Figs. 21 and 22.  
In Fig. 21 we see the dependencies of the phase constant and the attenuation constant of the 
main mode  on the frequency f. In Fig. 21(a) we see that the phase constants at temperatures 
T = 1250°C and T = 1500°C practically coincide. We can see that when the temperature 
decreases the cutoff frequencies of the main mode moves to the range of higher frequencies. 
The behavior of the attenuation constant (waveguide losses h’’) are different at temperatures 
T = 1250°C and T = 1500°C (Fig. 21 (b)). The waveguide losses of the main modes became 
lower with increasing frequency until a certain value and after that losses started to increase 
again. We can see that the minima of waveguide losses at temperatures T = 20°C, 1250°C, 
1500°C and 1800°C correspond to frequencies f = 118, 109, 79 and  56 GHz. The waveguide 
losses of the main modes (at different T) decrease in the beginning part of the dispersion 
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The electric field distributions of the first slow mode (the main mode) are presented in Fig. 
18. We should notice that the electric field distribution of the first slow mode depicted in 
Fig. 18 (a) is rotated clockwise by 90 degrees respectively to the electric field distribution of 
the same mode propagated in the analogical waveguide made of lossless material SiC with 
Im (εrSiC)=0. In Fig. 18 (a) we can see that electric field strength lines are directed clockwise 
in the I and II quarters and counterclockwise in the III and IV quarters. The electric field 
strength lines are directed radially inside the SiC waveguide. We see that there is only one 
variation of the electric field on the waveguide radius. In Fig. 18 (b) we can see that the 
strongest electric field concentrates in the two areas. These ones are in the waveguide center 
and on the waveguide boundary. We see that the field is inhomogeneously distributed 
along the perimeter of the waveguide boundaries. 
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Fig. 19. The electric field distribution of the second slow mode propagating in the SiC 
waveguide at f = 50 GHz: (a) – the electric fields strength lines and (b) – the electric field 
intensities 
 
In Fig. 19 we can observe an interesting behavior of the electric field distribution of the 
second slow mode (the first higher waveguide mode) inside the SiC waveguide as well as 
outside it close to its boundary. In Fig. 19 (a) we see that there are two variations of the 
electric field on the waveguide radius. The electric field intensity distribution inside the 
waveguide has an intricate picture in the shape of two lobes. We see that when the distance 
from the waveguide becomes larger the electric field becomes smaller outside the 
waveguide. We should notice that there is a third slow mode (the third higher waveguide 
mode) in the frequency range of 1 – 100 GHz. The cutoff frequency of this mode is fcut = 51 
GHz. The third slow mode has two variations by the radius. The analysis of the third slow 
mode is beyond the present work. 
In Fig. 20 we can see the electric field distribution of the first fast mode propagating in the 
SiC waveguide. The electric field strength lines of the first fast mode (the second higher 
waveguide mode that we study here) have three variations along the radius Fig. 20(a). In 
Fig. 20(b) we can observe that the electric field distribution of the first fast mode inside the 

 

SiC waveguide is in the form of two lobes. The strongest electric field concentrates outside 
the waveguide. The number of variations of a field along the waveguide radius for all the 
modes corresponds to the current understanding about the main and higher modes of 
dielectric waveguides. 
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Fig. 20. The electric field distribution of the first fast mode propagating in the SiC waveguide 
at f = 51 GHz: (a) – the electric fields strength lines and (b) – the electric field intensities  
 
The comparison of Figs 18-20 shows us that the electric field distributions of different 
waveguide modes are strongly different. 

 
7. The hollow-core SiC waveguide 

The electrodynamical solution of the Helmholtz equation of analogical waveguides has 
already been presented in section 3 (Nickelson et al., 2008). We should mention that the 
argument of the Hankel function changes its sign if there is lossy material outside the 
waveguide. 
The dispersion characteristics of the main and the first higher modes propagating in the 
hollow-core SiC waveguide with r = 1 mm at the temperatures T equal to 20°C, 1250°C, 
1500°C, 1800°C are presented in Figs. 21 and 22.  
In Fig. 21 we see the dependencies of the phase constant and the attenuation constant of the 
main mode  on the frequency f. In Fig. 21(a) we see that the phase constants at temperatures 
T = 1250°C and T = 1500°C practically coincide. We can see that when the temperature 
decreases the cutoff frequencies of the main mode moves to the range of higher frequencies. 
The behavior of the attenuation constant (waveguide losses h’’) are different at temperatures 
T = 1250°C and T = 1500°C (Fig. 21 (b)). The waveguide losses of the main modes became 
lower with increasing frequency until a certain value and after that losses started to increase 
again. We can see that the minima of waveguide losses at temperatures T = 20°C, 1250°C, 
1500°C and 1800°C correspond to frequencies f = 118, 109, 79 and  56 GHz. The waveguide 
losses of the main modes (at different T) decrease in the beginning part of the dispersion 
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curves until their minima because the waveguide material has features of a polar dielectric in 
this frequency range. The waveguide losses of main modes increase after points of their 
minima because the waveguide material behaves as conductive media in this frequency range. 
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Fig. 21. The complex dispersion characteristics of the main mode at the different 
temperatures 
 
The dispersion characteristics of the first higher modes propagating in the hollow-core SiC 
waveguide with r = 1 mm at the different temperatures are presented in Fig. 22. We see that 
the behavior of waveguide losses at T = 1800°C is like for waveguide of conductive media. 
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Fig. 22. The complex dispersion characteristics of the first higher mode at the different 
temperatures 

 

 

The features of the first higher mode losses at T = 20°C, 1250°C, 1500°C (Fig. 22b) can be 
explained in the same way as for the main mode (Fig. 21b).  
The electric field distributions of the main hybrid HE11 mode and the first higher hybrid 
EH11 mode propagating in the hollow-core SiC waveguide at T = 20°C and 1800°C are 
presented, correspondingly, in Figs. 23, 24 and 25, 26. In all of these figures, the left side 
shows the electric field strength lines and the right (b) shows the intensity of the electric 
field. All electric field distributions were calculated at frequencies which are close to the 
cutoff frequencies of each investigated mode. The calculation of electric field in the 
waveguide cross-section was executed with 10000 points. We see from Figures 23 (a)-26 (a) 
that HE11 and EH11 modes have only one variation on the waveguide radius. 
 

  
           (a)                                                                            (b) 

Fig. 23. The electric field distributions of the main mode at T = 20°C: (a) –  the electric field 
strength lines and  (b) –  the intensity of the electric field 
 

 
(a)                                                                            (b) 

Fig. 24. The electric field distributions of the main mode at T = 1800°C: (a) –  the electric field 
strength lines and  (b) – the intensity of the electric field 
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curves until their minima because the waveguide material has features of a polar dielectric in 
this frequency range. The waveguide losses of main modes increase after points of their 
minima because the waveguide material behaves as conductive media in this frequency range. 

 

0

2000

4000

6000

8000

10000

12000

10 60 110 160

f, GHz

h'
, m

-1

T=20 T=1250 T=1500 T=1800 k
    

0

1

2

3

4

5

6

7

10 60 110 160

f, GHz

h'
', 

dB
/m

m

T=20 main T=1250 main T=1500 main T=1800 main             
(a)                                                                                 (b)                         

Fig. 21. The complex dispersion characteristics of the main mode at the different 
temperatures 
 
The dispersion characteristics of the first higher modes propagating in the hollow-core SiC 
waveguide with r = 1 mm at the different temperatures are presented in Fig. 22. We see that 
the behavior of waveguide losses at T = 1800°C is like for waveguide of conductive media. 
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Fig. 22. The complex dispersion characteristics of the first higher mode at the different 
temperatures 

 

 

The features of the first higher mode losses at T = 20°C, 1250°C, 1500°C (Fig. 22b) can be 
explained in the same way as for the main mode (Fig. 21b).  
The electric field distributions of the main hybrid HE11 mode and the first higher hybrid 
EH11 mode propagating in the hollow-core SiC waveguide at T = 20°C and 1800°C are 
presented, correspondingly, in Figs. 23, 24 and 25, 26. In all of these figures, the left side 
shows the electric field strength lines and the right (b) shows the intensity of the electric 
field. All electric field distributions were calculated at frequencies which are close to the 
cutoff frequencies of each investigated mode. The calculation of electric field in the 
waveguide cross-section was executed with 10000 points. We see from Figures 23 (a)-26 (a) 
that HE11 and EH11 modes have only one variation on the waveguide radius. 
 

  
           (a)                                                                            (b) 

Fig. 23. The electric field distributions of the main mode at T = 20°C: (a) –  the electric field 
strength lines and  (b) –  the intensity of the electric field 
 

 
(a)                                                                            (b) 

Fig. 24. The electric field distributions of the main mode at T = 1800°C: (a) –  the electric field 
strength lines and  (b) – the intensity of the electric field 
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The electric field distribution of the main mode (at T = 20°C) presented in Fig. 23 was 
calculated at f = 103 GHz. The electric field distribution of the main mode (at T = 1800°C) 
presented in Fig. 24 was calculated at f = 31 GHz. Comparing Fig. 23, 24 we can make a 
conclusion that the electric fields of the main modes propagating in the hollow-core cylindrical 
waveguides at T = 20°C and T = 1800°C are different. The strongest electric field of the main 
mode propagating at T = 20 °C concentrates in the center of hollow-core  and closely to the 
boundary separating SiC and air. However the strongest electric field of the main mode 
propagating at T = 1800°C concentrates in the air area of the hollow-core waveguide. 
The electric field distributions of the first higher modes propagating in the hollow- core SiC 
waveguide at T = 20°C, shown in Fig. 25, was calculated at f = 135 GHz. 
 

 
(a)                                                                           (b) 

Fig. 25. The electric field distributions of the first higher mode at T = 20 °C: (a) – the electric 
field strength lines and (b) – the intensity of the electric field 
 

   
(a)                                                                           (b) 

Fig. 26. The electric field distributions of the first higher mode at T = 1800 °C: (a) – the 
electric field strength lines and (b) the intensity of the electric field 

 

 

The electric field distribution of the first higher mode presented at Fig. 26 was calculated at  
f = 98 GHz. Comparing Figure 25, 26 we can make a conclusion that the electric fields of the 
first higher modes propagating in the hollow-core cylindrical waveguides at T = 20 °C and  
T = 1800 °C have similar response. 

 
8. Conclusions 

We have fulfilled the electrodynamical analysis of rectangular and circular SiC waveguides. 
The rectangular waveguides have been investigated by the SIE method, which is very useful 
and allowed us to analyze waveguides with cross-sections of any intricate shapes. The 
circular waveguides have been investigated by the partial area method. 

Our electrodynamical analysis consists of two steps: 
 The calculation of the dispersion characteristics,  
 The calculation of the EM field distributions. 

The eigenmodes of all investigated SiC waveguides are hybrid modes (Table 1). 

We have noted that losses of the main modes propagating in the rectangular waveguides are 
smaller than losses of the main mode propagating in the circular waveguides at the certain 
frequencies (compare Figs. 6(b) with 9(b) and Figs. 8 with 13(b)). 

We would like to point out that it is possible to find some conditions when the SiC 
waveguide operates in the single-mode regime and the waveguide broadband width is 
approximately 25% (Fig. 8). 

The losses of the main mode propagating in the circular SiC waveguide have practically 
invariable values for frequencies ranging from 20-70 GHz. (Fig. 9(b)). This feature is 
important for operating of modulators and phase shifters which could be created on the basis 
of such waveguides. The EM signal propagating in the waveguide is not modulated by losses. 

Extremely low-loss has a fast wave SiC waveguide. This feature could be used in practice for 
creation of feeder lines and specific devices that require low losses and low distortions of 
transmitted signals (Fig. 13(b)). 

Thus we can conclude that we have carried out the full electrodynamical analysis of some 
SiC waveguides. Our investigations can be useful for creation of  SiC waveguide devices.  
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The electric field distribution of the main mode (at T = 20°C) presented in Fig. 23 was 
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The electric field distributions of the first higher modes propagating in the hollow- core SiC 
waveguide at T = 20°C, shown in Fig. 25, was calculated at f = 135 GHz. 
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Fig. 25. The electric field distributions of the first higher mode at T = 20 °C: (a) – the electric 
field strength lines and (b) – the intensity of the electric field 
 

   
(a)                                                                           (b) 

Fig. 26. The electric field distributions of the first higher mode at T = 1800 °C: (a) – the 
electric field strength lines and (b) the intensity of the electric field 
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