
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1. Introduction

The definition of a model is as following: a model is an abstract and simplified picture of a
reality in the world. From this definition it can be derived that each biomedical model is an
approximation of an organism, organ, tissue, or cell. The reason for the need of models is, that
the originals are much too complex to be described and understood completely.
Let us assume that an individual has to be completely modeled in a computer system,
one has to calculate the information content. This individual should consist of 60 different
atoms. Those are defined to their position with accuracy of ±2 · 10−12[m]. The composition
of the atoms is neglected here. Furthermore, the dimension of the individual is given by
2[m] · 0, 5[m] · 0, 4[m]. The simplification of position, the neglecting of composition, and the
cubic form of the individual is of course a simplification, but let forget about this fact in this
example.
Claude Shannon, the founder of the information theory Shannon (1948), defined the entropy
H of a given information I over an alphabet Z by

H(I) = −
|Z|

∑
j=1

pj · ld(pj), (1)

where pj is the likelihood that the jth symbol zj of the alphabet Z appears in the given
information text I. The unit of entropy is bit. When multiplying H with the number of
characters given in the alphabet, the minimum necessary number of bits for representing the
information is calculated.
The information content (entropy) of the above given example is calculated as H = ld(60) =
5, 9[bit] (Eq. 1). The number of different atom positions in the individual is V/Vd + 1 =
0.43/(64 · 10−36[m3]) + 1 = 625 · 1031 + 1 [atoms]. Having this it is possible to compute the
necessary memory for storing the model: 625 · 1031[atoms] · 5.9[bit/atom] = 3, 68 · 1034. No
computer exists that is able to store and handle this model in a finite time.
On account, this simple example shows that using approximations of the reality is necessary
to address with complexity for understanding life. Complex problems have to be split into
treatable parts, which can then be implemented using modern computers. Such a proceeding
is widely used in computer science e.g. when developing algorithms divide and conquer
technique are applied for simplifying the problem. This allows computing partial solutions
that are then combined to obtain the overall solution.
As it is inevitable to have approximations as models, it seems to be imperative to define the
necessary details in the model. Bossel defined a model following: the scope of the model is the

Bernhard Pfeifer
University for Medical Informatics and Technology Tyrol

Austria

Biophysical Modeling using Cellular Automata

23

www.intechopen.com

key for any model development; its precise specification enables a clear and compact formulation of the
model Bossel (1992); Fischer (2006).

2. Modeling techniques

Numerical simulation is typically based on continuous models. Problems, which consider
independent variables e.g. spatial elements and time can be modeled using partial differential
equations (PDE), and problem without considering more independent variables can be
formulated using ordinary differential equations (ODE). Furthermore, cellular automata can
be used for modeling spatiotemporal problems.

2.1 Ordinary differntial equations

As one example the Lotka-Volterra-Equation Volterra (1926), which is also know as
Predator-Prey-Equation, is a mathematical system based on coupled differential equations,
which describe the dynamics of predator and prey populations. The equations are based on
three rules, which were constructed during World War II on observations of the fish stock in
the Adria. The first rule describes the periodical fluctuations of a population. The fluctuations
of the predator-population are phase-delayed compared to the prey-population. The second
rule describes the stability of the mean value. Although there are periodical fluctuations,
the number of the populations is constant. The last rule describes that the prey-population
is growing faster than the predator-population. If predator- and prey-population becomes
decimated for a defined period, then the prey-population recovers always faster than the
predator-population.
This situation can be mathematical modeled using ordinary differential equations:

dx

dt
= x(α − βy) (2)

dy

dt
= y(δx − γ), (3)

where y is the number of predator-population, x ist the number of prey-population, t
represents the time, dx

dt and dy
dt represents the growth of the given populations against time. α

is the exponential growing rate of the prey population, β is the predator-capture-rate, δ is the
reproduction rate of the predator population, and γ the natural predator death rate.
Models of this type are of importance in theoretical biology, and in epidemiology e.g. for
describing the processes of disease spreading.
The disadvantage is, that the result describes the behavior of the whole population without
having the chance to look at each individual directly. Another point is, that it is impossible to
model topological structures, which may get important for some simulation cases.

2.2 Partial differential equations

As described, using ordinary differential equations enables only to model one dimension.
Therefore, in the Predator-Prey-Model the overall behaviors over the time can be modeled
and expressed. Partial differential equations, however, consider change of state along several
dimensions.
The Predator-Prey-Model can be extended using PDEÕs for modeling spatial variations.
These variations are that a predator has to move in order to catch a prey, and a prey is able to
move for evading a predator. The model can be described as following:

486 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

ut(r, t) = ϕ∇2u(r, t) +
α

b
u(b − u)− γ

uv

u + h
(4)

vt(r, t) = ψ∇2v(r, t) + κγ
uv

u + h
− µv. (5)

The first equation describes the prey population, and the second equation describes the
predator population. α

b u(b − u) describes the local growth and mortality of the prey, γ uv
u+h

describes the predation, κ is the food utilization, and µ the mortality rate of the predator.
The parameter α is the maximal growth rate of the prey, b is the carrying capacity of the
prey population, and h ist the half-saturation abundance of prey. ϕ and ψ are the diffusion
coefficients.

2.3 Spatiotemporal cellular automata modeling

Cellular automata John von Neumann (1966) are discrete dynamical systems, which allow
designing spatiotemporal models based on cell-cell, cell-medium and cell-medium-cell
interactions. Cellular models have been introduced by John von Neumann and Stanislaw
Ulam as computer models for self-reproduction. The constructed automaton consisted of 29
different states per cell. In the 60ies John Horton Conway created the well known zero player
game ÒGame of LifeÓ, which is based on a cellular automaton. Stephen WolframÕs book ÒA
New Kind of ScienceÓ Stephen Wolfram (2002) in the year 2002 tried to show how powerful
cellular automata are, and that they can be used for modeling in sciences. Based on this book,
the public interest increased rapidly and many research laboratories used cellular automaton
models for simulating the dynamics of spatiotemporal problems.

2.3.1 Concept behind cellular automata

Cellular automaton models consists of several interacting cells, each of which having a state
transition function inside, which brings a cell state at time point t in another state for time
point t + 1. Therefore, a CA model can be anatomized in simple finite state machines, or finite
automata.

2.3.1.1 Finite automata

are models for computers for devices with limited resources. A vending machine, but
even a computer system we are used to work with comes into this category. Memory and
computational resources are limited, but in spite of that, one is able to perform complex
operations and simulation using those machines. A deterministic finite automaton can be
defined as following

A = (Q, Σ, δ, q0, F), (6)

where Q describes the set of states, Σ describes the input alphabet, δ is the state transition
function that is defined as δ : Q × Σ → Q. q0 is the start state with q0 ∈ Q. and F represents
the set of accepting or final states with F ⊆ Q.

2.3.1.2 Finite automata interplay

A cellular automaton consists of a quantum of finite automata, which are collaborating. This
collaboration is defined in the state transition function δ where the new state does not only
depend on the actual cell states but also from the neighboring cell states. Furthermore, one has
to decide, which cells should collaborate. Therefore, the cell adjustment and the neighborship

487Biophysical Modeling using Cellular Automata

www.intechopen.com

have to be defined. As each cell also has an output function, the definition of a cellular
automaton can be written as follows

CA = (C, N, Σ, Υ, Q, δ, σ, q0, F), (7)

where C is the cell adjustment, N defines the neighborhood, Σ is the input alphabet, Υ the
output alphabet, and Q describes the set of states. δ is the state transition function with δ :
Q × Qni → Q with ni ∈ N. σ is the output function with σ : Q → A. q0 is the start state with
q0 ∈ Q, and F represents the set of accepting or final states with F ⊆ Q.
As a cellular automaton has a cellular space or lattice, these models allow the visualization
of the automaton states at each time point. The regular lattice L ⊆ Rd consists of several
individual cells, which interact using a neighborhood relation. The interaction neighborhood
can be defined as

N I
b (r) := {r + ci|ci ∈ N I

b} ∈ L, (8)

where N is the interaction neighborhood template, b is the coordinate number, r is the position
of the cell and ci denotes the interacting neighbors.
In two dimensions the only regular polygons forming a regular tesselation are triangles,
rectangles and hexagons NY (1977). The neighborhood is defined as:

Nb = {ci, i = 1, ..., b : ci = (cos(
2π(i − 1)

b
), sin(

2π(i − 1)
b

))}. (9)

3. Disease spread modeling using cellular automaton approach

3.1 History

In the year 431 before Christ, Thukydides noted down about a tragedy that devastated
Athens citizens. The symptoms were dramatic. Young, healthy adults suddenly came down
with an unexplainable disease. This outbreak was the start of an era where epidemics were
recorded. Up to the 20ths century contagious diseases ran rampant and often incurable, which
dramatically reduced the population in case of an outbreak. From the scores of epidemics
occurred in the history, some of them have a special impact up to now: The outbreak came
nearly two millennia after the outbreak in Athens, which brought death and bane over the
world. Medical historians discovered that the plague occurred in the year 1331 in China, and
decimated the population by 50 percent. Over existing trade routes the plague reached Krim
in the year 1346, and from this hub Europe, Northern Africa and the Middle East. The name
of this disease became the embodiment of horror: Black Death. At that time the disease and
the infection was mysterious, but today we know that a bacterium named Yersinia pestis
spread using flea living on black rats, infected individuals, and killed between 1347 and
1351 a third of the Europeans back then. Above all the plague bacterium can be transmitted
from an infected individual to a healthy individual, which is known as airborne infection.
The outbreak changed the behavior of the population in various ways. Some kept themselves
away from remaining population to prevent from population contact, while others started to
live an extensive life. The next outbreak of the plague appeared in 1896, and spread to nearly
every part of the globe. By 1945, the death toll reached approximately 12 million.
Between 1918 and 1920 the Spanish Flu pandemic killed about 20-50 million people, especially
young adults and teens with well working immune systems. No infection, no war, and no
famine have ever had claimed that much victims in a little while. Surprisingly, the outbreak of
the Spanish Flu had no evident impact, because in the heads the scare of the war was present,
and nobody wanted to write about this epidemic.

488 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

An outbreak of the Asian Flu in 1957 resulted in an estimate of one million deaths. The
Hong Kong Flu killed a population of about 700.000 individuals. AIDS, caused by the human
immunodeficiency virus (HIV), was first recognized in the 1980s, and it has killed over 20
million people until now. This disease is now a pandemic, with an estimate of more than 40
million infected individuals at present. Apparently there are several factors, which perpetuate
the spread of AIDS and other infectious diseases, including incautiousness (both sexually and
drug abuse), misconceptions of the transmission and the immense belief in the development
of modern medicine. It is worth pointing out in this context that about 90 percent of the death
from infectious diseases worldwide is caused by only a few of diseases.
Most contagious diseases can be modeled using mathematical approaches to analyze and
understand the epidemiological behavior or for predicting the process. Therefore, different
approaches have been developed in the past. The classic S-I-R epidemic model, where class
S denotes the number of susceptibles, class I denotes the number of invectives and class R
denotes the number of recovered individuals. The sum of the given initial value problem
is S(t)+I(t)+R(t)=N, with N being the number of observed population. However, the SIR
model is not adequate to model natural birth and death, immigration and emigration, passive
immunity and spatial arrangement adequately. To model infection diffusion through space,
partial differential equations (PDE) are needed. With PDE models it is possible to simulate
the spreading of a disease over a population in space and time. However, the integration
of geographical conditions, demographic realities, and keeping track over each individual is
impossible. For this purpose, cellular automaton (CA) models can be used. A CA model is a
dynamical system in which time and space is discrete and is specified by a regular discrete
lattice of cells and boundary conditions, a finite set of cells and states, a defined neighborhood
relation, and a state transition function that is responsible for computing the dynamics of the
cells over the time.
For this purpose cellular automaton (CA) models can be used. A CA model is a dynamical
system in which time and space is discrete and is specified by a regular discrete lattice
of cells and boundary conditions, a finite set of cells and states, a defined neighborhood
relation, and a state transition function that is responsible for computing the dynamics of
the cells over the time. CA models for highly dynamic disease spread simulation are widely
known Beauchemin et al. (2004); Castiglione et al. (2007); Xiao et al. (2006) and shape-space
interactions were introduced for enabling to simulate complex interacting systems. Dynamic
bipartite graphs for modeling physical contact patterns were introduced, which resulted
in more precisely modeling of individualsÕ movements. The graph can be built on actual
census and available demographic data. When analyzing those graphs, the existing hubs can
be found easily. It could be figured out that by using strategies like targeted vaccination
combined with early detection without resorting to mass vaccination of a population an
outbreak could be contained Eubank et al. (2004). The simulation application EpiSims Barrett
et al. (2005), which has been developed at Los Alamos allows simulating different scenarios
by modeling the interaction of the different individuals participating in the simulation. The
knowledge about the paths enables to perform arrangements like quarantine or targeted
vaccination to prevent the disease from further spreading. The model EpiSims was a
reproduction of the city Portland (Oregon), but not a facsimile, because to model the habits of
about 1,6 million individuals would be nearly impossible and furthermore a massive intrusion
into privacy. EpiSims allows to set parameter values for the within-host disease model on
demographics of each person, but also simulating the introduction of counter-measures such
as quarantine, vaccination or antibiotic use can be done. The human mobility information

489Biophysical Modeling using Cellular Automata

www.intechopen.com

is derived from the TRANSIMS model, which estimates the movement of people based on
census data and activity maps taken from defined samples of the population. Using this
specific information Òsocial networkÓ can be modeled for understanding how epidemiology
depends on those characteristics, and furthermore the calculation of the overall economic
pecuniary impact is possible.

3.2 Generic disease spread modeling framework

3.2.1 The class StepResult

The Class Stepresult stores the computed parameters at time point t to generate statistics
and a snapshot of each individual time point.

1 package Pandemie ;
2
3 public c l a s s StepResul t {
4 private s t a t i c StepResul t i n s t a n c e ;
5
6 protected long passiveimmunityfrombirth ;
7 protected long s u s c e p t i b l e ;
8 protected long i n f e c t i v e ;
9 protected long recovered ;

10 protected long k i l l e d b y d i s e a s e ;
11
12 protected long spontanous ;
13 protected long vectored ;
14 protected long c o n t a c t ;
15
16 protected long i n d i v i d u a l s ;
17
18 protected long died ;
19 protected long born ;
20
21 protected long moved ;
22 protected long immigrant ;
23
24 protected long hea l ty ;
25 protected long l a t e n t ;
26 protected long i n f e c t i o u s ;
27 protected long removed ;
28
29 protected long l as tDied ;
30 protected long l a s t K i l l e d D i s e a s e ;

In the attributes (line 4 to 30) the basic computed disease and state values are stored. For
accessing these attributes get methods are implemented.

31 public s t a t i c synchronized StepResul t g e t I n s t a n c e () {
32 i f (i n s t a n c e == null) {
33 i n s t a n c e = new StepResul t () ;
34 }
35 return i n s t a n c e ;
36 }
37
38 protected StepResul t () {
39 }
40 }

490 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Since the step results need to be accessible in different objects like a global attributes, a
singleton pattern Gamma (1994) is used. The instance can be accessed by calling the static
getInstance() method, which is able to access the protected constructor. Furthermore this
method must be synchronized in case multithreading is used to guarantee data consistency.

3.3 The class InfectionParameters

The attributes that are managed by this class describe the disease, demographic and action
parameters. The initialized values are one set with which it is possible to simulate an avian
flu that is highly infective and has a high death rate. Furthermore, parameters for quarantine
and medication can be set for simulating different scenarios.

1 package Pandemie ;
2
3 import j ava . u t i l . Random ;
4
5 public c l a s s In fec t ionParameters {
6 private s t a t i c I n f e c t i o n P a r a m e t e r s i n s t a n c e ;
7
8 protected i n t la tentPer iodDays = 3 ;
9 protected i n t infectousPeriodDays = 1 0 ;

10 protected i n t recoveredRemovedAfterDays = 1 5 ;
11 protected i n t incubationPeriodDays = 3 ;
12 protected i n t symptomaticPeriodDays = 4 ;
13
14 protected double b i r t h r a t e = 0 .002d ;
15 protected double deathra te = 0 .001d ;
16
17 protected double virus_morbidi ty_percent = 0 . 6 3 d ;
18
19 protected double s p o n t a n e o u s _ i n f e c t i o n _ r a t e = 0 .000001d ;
20
21 protected double v e c t o r e d _ i n f e c t i o n _ r a t e = 0 . 3 5 d ;
22 protected double c o n t a c t _ i n f e c t i o n _ r a t e = 0 . 4 5d ;
23
24 protected double movement_probability = 0 . 4 d ;
25
26 protected double immigrantrate = 0 . 0 0 0 0 0 0 1 ;
27
28 protected boolean useQuarantine = f a l s e ;
29
30 protected boolean handleMedication = f a l s e ;
31 protected double medicationOne = 3 . 5 d ;
32 protected double medicationTwo = 5 . 5 d ;
33
34 protected i n t s u s p e c t i b e _ a g a i n _ a f t e r _ r e c o v e r = 1 0 0 ;
35 protected i n t birthimmunityindays = 2 0 ;
36
37 protected long maxCellCapacity = 5 0 0 ;
38
39 protected s t a t i c Random randomGenerator ;
40
41 public s t a t i c synchronized I n f e c t i o n P a r a m e t e r s g e t I n s t a n c e () {
42 i f (i n s t a n c e == null) {
43 randomGenerator = new Random () ;
44 i n s t a n c e = new In fec t ionParameters () ;
45 }

491Biophysical Modeling using Cellular Automata

www.intechopen.com

46 return i n s t a n c e ;
47 }
48
49 protected In fec t ionParameters () {
50 }
51 }

As the access to these parameters is needed by many objects it is also implemented using the
singleton pattern.

3.3.1 The class DiseaseCell

The DiseaseCell class represents one cell of the CA model, in which the individualsÕ
takes place and interact among defined rules. The state transition function δ is inherited
from the super class. This function is responsible for calculating the spreading, and how
infected individuals have to be treated. Therefore, this function calculates death caught by the
disease, followed by adding newborns and removing natural death cases. Then, immigrants
and emigrants are estimated, the vectored, contact, and the spontaneous infection is computed
and in the last step the individual movement is performed.

1 package Pandemie ;
2
3 public c l a s s DiseaseCel l extends C e l l {
4 private ArrayList <Cel l Indiv idual > i n d i v i d u a l s ;

In line 4 a dynamical data structure for storing the individuals that take place in the
cell is introduced.

5 public DiseaseCel l (i n t numberOfIndividuals) {
6 i n d i v i d u a l s = new ArrayList <Cel l Indiv idual > () ;
7
8 for (i n t i = 0 ; i <= numberOfIndividuals − 1 ; i ++) {
9 i n d i v i d u a l s . add (new C e l l I n d i v i d u a l ()) ;

10 }
11 }

When a cell object is instantiated the constructor creates the dynamical data structure that
holds the individuals. Furthermore, the number of individuals is generated in the loop and
stored using the data structure.

12 public boolean performCellAction (CellularAutomaton ca) {
13 t h i s . handleNaturalDeath () ;
14 t h i s . handleNewborns () ;
15
16 t h i s . handleImmigrants () ;
17 t h i s . handleSpontanousInfect ions () ;
18
19 t h i s . handleContac t In fec t ions (ca) ;
20 t h i s . handleVectoredInfec t ions () ;
21
22 t h i s . updateCel l Indiv iduals () ;
23
24 t h i s . handleMovement (ca) ;
25 return true ;
26 }

492 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

The state transition function is the main simulation component of the modeling framework.
In this implemented model the functions for computing death, birth, spontaneous infections,
immigrants, vectored infection contact infection, and individual movement are executed.

27 public void updateCel l Indiv iduals () {
28 for (I t e r a t o r i n d i v i d u a l I t e r a t o r = i n d i v i d u a l s . i t e r a t o r () ;
29 i n d i v i d u a l I t e r a t o r . hasNext () ;) {
30 C e l l I n d i v i d u a l
31 i n d i v i d u a l = (C e l l I n d i v i d u a l) i n d i v i d u a l I t e r a t o r . next () ;
32
33 indiv idua l . updateIndividual () ;
34 }
35 }

The updateIndividual() method is called in order to initialize the models data for
performing the subsequent simulation step over time t.

37 public void handleNewborns () {
38 In fec t ionParameters szParam = Inf e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
39 StepResul t r e s = StepResul t . g e t I n s t a n c e () ;
40
41 ArrayList <Cel l Indiv idual > addIndividuals = new ArrayList <
42 Cel l Indiv idual > () ;
43
44 for (I t e r a t o r i n d i v i d u a l I t e r a t o r = i n d i v i d u a l s . i t e r a t o r () ;
45 i n d i v i d u a l I t e r a t o r . hasNext () ;) {
46 C e l l I n d i v i d u a l i n d i v i d u a l = (C e l l I n d i v i d u a l) i n d i v i d u a l I t e r a t o r .
47 next () ;
48
49 i f ((ind iv idua l . getAgeType () == AgeType .ADULT)
50 || (indiv idua l . getAgeType () == AgeType .TEEN)) {
51 i f (isTheCase (szParam . g e t B i r t h r a t e ())) {
52 C e l l I n d i v i d u a l newborn = new C e l l I n d i v i d u a l () ;
53 newborn . setAgeType (AgeType . KID) ;
54 newborn . se tSuscept ib le InDays (szParam .
55 getBirthimmunityindays ()) ;
56
57 i f (t h i s . isTheCase (0 . 7 d)) {
58 newborn . se tS ta teType (StateType .PASSIVEIMMUNEFROMBIRTH) ;
59 }
60
61 addIndividuals . add (newborn) ;
62 r e s . setBorn (r e s . getBorn () + 1) ;
63 }
64 }
65 }
66 i f (addIndividuals != null)
67 i n d i v i d u a l s . addAll (addIndividuals) ;
68 }
69
70 public void handleNaturalDeath () {
71 In fec t ionParameters szParam = In fe c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
72
73 for (I t e r a t o r i n d i v i d u a l I t e r a t o r = i n d i v i d u a l s . i t e r a t o r () ;
74 i n d i v i d u a l I t e r a t o r . hasNext () ;) {
75 C e l l I n d i v i d u a l i n d i v i d u a l = (C e l l I n d i v i d u a l) i n d i v i d u a l I t e r a t o r .

493Biophysical Modeling using Cellular Automata

www.intechopen.com

76 next () ;
77
78 i f (ind iv idua l . getStateType () == StateType . DIED) continue ;
79 i f (ind iv idua l . getStateType () == StateType . KILLEDBYDISEASE)
80 continue ;
81
82 i f (t h i s . isTheCase (szParam . getDeathrate ())) {
83 i f ((ind iv idua l . getAgeType () == AgeType . KID)
84 || (indiv idua l . getAgeType () == AgeType .TEEN)
85 || (indiv idua l . getAgeType () == AgeType .ADULT)) {
86 i f (t h i s . isTheCase (0 . 7 d)) {
87 indiv idual . se tS ta teType (StateType . DIED) ;
88 }
89 } else {
90 indiv idual . se tS ta teType (StateType . DIED) ;
91 }
92 }
93 }
94 }

Both methods handleNewborns() and handleNaturalDeath() implements the natural
growing and shrinking of a population caused by defined birth and death parameters. When
an individual gets is born a temporary immunity is applied, which protects the individual
from becoming ill by the spreading disease. Furthermore, in this model it is only possible for
adults to get children, which is accordable with natural behavior. During the computation of
natural death cases a stochastic function is used, which gives the different age classes (kids,
teen, adult, elderly) a different likelihood of dieing.

95 public void handleImmigrants () {
96 In fec t ionParameters szParam = Inf e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
97 StepResul t r e s = StepResul t . g e t I n s t a n c e () ;
98
99 i f (t h i s . isTheCase (szParam . getImmigrantrate ())) {

100 C e l l I n d i v i d u a l immigrant = new C e l l I n d i v i d u a l () ;
101 i f (immigrant . getAgeType () == AgeType . KID)
102 immigrant . setAgeType (AgeType .ADULT) ;
103
104 i n d i v i d u a l s . add (immigrant) ;
105 r e s . setImmigrant (r e s . getImmigrant () + 1) ;
106 }
107 }

Defined by the immigration rate parameter the probability of a new immigrant is computed.
If the function returns that a new immigrant is allowed to enter the simulation then the
immigrant is added to the cell as new member. Furthermore, there is a restriction that only
adults and elderly people are allowed to enter. If a individual not being part of this age type
tries to enter, then the age class is adapted in order to fulfill the requirements.

108 protected void handleNeighborCel l Infec t ions (
109 CellularAutomaton ca , In fec t ionParameters szParam ,
110 StepResul t res , double p r o b a b i l i t y) {
111 DiseaseCel l regSZNeighbourCell ;
112
113 for (I t e r a t o r i n d i v i d u a l I t e r a t o r = i n d i v i d u a l s . i t e r a t o r () ;

494 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

114 i n d i v i d u a l I t e r a t o r . hasNext () ;) {
115 C e l l I n d i v i d u a l i n d i v i d u a l = (C e l l I n d i v i d u a l) i n d i v i d u a l I t e r a t o r .
116 next () ;
117
118 i f (szParam . isUseQuarantine () &&
119 (indiv idua l . getQuarantineType () == QuarantineType .QUARANTINE))
120 continue ;
121
122 for (I t e r a t o r i t = neighbourCel l IndexLis t . i t e r a t o r () ;
123 i t . hasNext () ;) {
124 Long element = (Long) i t . next () ;
125 t r y {
126 regSZNeighbourCell = (DiseaseCel l)
127 ca . g e t C e l l (element) ;
128 } catch (Exception e) {
129 continue ;
130 }
131
132 for (I t e r a t o r a d j a c e n t I n d i v i d u a l = regSZNeighbourCell .
133 g e t I n d i v i d u a l s () . i t e r a t o r () ;
134 a d j a c e n t I n d i v i d u a l . hasNext () ;) {
135 C e l l I n d i v i d u a l a d j a c e n t = (C e l l I n d i v i d u a l)
136 a d j a c e n t I n d i v i d u a l . next () ;
137
138 i f (szParam . isUseQuarantine () &&
139 (indiv idua l . getQuarantineType () == QuarantineType .
140 QUARANTINE))
141 continue ;
142
143
144 i f (ind iv idua l . getStateType () == StateType . INFECTIVE) {
145 switch (ad jac ent . getStateType ()) {
146 case SUSCEPTIBLE :
147 boolean i n f e c t i o n = t h i s . isTheCase (p r o b a b i l i t y) ;
148 i f (ad jac ent . getSuscept ib le InDays () > 0) i n f e c t i o n =
149 f a l s e ;
150 i f (ind iv idua l . getDiseaseCycle () == DiseaseCycle .
151 LATENT)
152 i n f e c t i o n = f a l s e ;
153
154 i f (i n f e c t i o n) {
155 ad jacent . se tS ta teType (StateType . INFECTIVE) ;
156 ad jacent . se tDiseaseCyc le (DiseaseCycle .LATENT) ;
157
158 ad jacent . se t In fec tedS inceDays (1) ;
159 res . se tContac t (r es . getContact () + 1) ;
160 }
161 break ;
162 }
163 }
164 }
165 }
166 }
167 }
168
169 protected void handleSameCel l Infect ions (
170 StepResul t res , double p r o b a b i l i t y , boolean c o n t a c t I n f e c t i o n) {
171 . . .

495Biophysical Modeling using Cellular Automata

www.intechopen.com

172 }

Based on the given neighborhood relation the individuals in the cells do have a
likelihood to interact. The methods handleNeighborCellInfections() and
handleSameCellInfections() are responsible for computing these connection
probabilities. Furthermore, when two individuals are contacting and one of them is
suffering from the disease, the infection probability is computed and the individualÕs
parameters are set. Due to the reason that the methods are quite similar the more complex
ones code is depicted (line 108-177).

173 public void handleContac t In fec t ions (CellularAutomaton ca) {
174 In fec t ionParameters szParam = Inf e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
175 StepResul t r e s = StepResul t . g e t I n s t a n c e () ;
176
177 handleSameCel l Infect ions (res , szParam . g e t C o n t a c t _ i n f e c t i o n _ r a t e () ,
178 t rue) ;
179 handleNeighborCel l Infec t ions (ca , szParam , res ,
180 szParam . g e t C o n t a c t _ i n f e c t i o n _ r a t e ()) ;
181 }
182
183 public void handleVectoredInfec t ions () {
184 In fec t ionParameters szParam = Inf e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
185 StepResul t r e s = StepResul t . g e t I n s t a n c e () ;
186
187 handleSameCel l Infect ions (res , szParam . g e t V e c t o r e d _ i n f e c t i o n _ r a t e () ,
188 f a l s e) ;
189 }

The state transition function δ computes the so-called vectored infections and
the contact infections. Thus the methods handleContactInfections() and
handleVectoredInfections() exists, which are using the helper methods
handleNeighborCellInfections() and handleSameCellInfections() described
above.

190 public void handleSpontanousInfect ions () {
191 In fec t ionParameters szParam = Inf e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
192 StepResul t r e s = StepResul t . g e t I n s t a n c e () ;
193
194 for (I t e r a t o r i n d i v i d u a l I t e r a t o r = i n d i v i d u a l s . i t e r a t o r () ;
195 i n d i v i d u a l I t e r a t o r . hasNext () ;) {
196 C e l l I n d i v i d u a l i n d i v i d u a l = (C e l l I n d i v i d u a l) i n d i v i d u a l I t e r a t o r .
197 next () ;
198
199 i f (t h i s . isTheCase (szParam . ge t Spont aneous _ in fec t ion_ra t e ())) {
200 indiv idual . se tS ta teType (StateType . INFECTIVE) ;
201 indiv idua l . se tDiseaseCyc le (DiseaseCycle .LATENT) ;
202 indiv idua l . se t In fec tedS inceDays (1) ;
203 r e s . setSpontanous (r e s . getSpontanous () + 1) ;
204 }
205 }
206 }

If spontaneous infection is turned on in the simulation parameters are used for computing a
probability if a spontaneous infection occurs at the actual time point at the actual individual.

496 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

207 public void handleMovement (CellularAutomaton ca) {
208 In fec t ionParameters szParam = Inf e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
209 StepResul t r e s = StepResul t . g e t I n s t a n c e () ;
210
211 long index = 0 ;
212 i n t whereToMove = 0 ;
213 i n t c t r ;
214 DiseaseCel l regSZNeighbourCell ;
215
216 i n t cellMembers = t h i s . i n d i v i d u a l s . s i z e () ;
217 for (i n t cellNumber = 0 ; cellNumber <= cellMembers − 1 ; cellNumber ++) {
218 i f ((t h i s . isTheCase (szParam . getMovement_probability ())) &&
219 (t h i s . i n d i v i d u a l s . s i z e () > 0)) {
220 whereToMove =
221 Infec t ionParameters . randomGenerator . n e x t I n t (
222 t h i s . getNeighbours () . s i z e ()) ;
223
224 I t e r a t o r f i n d I t e r a t o r = t h i s . getNeighbours () . i t e r a t o r () ;
225 c t r = 0 ;
226 while (f i n d I t e r a t o r . hasNext ()) {
227 i f (c t r >= whereToMove) break ;
228 t r y {
229 regSZNeighbourCell = (DiseaseCel l) ca . g e t C e l l ((Long)
230 f i n d I t e r a t o r . next ()) ;
231 index = regSZNeighbourCell . c e l l I n d e x ;
232 } catch (Exception e) { }
233 c t r ++;
234 }
235
236 t r y {
237 DiseaseCel l newCellPosi t ion = (DiseaseCel l) ca . g e t C e l l (index) ;
238 i f ((newCellPosi t ion . i n d i v i d u a l s . s i z e () < szParam .
239 getMaxCellCapacity ())) {
240 i f ((newCellPosi t ion != null) && (newCellPosi t ion .
241 i n d i v i d u a l s != null)) {
242 C e l l I n d i v i d u a l individuum = t h i s . i n d i v i d u a l s . get (0) ;
243 ArrayList <Cel l Indiv idual > copyIndividuals = new ArrayList
244 <Cel l Indiv idual > () ;
245 ArrayList <Cel l Indiv idual > newIndividuals = new ArrayList
246 <Cel l Indiv idual > () ;
247 newIndividuals . addAll (newCellPosi t ion . i n d i v i d u a l s) ;
248 newIndividuals . add (individuum) ;
249 copyIndividuals . addAll (1 , t h i s . i n d i v i d u a l s) ;
250 t h i s . i n d i v i d u a l s . c l e a r () ;
251 t h i s . i n d i v i d u a l s = copyIndividuals ;
252 newCellPosi t ion . i n d i v i d u a l s . c l e a r () ;
253 newCellPosi t ion . i n d i v i d u a l s = newIndividuals ;
254
255 r e s . setMoved (r e s . getMoved () + 1) ;
256 }
257 }
258 } catch (Exception e) { }
259 }
260 }
261 }

The method handleMovement() computes using a random number if and where the
individuals of the cell should move. Moving paths are strictly limited to the underlying

497Biophysical Modeling using Cellular Automata

www.intechopen.com

neighborhood relation. As expanded neighborhoods can be defined, it is possible that one
individual can move long distances in one single time step. To give one example, using
such a neighborhood relation enables to connect far-off places connected by infrastructur
circumstances like airports. These far distance neighbors can be disconnected during the
simulation, as airports were closed in China during the SARS outbreak.

3.3.2 The class Cellindividual

Each cell is able to hold a set of individuals, and furthermore, each individual has another
finite state automaton working inside. Thus, it is possible to store the actual state and actual
parameters of each individual. Using these parameters it is possible to control each individual
separately. For example, it is possible to set quarantine parameters for some individuals or to
use a special medication. These lists are also known as meme lists.

1 package Pandemie ;
2
3 public c l a s s C e l l I n d i v i d u a l {
4 public enum StateType {
5 PASSIVEIMMUNEFROMBIRTH, SUSCEPTIBLE ,
6 INFECTIVE , RECOVERED, KILLEDBYDISEASE , DIED
7 }
8
9 public enum AgeType {

10 KID , TEEN, ADULT, ELDERLY
11 }
12
13 public enum TreatmentType {
14 MEDICAL1, MEDICAL2, NOTREATMENT
15 }
16
17 public enum QuarantineType {
18 NORMAL, QUARANTINE
19 }
20
21 public enum DiseaseCycle {
22 HEALTHY, LATENT, INFECTIOUS , REMOVED, NIL
23 }

The class CellIndividual stores the memes and the different states of each individual. This
class allows to model and extend any meme list for simulating social behavior more precicely.

24 private StateType stateType ;
25 private AgeType ageType ;
26 private QuarantineType quarantineType ;
27 private TreatmentType treatmentType ;
28 private DiseaseCycle diseaseCycle ;
29
30 private i n t in fec tedSinceDays ;
31 private i n t suscept ib le InDays ;
32 private double m o r t a l i t y R a t e F a c t o r = 1d ;

Here, the representation of the individual states is implemented. The attributes have to be
used for storing the individual memes and states.

498 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

33 public C e l l I n d i v i d u a l () {
34 t h i s . se tS ta teType (StateType . SUSCEPTIBLE) ;
35 t h i s . setTreatmentType (TreatmentType .NOTREATMENT) ;
36 t h i s . se tDiseaseCyc le (DiseaseCycle .HEALTHY) ;
37 t h i s . s e t In fec tedS inceDays (0) ;
38 t h i s . s e tSuscept ib le InDays (0) ;
39
40 i n t ageClass = Infec t ionParameters . randomGenerator . n e x t I n t (4) ;
41 switch (ageClass) {
42 case 0 : t h i s . setAgeType (AgeType . KID) ; break ;
43 case 1 : t h i s . setAgeType (AgeType .TEEN) ; break ;
44 case 2 : t h i s . setAgeType (AgeType .ADULT) ; break ;
45 case 3 : t h i s . setAgeType (AgeType . ELDERLY) ; break ;
46 default : t h i s . setAgeType (AgeType .ADULT) ; break ;
47 }
48 }

When a new individual is generated the constrcutor must be used. Per definition a new
individual is always in state healthy and susceptible, but using the set methods these
parameters can be changed. The used age-type is dependent on a random number ranged
form [1..4].

49 protected double computeMortalityRate (double morbidityValue ,
50 In fec t ionParameters simParam) {
51 double value = 1 . 0 d ;
52
53 i f (simParam . isHandleMedication ()) {
54 value = t h i s . isTheCase (0 . 5 d) ?
55 simParam . getMedicationOne () : simParam . getMedicationTwo () ;
56 }
57
58 return morbidityValue / value ;
59 }

The method computeMortalityRate() computes the probability of an individual to be
killed by the disease dependent on given parameters available in the meme list.

60 protected void updateStateType (In fec t ionParameters simParam) {
61 switch (s tateType)
62 {
63 case PASSIVEIMMUNEFROMBIRTH:
64 t h i s . s e tSuscept ib le InDays (t h i s . ge tSuscept ib le InDays () −1) ;
65 i f (t h i s . ge tSuscept ib le InDays () < 1) {
66 t h i s . s e tSuscept ib le InDays (0) ;
67 t h i s . s e t In fec tedS inceDays (0) ;
68
69 t h i s . se tS ta teType (StateType . SUSCEPTIBLE) ;
70 t h i s . se tDiseaseCyc le (DiseaseCycle .HEALTHY) ;
71 }
72 break ;
73 case SUSCEPTIBLE :
74 t h i s . s e t In fec tedS inceDays (0) ;
75 t h i s . s e tSuscept ib le InDays (0) ;
76 t h i s . se tDiseaseCyc le (DiseaseCycle .HEALTHY) ;
77 break ;
78 case INFECTIVE :

499Biophysical Modeling using Cellular Automata

www.intechopen.com

79 t h i s . s e t In fec tedS inceDays (t h i s . ge t Infec tedSinceDays () + 1) ;
80
81 i f (t h i s . ge t Infec tedSinceDays () >=
82 simParam . getRecoveredRemovedAfterDays ()) {
83 double morta l i tyRate = computeMortalityRate
84 (simParam . getVirus_morbidi ty_percent () , simParam) ;
85
86 i f (t h i s . isTheCase (morta l i tyRate)) {
87 t h i s . se tS ta teType (StateType . KILLEDBYDISEASE) ;
88 t h i s . se tDiseaseCyc le (DiseaseCycle .REMOVED) ;
89 } else {
90 t h i s . se tS ta teType (StateType .RECOVERED) ;
91 t h i s . se tDiseaseCyc le (DiseaseCycle .HEALTHY) ;
92 t h i s . s e t In fec tedS inceDays (0) ;
93 t h i s . s e tSuscept ib le InDays (
94 simParam . g e t S u s p e c t i b e _ a g a i n _ a f t e r _ r e c o v e r ()) ;
95 }
96 }
97 break ;
98 case RECOVERED:
99 t h i s . s e tSuscept ib le InDays (t h i s . ge tSuscept ib le InDays () −1) ;

100 i f (t h i s . ge tSuscept ib le InDays () < 1) {
101 t h i s . se tS ta teType (StateType . SUSCEPTIBLE) ;
102 t h i s . se tDiseaseCyc le (DiseaseCycle .HEALTHY) ;
103 }
104 break ;
105 case KILLEDBYDISEASE :
106 t h i s . se tDiseaseCyc le (DiseaseCycle .REMOVED) ;
107 break ;
108 case DIED :
109 t h i s . se tDiseaseCyc le (DiseaseCycle . NIL) ;
110 break ;
111 }
112 }

This functions is for updating the individuals state. The parameters are stored in the singleton
object, which holds the data of the disease being simulated.

113 protected void updateDiseaseCycle (In fec t ionParameters simParam) {
114 switch (d iseaseCycle)
115 {
116 case HEALTHY:
117 break ;
118 case LATENT:
119 i f (t h i s . ge t Infec tedSinceDays () > simParam . getLatentPeriodDays
120 ())
121 t h i s . se tDiseaseCyc le (DiseaseCycle . INFECTIOUS) ;
122 break ;
123 case INFECTIOUS :
124 i f (t h i s . getStateType () == StateType . KILLEDBYDISEASE)
125 t h i s . se tDiseaseCyc le (DiseaseCycle .REMOVED) ;
126
127 i f (t h i s . getStateType () == StateType .RECOVERED)
128 t h i s . se tDiseaseCyc le (DiseaseCycle .HEALTHY) ;
129 break ;
130 case REMOVED:
131 t h i s . se tDiseaseCyc le (DiseaseCycle . NIL) ;

500 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

132 break ;
133 }
134 }

This functions is for updating the individuals disease life cycle state. The parameters are also
stored in the singleton object, which holds the data of the disease being simulated.

135 public void updateIndividual () {
136 I n f e c t i o n P a r a m e t e r s simParam = In f e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
137 StepResul t sRes = StepResul t . g e t I n s t a n c e () ;
138
139 updateStateType (simParam) ;
140 updateDiseaseCycle (simParam) ;
141
142 i f (simParam . isUseQuarantine ()) checkQuarantine () ;
143
144 a d a p t S t a t i s t i c s (sRes) ;
145 }

Each individual state needs to be updated after a simulation step. The method
updateIndividual() handles this and calls a method for updating the step and individual
statistics for performing analysis afterwards.

146 public void a d a p t S t a t i s t i c s (S tepResul t sRes) {
147 switch (s tateType)
148 {
149 case PASSIVEIMMUNEFROMBIRTH:
150 sRes . setPassiveimmunityfrombirth (
151 sRes . getPassiveimmunityfrombirth () + 1) ;
152 break ;
153 case SUSCEPTIBLE :
154 sRes . s e t S u s c e p t i b l e (sRes . g e t S u s c e p t i b l e () + 1) ;
155 break ;
156 case INFECTIVE :
157 sRes . s e t I n f e c t i v e (sRes . g e t I n f e c t i v e () + 1) ;
158 break ;
159 case RECOVERED:
160 sRes . setRecovered (sRes . getRecovered () + 1) ;
161 break ;
162 case KILLEDBYDISEASE :
163 sRes . s e t K i l l e d b y d i s e a s e (sRes . g e t K i l l e d b y d i s e a s e () + 1) ;
164 break ;
165 case DIED :
166 sRes . setDied (sRes . getDied () + 1) ;
167 }
168
169 switch (d iseaseCycle)
170 {
171 case HEALTHY:
172 sRes . se tHeal ty (sRes . getHealty () + 1) ;
173 break ;
174 case LATENT:
175 sRes . s e t L a t e n t (sRes . ge tLatent () + 1) ;
176 break ;
177 case INFECTIOUS :
178 sRes . s e t I n f e c t i o u s (sRes . g e t I n f e c t i o u s () + 1) ;

501Biophysical Modeling using Cellular Automata

www.intechopen.com

179 break ;
180 case REMOVED:
181 sRes . setRemoved (sRes . getRemoved () + 1) ;
182 break ;
183 case NIL :
184 sRes . setRemoved (sRes . getRemoved () + 1) ;
185 break ;
186 }
187 }

Updates the general statistics data after each simulation steps.

188 public void checkQuarantine () {
189 I n f e c t i o n P a r a m e t e r s simParam = In f e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
190 switch (s tateType)
191 {
192 case INFECTIVE :
193 i f (t h i s . ge t Infec tedSinceDays () > simParam . getIncubationPeriodDays
194 ()) {
195 t h i s . quarantineType = QuarantineType .QUARANTINE;
196 } e ls e t h i s . quarantineType = QuarantineType .QUARANTINE;
197 break ;
198 default : t h i s . quarantineType = QuarantineType .QUARANTINE;
199 }
200 }
201 }

The method checkQuarantine() is used by the state transition function in case the
quarantine option is enabled. If an individual is infected, if the individual shows symptoms,
and if quarantine is enabled then the individual is set to quarantine. In this case the individual
has no, or a very limited chance, to infect a healthy individual.

3.4 The class DiseaseSpreadCellularAutomaton

1 package Pandemie ;
2
3 public c l a s s DiseaseSpreadCellularAutomaton extends CellularAutomaton {
4 public s t a t i c i n t t imers = 0 ;
5
6 public void compute () {
7 StepResul t sRes = StepResul t . g e t I n s t a n c e () ;
8 In f e c t i o n P a r a m e t e r s simParam = I n f e c t i o n P a r a m e t e r s . g e t I n s t a n c e () ;
9

10 long t imer ;
11 System . out . p r i n t l n (sRes . getHeader ()) ;
12
13 for (t imer = t h i s . ge tStar tTime () ; t imer <= t h i s . getStopTime () ;
14 t imer ++) {
15 System . out . p r i n t (t imer + "\ t ") ;
16
17 super . compute () ;
18
19 t h i s . writeSpread (" i n d i v i d u a l s " , f a l s e) ;
20 t h i s . writeSpread (" s u s c e p t i b l e " , f a l s e) ;
21 t h i s . writeSpread (" i n f e c t e d " , f a l s e) ;
22 t h i s . writeSpread (" recovered " , f a l s e) ;

502 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

23 t h i s . writeSpread (" combined " , t rue) ;
24
25 adaptParameters (timer , 15 , true , fa lse , simParam ,
26 sRes , 1 . 2 d , 1 . 5 d , 1 . 1 d , 1 . 0 5 d) ;
27 useQuarantineAfter (timer , 50 , fa lse , simParam) ;
28 }
29 }

The class DiseaseSpreadCellularAutomaton is inherited from the basic class named
CellularAutomaton. The function of the compute() method is to iterate through the CA
cells and calls the state transition function δ. Therefore, the method iterates from the start timer
to the end point and calls the compute method of the super class. The super class itself calls the
method performAction(), which is known as the state transition function δ. Furthermore,
using the helper method writeSpread() the simulation step data is persistently stored, and
the method adaptParameters() is used for adapting the social behavior and the contact
probability. The method useQuarantineAfter() could be used for drastic intervention
into the system - the usage of quarantine can be enabled and parametrized.

30 public long countIndividuals () {
31 long i n d i v i d u a l s = 0 ;
32 for (I t e r a t o r c e l l I t e r a t o r = t h i s . g e t C e l l L i s t () . i t e r a t o r () ;
33 c e l l I t e r a t o r . hasNext () ;) {
34 DiseaseCel l c e l l = (DiseaseCel l) c e l l I t e r a t o r . next () ;
35
36 for (I t e r a t o r i n d i v i d u a l I t e r a t o r = c e l l . g e t I n d i v i d u a l s () .
37 i t e r a t o r () ;
38 i n d i v i d u a l I t e r a t o r . hasNext () ;) {
39 C e l l I n d i v i d u a l indiv =
40 (C e l l I n d i v i d u a l) i n d i v i d u a l I t e r a t o r . next () ;
41
42 i f ((indiv . getStateType () != StateType . DIED) &&
43 (indiv . getStateType () != StateType . KILLEDBYDISEASE))
44 i n d i v i d u a l s ++;
45 }
46 }
47
48 return i n d i v i d u a l s ;
49 }
50
51 public void useQuarantineAfter (long timer , i n t time , boolean doIt ,
52 In fec t ionParameters simParam) {
53 i f ((t imer >= time) && (doI t))
54 simParam . setUseQuarantine (t rue) ;
55 }
56
57 public void adaptParameters (long timer , long reduceAfter , boolean doIt ,
58 boolean stopSpontanous , In fec t ionParameters simParam ,
59 StepResul t sRes , double reduceSpontanousFactor ,
60 double reduceMorbidityFactor , double reduceContactFactor ,
61 double reduceVectoredFactor) {
62 i f ((stopSpontanous) && (sRes . g e t I n f e c t i v e () > 0))
63 simParam . s e t S p o n t a n e o u s _ i n f e c t i o n _ r a t e (0 . 0 d) ;
64
65 i f ((doI t) && ((t imer % reduceAfter) == 0)) {
66 i f (sRes . g e t I n f e c t i v e () > 0)
67 simParam . s e t S p o n t a n e o u s _ i n f e c t i o n _ r a t e (

503Biophysical Modeling using Cellular Automata

www.intechopen.com

68 simParam . ge tSpo nt aneous _ i n fec t ion_ra t e () /
69 reduceSpontanousFactor) ;
70
71 simParam . setVirus_morbidi ty_percent (
72 simParam . getVirus_morbidi ty_percent () / reduceMorbidityFactor) ;
73 simParam . s e t C o n t a c t _ i n f e c t i o n _ r a t e (
74 simParam . g e t C o n t a c t _ i n f e c t i o n _ r a t e () / reduceContactFactor) ;
75 simParam . s e t V e c t o r e d _ i n f e c t i o n _ r a t e (
76 simParam . g e t V e c t o r e d _ i n f e c t i o n _ r a t e () / reduceVectoredFactor) ;
77 }
78 }
79 }

3.5 Sample of a virus disease spread simulation

3.5.1 Geographic model

3.5.1.1 Austria

In the first simulation scenario a map of Austria was used. The model was simplified due to a
homogenous population density over the whole country. The used map is depicted in figure
1.

Fig. 1. Geographical map of Austria with its nine states.

3.5.1.2 Tyrol

For the second simulation scenario the state Tyrol was chosen. Tyrol has 660.000 inhabitants,
where about 115.000 inhabitants are living in the capital Innsbruck. The total area is 10.628
square kilometers. The area of settlement is about 1.600 square kilometers. Figure 2 depicts
the geographical map of Tyrol and the population density is figured using colors from white,
light yellow up to red.

3.5.1.3 Parameters

The simulated infectious disease used for the simulation is similar to the avian flu, except
for the imperative difference that this virtual virus can be transmitted between human beings
directly with a relatively high likelihood. Therefore, this virtual form of the H5N1 avian flu
virus can be considered a dangerous mutation, which could have the power to effect an
epidemic/pandemic situation. Table 2 depicts the parameters that have been used for the
simulation experiments.

504 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 2. population density of state Tyrol. The used colors (from white to red) for the
population densities specify the density steps from 0, 200, 400, 600, 800 and 1000 inhabitants
per square kilometer. The color light gray was used to describe the non-state area.

Table 1. default

Description Value

Latent period in days 3
Infectious period in days 10

Recovered or removed after days 15
incubation period in days 3

Symptomatic period in days 4
Natural birth rate in percent 0.002
Natural death rate in percent 0.001

Virus morbidity in percent 0.63
Spontaneous infection rate in percent 0.00001

Vectored infection rate in percent 0.4
Contact infection rate in percent 0.6
Movement probability in percent 0.4

Immigration rate in percent 0.0000001
Re-Susceptible (temporary immunity) after days 100

Temporary immunity after birth in days 20

Table 2. Different parameters that were used during the simulation. After 100 time steps, the
temporary immunity (Re-Susceptible after days) is lost completely. The parameter values for
the infection cycle and the virus morbidity were chosen from the knowledge about the H5N1
human infections. The infection rate (vectored and contact) is supposed to be high in order to
simulate a very aggressive (mutated) form of the virus that easily spreads from one
individual to another. The other parameters were taken to model the behavior of the state
Tyrol best possible.

505Biophysical Modeling using Cellular Automata

www.intechopen.com

3.5.2 State transition function δ

The algorithm iterates through each cell of the CA. Each cell represents a small area of
the used geographical map and performs the operations of the n individuals placed in the
cell (=location). The above described method performCellAction() computes the next
discrete time step by considering following steps:

1. Handle the natural death cases

2. Handle the natural birth cases

3. Compute death caused by the disease

4. Compute the immigrants

5. Compute vectored infections

6. Compute contact infections

7. Compute spontaneous infections

8. Handle recovered individuals

9. Handle re-susceptible

10. Perform movement operations of the individuals

11. Adapt parameters according specification

12. Create output for actual time step

The steps (1-11) are performed until the specified number of time steps for the simulation is
reached. During the simulation process snapshots of the actual distributions are created and
furthermore, the data for subsequent statistical analysis is generated and stored. With this
information it is possible to track each individual and to reconstruct the occured interactions.
This enables the usage of statistical approaches for better understanding the disease spread
mechanisms and to identify the best possible way to stop the spreading.

3.5.3 Simulation results

3.5.3.1 Austria

Three scenarios were simulated. The infection seed point was set to the capital of Austria,
Vienna. In scenario A, neither medical treatment was provided nor was quarantine declared.
In scenario B, two different medications were used for the treatment, but quarantine
was not considered. The medication was aimed at increasing the healing chances by
45-55 percent. In scenario C, individuals were submitted to both, medical treatment and
quarantine. Furthermore, the social behavior changes of the individuals during the simulation
was considered. These behaviors werde modeled because when a disease is circulating,
individuals are very cautious contacting others to minimize their own risk of infection.
Figure 3 depicts the development of the susceptibles over the time. As expected from declaring
a quarantine status in scenario C, the infection spread stops.
Figure 4 shows the characteristics of the infection over the time in percent and in Figure 5, the
fatal cases are illustrated. Assuming that there is no medication, and no quarantine declared,
the highest death toll is observed. The difference between scenario B and C is based on the
fact that in scenario B the medication is given from the first day on, whereas in scenario C the
medication and the quarantine start 50 days after the outbreak.

506 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 3. Susceptible individuals over the simulated period.

Fig. 4. Development of the infection over the simulated period.

507Biophysical Modeling using Cellular Automata

www.intechopen.com

Fig. 5. Fatal cases of the three simulated scenarios.

Figure 6 depicts the parameters individuals, susceptible, infected and removed. As presented
in figure 4b, the medi-cation slows down the spreading and reduces the fatal cases
dramatically. When quarantine is consistently applied, the spread is controlled after a few
days.

Figure 7 depicts the spatial results of the scenarios A, B, C at time point 50 days after
outbreak. The dots and grey surfaces depict the areas where infected individuals are located.

At time point 65 days after outbreak (figure 8) the difference between the three simulated
scenarios can be seen clearly. When no treatment and no quarantine are applied, the infection
spreads the most. The enacted quarantine (C) was able to stop the disease from further
spreading few days, the fatal cases were also reduced in scenario B but the disease was still
spreading.

3.5.3.2 Tyrol

Eight different scenarios were simulated 4. The seed point of the infection was set to the capital
Innsbruck. In the first scenario (scenario A), the disease spread in the state Tyrol where medical
treatment was performed. Two different drugs are available for infected individuals. Drug one
reduces the death rate by 55 percent, whereas drug two reduces the death rate by 45 percent.
The social behavior of the individuals changes during the simulation time, which would also
occur in a real situation. When a fatal disease is circulating, individuals are very cautious
contacting others to minimize their infection risk. The second scenario (scenario B) is similar
to scenario A with the difference that no medical treatment is performed. Scenario C and
D is equal to A and B with the difference that there is no adaptation of the social behavior.
Scenario E and F is equal to scenario A and B with the difference that after 50 time steps
a strictly controlled quarantine is introduced. In the last two scenarios (An, Bn), the same
simulation parameters were applied as in A and B with the difference that no geographical and
population density was used. Therefore, each cell covers the mean number of individuals from

508 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 6. Population, susceptibles, infected and removed individuals over the simulated period.

509Biophysical Modeling using Cellular Automata

www.intechopen.com

Fig. 7. Screenshot of the spatial result for scenarios A, B, C 50 days after outbreak.

the state Tyrol model. By comparing these scenarios with A and B, it is possible to find out
the relevance of geographical (natural barriers) and population density information. The blue
color (Ind) is used for the population, red color (S) depicts the susceptible individuals, yellow
(I) is used to visualize the infected individuals and the green color (R) was taken to depict the
removed or temporarily immune individuals. The virus’s transmissibility (R0 value) is such
that each infectious case gives rise to 3.4 secondary infectious cases. The following figures
(from figure 9 to figure 16) depict the classes susceptible (S), infected (I), and removed (R).

Table 3. default

scenario medication quarantine social behavior geographical conditions
A x x x
B x x
C x x
D x
E x x x x
F x x x

An x x
Bn x

Table 4. Overview of the different simulation scenarios in tabular view (x stands for true, no
character for false). For more information see text.

In figure 17, the changes in population over the time are depicted. Figure 18 shows the fatal
cases caused by the disease aggregated per month.
In the simulation, the value for the natural birth rate was 0.002 and the natural death rate 0.001.
An infected individual can be removed during the simulation for three different reasons. The
first way is that the individual is removed because of natural death, and then the individual
can be removed because the disease ended fatal and the third way to be removed to another
class is that the individual got healthy again. Figure 19 shows the percentage between natural

510 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 8. Screenshot of the spatial result for scenarios A, B, C 65 days after outbreak.

511Biophysical Modeling using Cellular Automata

www.intechopen.com

Fig. 9. Scenario A. Medical treatment is performed, and social behavior changes during the
arising situation.

Fig. 10. Scenario B. No medical treatment is performed. Only the social behavior changes
during the simulation run.

512 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 11. Scenario C. Medical treatment is performed, but no changes in the individuals’
behavior is simulated.

Fig. 12. Scenario D. No medical treatment and no change in the behavior is applied.

513Biophysical Modeling using Cellular Automata

www.intechopen.com

Fig. 13. Scenario E. Equal to scenario A with the difference, that after 50 days a controlled
quarantine is applied.

Fig. 14. Scenario F. Equal to scenario B with the difference, that after 50 days a controlled
quarantine is applied.

514 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 15. Scenario An. Equal to scenario A with the difference that no geographical
information was used. The population was therefore homogenous.

Fig. 16. Scenario Bn. Equal to scenario B with the difference that no geographical information
was used. The population was therefore homogenous.

515Biophysical Modeling using Cellular Automata

www.intechopen.com

Fig. 17. Population change over the time.

Fig. 18. Fatal cases aggregated per month.

516 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

death and diseases fatal cases for the simulated scenarios A to F and An, and Bn. The
presented values are mean values per day.

Fig. 19. Percentage diagram with mean cases per day. The figure shows clearly, that in the
scenarios B, Bn, F, and especially D the death cases caused by the disease prevail.

When adding the natural births, it is possible to predict the population development during
the disease spread. Figure 20 shows, as expected, that the population decreases in each
scenario, but scenario D shows a dramatic decrease in the population.
The parameters used for the diseases life cycle were 3 days for the latent period, 10 days for
the infectious period, the incubation period was set to 3 days and the symptomatic one to 4
days. After 15 days, the individual get removed or recovers from the disease. Figure 21 shows
the ratio between the disease life cycle states. It is clearly visible that in simulation scenario
D the most infections occur and the disease is able to spread the most. Furthermore, when
comparing the scenarios A with An and B with Bn it can be figured out that the presence of
geological and demographic realities reduces the spreading in a natural way.
The pie chart presented in figure 22 shows the perceptual distribution of the fatal cases per
day.
The simulation showed that the geographic structure of the area is of importance as natural
barriers slow down the velocity of the spread. A slower velocity coupled with the change
of the natural behavior of the individuals helps to reduce cases of death. Because in this
simulation the temporary immunity was set to 100 days, the figures show a periodicity with
decreasing amplitude.
As a cellular automaton has a cellular space or cellular lattice, these models allow the
visualization of the automaton states at each time point. The regular lattice consists of several
individual cells, which interact using a neighborhood relation. In this simulation, a Moore
neighborhood instead of a von Neumann neighborhood or 2-radial neighborhood was taken
for the simulation. It has to be noted down that when simulating the scenarios using a

517Biophysical Modeling using Cellular Automata

www.intechopen.com

Fig. 20. Development of the population during the outbreak within the different scenarios.

Fig. 21. Tracking of the disease life cycle for the individuals for the different simulation
scenarios.

518 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 22. Percential distribution of fatal cases per day computed by using mean value.

2-radial or von Neumann neighborhood the graphical representation is smoother and ringlike
compared to the presented ones, but the overall behavior is almost equal.
Figure 23 depicts the spatial results of the disease spread for scenario A. When analyzing
the spreading, one can see that the geographical properties and the different densities in the
valleys of Tyrol are responsible for slowing down the outbreak. However, the geographical
conditions are unable to stop the outbreak completely.

3.5.3.3 Computing time

The run time of the simulation for the state Tyrol simulation was µ = 51.87 [min] minutes
(σ = 1.87 [min]) per scenario (simulation of 365 time steps per scenario) with four scenarios
started parallel on the same machine. The run time of the simulation for Austria was 5.4 [h]
hours per scenario. The simulation was performed using an Apple X-Serve 1.1 OS X Server
Version 10.4.10 with 2 x 2 GHz Dual Core Intel Xeon processor and 2 GB of RAM installed.
The mean storage per scenario was about 10 MB (spatiotemporal snapshots per time step and
overall information). The maximum capacity of the framework is only limited by the available
memory. A simulation with 10 billion individuals, which is enough to simulate a spread of a
disease over the whole globe, would be possible, however, the simulation time would be high.
Since the insights, which wanted to be obtained on mechanisms and procedures of disease
spread, are based on extensive and complex simulations, it is of great importance to have
the possibility to run a large number of simulations or simulations on fine-grained models
in a short period without the worry of long simulation periods. It is vital to have the
opportunity to experiment with different parameters of the models, in terms of vaccination
strategies, behavioral patterns of individuals, model variations and so on. At the European
Grid Conference in Amsterdam a framework Wurz & Schuldt (n.d.) for seamless parallel
execution of various kinds of algorithms was published. The framework can be used to
schedule execution of software in parallel without the burden for the application developer

519Biophysical Modeling using Cellular Automata

www.intechopen.com

Fig. 23. The colors were used as following: green describes individuals in the state
susceptible (S), gentle-pink marks individuals as in state infective (I) and dark blue marks the
individuals as to be in state recovered (R). The first graphic depicts the simulation after 20
days. Although the simulation has started in the capital of Tyrol, in Innsbruck, after 20 days
there are some outbreaks in the west of the state and in the east, which results form the fact
that individuals are moving from cell to cell. Furthermore, unknown activities, which are
denoted as spontaneous infection, are responsible for these characteristics. The second image
shows a snapshot 80 days later at the time point 100 days after the infection started. It is
clearly visible that in the capital where the disease spread started most people are in state
recovered. Individual who did not die from the disease do have a temporary immunity. More
than 50% of the individuals are in state infected. The last image shows a snapshot at time
point 200 days after outbreak where individuals may get infected again. This represents the
second outbreak wave with smaller amplitude.

520 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

to know details about the computational resources available, and that the framework,
acting as a middleware, allows for a dynamic adaptation of the scheduling process.The
framework is designed to cope with heterogeneous resources in a dynamic and rather instable
network, so that it can be used to utilize computation power available on the Internet or
the universities network to speed up simulations of the CA Framework or add additional
facets like visualization Ôon the flyÕ. The usage of grid computing in CA model simulation
lends itself to be perfect as CA models can be parallelized perfectly. In the first simulation, an
Apple Xgrid environment was used. Apple’s Xgrid technology enables to use ad hoc groups
of Macintosh system into low-cost supercomputer.

3.6 Summary

The framework enables the simulation of different communicable diseases by specifying the
disease parameters and demographic characteristics. Furthermore, the population can be
divided into subgroups, which enables to simulated different impacts of the disease on each
individual. The described scenarios demonstrated that CA and agent based models can be
used for simulating and visualizing the spread and the adherent impact of infectious diseases.
Furthermore, the simulation environment allows the access to any individual parameter at
any point in time of the simulation, which enables detailed statistical analysis. Although
the connections and the affiliated behavior between the individuals can be modeled using
different neighborhood relations, the behavior of any individual in these models depends on
functions using random numbers. For upgrading the behavior algorithms, social behavior
approaches should be used and the computation of the economic impact should be computed
for better creation of public health strategy plans for managing fatal diseases. The natural
manner Ð let us call it "Groundhog Day" - that most individuals do have a way of living
caused by their daily workflow, can not be modeled correctly, using such functions. To solve
this problem, virtual worlds could be helping. The well-known Second Life, where millions of
people do live an additional life and do also have a behavior, which is very similar compared
to their own, should be observed for simulations. One has to keep in mind, that building a
population model from census and demographic data statistically equal to one in the real
world would be very complex but also a deep impact to privacy, and therefore, afflicted with
many of problems.
Recapitulatory one can state, that the proposed CA framework is able to support public health
offices by providing them with information for creating plans to manage such situations and
to prevent serious long-term economic repercussions.

4. Imaging of the cardiac electrical function using cellular automaton approach

4.1 Introduction

Simulation of the electrocardiogram (ECG) and of the body surface potential (BSP) have
been a research topic during the last decades. Nowadays, because of the enormous computer
power available and because of extensive knowledge about cardiac electrophysiology from
the cellular to the tissue level, sophisticated three-dimensional approaches have been
developed. Although, the models became very attractive during the last years, there are still
extensive problems in making them useful for cardiovascular diagnosis and therapy. First,
the individual parameters like fibre architecture, conductivities and others are not available
to that extension needed. Second, today, the used cell membrane models have to consider
molecular function as well. Finally, the models should be validated based on human data from
the cellular to the organ level. This will imply further research necessary in the upcoming two

521Biophysical Modeling using Cellular Automata

www.intechopen.com

decades. The paper presented deals with an anisotropic ventricular and an isotropic atrial
model developed by our research group during the last 15 years. This in silico approach is
used in the electrocardiographic forward and inverse approach. Validation has been done
for the inverse formulation in 45 patients only. The whole-heart model presented uses the
bidomain source-field formulation. A detailed anatomical model of the atrium is considered
as well. The geometrical data is derived from individual magnetic resonance images. Fibre
architecture in the ventricle and anatomical features in the atrium, like Bachmann bundle or
others are considered based on literature data. The whole-heart model allows the calculation
of the de- and repolarization and of the three-dimensional potential pattern throughout the
entire heart muscle and volume conductor. Based on this simulated potential data, the 12-lead
standard ECG or different BSP maps can be visualized. Today, this in silico whole-heart
model environment is used for enhancing the understanding of the nature of the ECG in
the normal beat, for different arrhythmias, and for ischemia and infarction. A user-friendly
software environment allows interactive model generation, parameter adjustment, simulation
and visualization.

4.2 Methods: the forward problem

4.2.1 Volume conductor model

The volume conductor model (VCM) with the embedded cardiac source volume is the basis
for the electrocardiographic forward problem. The VCM consists of the compartments chest,
lungs, atrial and ventricular myocardium, and of the blood masses from an individual patient.
The morphological imaging data were acquired using a Magnetom Vision Plus 1.5 Tesla
scanner, Siemens Medical Solutions, Erlangen, Germany. For the lung and torso shape
extraction a T1 flash, non-contrasted axial data set during breath-hold (expiration, 10 mm
spacing) was used. The cardiac geometry (atrial and ventricular models) was acquired in
ECG-gated cine mode during breath-hold (expiration, oblique short-axis scans) with 4 and
6 mm spacing. The segmentation of the compartments was performed using a recently
developed VCM segmentation pipeline. The resulting labelsets were triangulated using
a standard marching cubes algorithm and optimized using Hammer B. (2001). In the
next VCM assembling step the tetrahedral mesh was created using the software package
Hypermesh (Altair Eng.), which allows to produce optimized tetrahedral meshes on the basis
of the high quality surface mesh. The whole heart VCM consists of 104,001 tetrahedrons and
18,170 nodes, respectively. The volume conductor (whole heart) model with its compartments
is depicted in Fig. 24.

4.2.2 Computation of cardiac activation sequences - the cellular automaton

The CA used in this study was developed Fuchsberger M. (1993); Killmann R. (1987; 1990);
Rosian M. (1991), modified and implemented in amiraDev 3.0™ Hayn D. (2002). Briefly, after
segmentation, triangulation and tetrahedral mesh generation different types of tissue were
assigned to the atria and ventricles with corresponding parameter setting for each tissue type.
Further, the CA needs the fiber structure assigned to each node of the tetrahedral model as
well as the refractory periods assigned to each tissue type.
In the models the types of tissue were the endocardia, epicardium and myocardium.
Furthermore, the sinus node, crista terminalis, Bachmann bundle, fossa ovalis, pectinate
muscles, coronary sinus, isthmus, the bundle of His, left and right bundle branch and the
Purkinje fibers were defined. Each type of tissue has its own set of parameters needed for
the computation of the activation times and the time dependent transmembrane potential
distribution. The fiber geometry was chosen such, that it fitted qualitatively well with the

522 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 24. VCM of an individual patient comprising chest surface, atria and ventricles with the
cavitary blood masses and both lungs displayed in an anterior-posterior view.

Fig. 25. Fiber orientation assigned to each node of the tetrahedral ventricular model for four
different views. The atria and ventricles are displayed in a transparent style.

findings described in literature Greenbaum R. A. et al. (1981); Mc Veigh E. et al. (2001);
Nielsen P. M. F. et al. (1991); Rijcken J. et al. (1999); Streeter Jr. D. D. et al. (1969). Figure 25
gives an impression of the ventricular fiber structure used in this study.
Another essential input for the CA are the effective refractory periods ERP defined for a heart
cycle length (CL) of 700 ms (termed ERP700). These can be adjusted for each tetrahedron
individually or for tetrahedrons belonging to one type of tissue. The effective refractory
period is defined as the time during which the cell cannot be excited by a stimulus of such
magnitude, which is twice as high as a stimulus (diastolic threshold) capable to excite a cell in

523Biophysical Modeling using Cellular Automata

www.intechopen.com

resting status. The ERP is computed during run time, as the values depend on each preceding
diastolic interval and on the current CL (detailed explanation can be found in Killmann R.
(1990); Wach P. et al. (1989)). It should be stated that the CL in this context is the time distance
between two proceeding excitation processes in one tetrahedron and does not necessarily
refer to a CL provoked by any pacemaker (e. g., sinus node, atrioventricular node or paced
rhythms). The run time ERP at the CL is calculated by

ERP(CL) = ERP700 + A + B ·
CL − 700

1000
− D ·

(

C − CL

C

)2

if CL < C and

ERP(CL) = ERP700 + A + B ·
CL − 700

1000
(10)

if CL ≥ C, respectively. Parameters A (offset value), B (slope of the function), C (a predefined
CL), and D (coefficient for the quadratical decrease) have to be defined for each type of tissue
individually. The values for these parameters were chosen for each tissue type according
to Killmann R. (1990). ERP700 was set to 210 ms for the bundle of His, 290 ms for the
conjunction points, 280 ms for the left and right bundle branches, 320 ms for the Purkinje
fiber network and 260 ms for the ventricular myocardium. Parameter A is introduced for
enabling a simple change from physiological to pathological conditions for each tissue type
individually. The value for the slope parameter B was obtained by averaging data reported for
human hearts. Parameters C and D were set unequal zero for the ventricular epi-, endo- and
myocardium only as the relationship between CL and refractory periods shows up to have
a quadratically decreasing shape for these ventricular tissue types Killmann R. (1990) for the
case CL < C. If CL ≥ C, the ERP(CL) is assumed to increase linearly with the CL.

Computation of activation times

After selecting an arbitrary number of tetrahedrons assigned with an arbitrary time instant
for starting the excitation process the activation sequence is computed as follows. Every
tetrahedron of the cardiac model can take up three different states: excitable (e) , refractory (R;
i. e., excited) or waiting (W; i. e., awaiting excitation). The last state has no physiological
meaning but was introduced due to algorithmic needs.
The simulation starts by selecting that tetrahedron with earliest excitation time and its status
is changed from e to R, i. e., the number of this tetrahedron is written into table R. The
’possible excitation times’ of the excited tetrahedron’s neighbors are calculated according to
the distance between the center of masses and conduction velocities for each connection and
stored in table W. In case no conduction between two neighboring tetrahedrons can occur the
conduction velocity is set to zero. Whether a conduction between the tissues the tetrahedra
are belonging to can or cannot occur is stored in an additional parameter set. In the next step
the two tables S and W are searched for the tetrahedron with the lowest excitation time. This
is the next tetrahedron to be excited and stored in table R and the corresponding table W is
cleared. If two or more tetrahedrons have the same starting or possible excitation time one
of them is arbitrarily chosen and the other one becomes/the other ones become the source
tetrahedron of the subsequent calculations. The propagation is then calculated as described
above, but now three cases may occur: The neighboring tetrahedron is

• in status e → the possible excitation time is stored in table W, i. e., the tetrahedrons’s status
is set to ’awaiting excitation’,

• already in waiting status and has been assigned a possible excitation time with

524 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

– a lower value than the one calculated this time → no changes occur,
– a higher value than the one calculated this time → the possible excitation time is

changed to the lower value,

• in status R → no value is then stored for this point in table W.

Then the tables W and S are searched again and the sequence of instructions is performed for
the next source tetrahedron. The duration of status R – the period of time a tetrahedron cannot
be set into status W or e – is evaluated employing (10) each time a possible excitation is to be
assigned to that tetrahedron. The computation is finished, when no more starting tetrahedrons
in table S are left and W is empty or when the excitation time of the current source tetrahedron
is higher than the chosen upper limit for simulation duration predefined by the user.

Computation of transmembrane potentials

For modeling different shapes of ventricular and/or atrial action potentials the extended
Wohlfahrt formula described in Rosian M. (1991) is used:

ϕm(t − τ) = α(t − τ) · β(t − τ) · γ(t − τ) + K10 [mV]. (11)

Parameter t is the current simulation time interval, τ represents the computed activation
time, α(t − τ) [–] describes the shape of the depolarization, β(t − τ) [mV] the phase from
the beginning repolarization (enables modeling of a notch right after onset of depolarization)
to the plateau shape, and γ(t − τ) [–] characterizes the repolarization process. The value
is 0 for all parameters of (11), when (t − τ) < 0. Time t = 0 is considered as onset of
depolarization (time instant, when half of the depolarization amplitude is reached). With the
extended Wohlfahrt formula (11) the time dependent transmembrane potential shape for each
node of a cardiac tetrahedron can be calculated based on parameters specifically adjusted for
the types of cardiac tissue and based on the ’history’ of the preceding activation sequence
(relaxing phase, diastolic interval) and the computed activation times.

4.2.3 Extracellular potential computation

Based on the quasi static approximation of Maxwell’s equations for electromagnetic field
calculation and employing the bidomain theory Geselowitz D. B. & Miller 3rd W. T. (1983)
(therefore the subheading extracellular potential computation), the resulting differential
equations to be solved are

div [κb grad (ϕ)] = −div [σ̃in grad (ϕm)] (12)

for the cardiac region and

div [κc grad (ϕ)] = 0 (13)

for all other compartments of the VCM. The tensor κb is the bulk conductivity, i. e., the sum of
the electrical effective extracellular and effective intracellular conductivity σ̃in. The potential ϕ
describes the extracellular, ϕm the transmembrane potential. The tensor κc holds the
electrical conductivities for all other compartments c. For the ventricular electrical anisotropic
conductivities, for the other compartments isotropic conductivities were assumed Bradley
et al. (2000).
Applying the FEM, considering the volume conductor model and the related boundary
conditions Seger M. et al. (2005) the equations (12) and (13) form together a system of algebraic
equations

Rφ = Sφm. (14)

525Biophysical Modeling using Cellular Automata

www.intechopen.com

The matrices R and S are the so-called stiffness matrices, the matrix φ describes the potentials
in all nodes of the tetrahedral mesh of the volume conductor, the matrix φm contains the
transmembrane potentials in all source nodes of the ventricles. For forward simulation, the
matrix φm is computed by the CA for discrete time steps. For inverting R on the left hand side
of equation (14), the matrix R has to be modified as this matrix is positive semi-definite due
to the Neuman’s boundary condition on the torso surface Fischer G. et al. (2002). Therefore, the
Wilson central terminal is used to define the reference potential on the torso surface Fischer G.
et al. (2002) to reveal a positive definite matrix R̃. The inversion of R̃ is performed by a solver
based on the conjugated gradient method. This consequently leads to the desired potentials in
all nodes of the volume conductor model

φ = R̃−1Sφm. (15)

Apart from scaling of matrix R̃ no additional preconditioning was performed.

4.3 Results

The environment for simulating the potential data and for visualizing the ECG or BSP maps is
based on amiraDev™ (TGS Europe Inc.), which was extended implementing the described
functionality using the plugin concept. Thus, a homogenous and user-friendly simulation
toolbox could be implemented.
Figure 26 depicts a normal sinus rhythm, whereas in figure 27 an extra stimulus between the
right lower and upper pulmonary vein was simulated.

Fig. 26. ECG pattern simulation of a normal sinus rhythm. The gray boxes in the green area
(sinus node) mark the tetrahedron where the stimulation starts from. The second figure
shows the V3 and the third figure the V5 lead.

By varying the compartment specific parameters (intra- and extracellular conductivities,
transmembrane shape) and by specifying the starting point and time any simulation can be
performed and used for better understanding the ECG. Furthermore, the potential can be
visualized, which also contributes in a deeper understanding of electrical propagation in the
heart and the composition of the ECG patterns.

4.4 Discussion

We presented an in silico model environment for the simulation of cardiac de- and
repolarization and of the three-dimensional potential pattern throughout the entire volume
conductor. A cellular automaton and a bidomain-theory based source-field numerics are the
fundamental basics. Only a few simulation scenarios have been presented in this paper.
Limitations are given because of the relative course spatial discretization and because of not
considering heart muscle contraction. Hence, microscopic cardiac propagation effects can not
be simulated. Because we mostly had interest in investigating the macroscopic source-field

526 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Fig. 27. Simulation of a sinus rhythm with an extra stimulus (staring at 0 ms) between the
right lower and upper pulmonary vein. As expected when stimulating the atria at an ectopic
focus, the P wave differs compared to the one of the sinus rhythm. This can be seen when
comparing the normal ECG (black) with the extra stimulated one (red).

relationship, this limitation can be argued quite well. Because not modelling contraction the
simulated T-wave patterns have to be considered as fully synthetic. The simulation of more
realistic T-wave patterns have to consider contraction because of the electrical anisotropy
and the associated movement of the electrical sources during contraction. Also, we did not
consider the very complex fibre architecture in the atrium. Instead of that, for simplicity,
we considered electrical isotropy throughout the atrial myocardium. Beside these various
limitations, the presented in silico cardiac modelling solution enables various applications
for the study of the nature of the ECG pattern in space and time.

5. References

Barrett, C., Eubank, S. & Smith, J. (2005). If Smallpox strikes Portland, Scientific American .
Beauchemin, C., Samuel, J. & Tuszynski, J. (2004). A simple cellular automaton model for

influenza a viral infections., J. Theor. Biol. 232(2): 223–34.
Bossel, H. (1992). Modellbildung und Simulation, Vieweg Verlag .
Bradley, C., Pullan, A. & Hunter, P. (2000). Effects of material properties and geometry

on electrocardiographic forward simulations, Annals of Biomedical Engineering
28(7): p 721–741.

Castiglione, F., Duca, K., Jarrah, A., Laubenbacher, R., Hochberg, D. & Thorley-Lawson, D.
(2007). Simulating epstein-barr virus infection with c-immsim., J Theor Biol .
URL: http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm044v1

Eubank, S., Guclu, H., Kumar, V. A., Marathe, M. & et al. (2004). Modelling disease outbreaks
in realistic urban social networks, Nature .
URL: http://www.mcc.uiuc.edu/nsfitr04Rev/presentations/0113049_Modelling_disease.pdf

Fischer, G. (2006). In silico cardiac modeling, Habilitation .
Fischer G., Tilg B., Wach P., Modre R., Hanser F. & Messnarz B. (2002). On modelling the wilson

terminal in the boundary and finite element method, IEEE Transactions on Biomedical
Engineering 49(3): 217–224.

Fuchsberger M. (1993). Modellierung der Fasergeometrie in einem numerischen Herzmodell,
Master’s thesis, Graz University of Technology. (in German).

Gamma, E. (1994). Design Patterns, Addison-Wesley Professional - ISBN 0201633612 .
Geselowitz D. B. & Miller 3rd W. T. (1983). A bidomain model for anisotropic cardiac muscle,

Annals of Biomedical Engineering 11(3–4): 191–206.

527Biophysical Modeling using Cellular Automata

www.intechopen.com

Greenbaum R. A., Ho S. Y., Gibson D. G., Becker A. E. & Anderson R. H. (1981). Left ventricular
fibre architecture in man, British Heart Journal 45(3): 248–263.

Hammer B. (2001). Optimisation of surface triangulations for image reconstruction from ecg mapping
data, Master’s thesis, Graz University of Technology. (in German).

Hayn D. (2002). Ein finite Elemente Herz Modell, Master’s thesis, Graz University of Technology.
(in German).

John von Neumann (1966). The theory of self-reproducing automata, University of Illinois Press
.

Killmann R. (1987). Numerisches Herzmodell, Master’s thesis, Graz University of Technology.
(in German).

Killmann R. (1990). Three-dimensional numerical simulation of the excitation and repolarisation
process in the entire human heart with special emphasis on reentrant tachycardias, PhD
thesis, Graz University of Technology.

Mc Veigh E., Faris O., Ennis D., Helm P. & Evans F. (2001). Measurement of ventricular wall
motion, epicardial electrical mapping and myocardial fibre angles in the same heart,
in Katila T. & Neonen J. (eds), Functional Imaging and Modeling of the Heart, pp. 76–82.

Nielsen P. M. F., LeGrice I. J., Smaill B. H. & Hunter P. J. (1991). Mathematical model
of geometry and fibrous structure of the heart, American Journal of Physiology
260(4.2): H1365–H1378.

NY (1977). Numerical methods for partial differential equations., New York: Academic Press .
Rijcken J., M., B., Schoofs A. J., van Campen D. H. & Arts T. (1999). Optimization of cardiac

fiber orientation for homogeneous fiber strain during ejection, Annals of Biomedical
Engineering 27(3): 289–297.

Rosian M. (1991). Modellierung der Aktionspotentialformen im menschlichen Herzen, Master’s
thesis, Graz University of Technology. (in German).

Seger M., Fischer G., Modre R., Messnarz B., Hanser F. & Tilg B. (2005). Lead field computation
for the electrocardiographic inverse problem – finite elements versus boundary
elements, Computer Methods and Programs in Biomedicine 77(3): 241–252.

Shannon, C. E. (1948). A Mathematical Theory of Communication, Bell System Technical Journal
vol. 27: 379–423.

Stephen Wolfram (2002). A new kind of science, B & T vol. 1.
Streeter Jr. D. D., Spotnitz H. M., Patel D. P., Ross Jr. J. & Sonnenblick E. H. (1969). Fiber

orientation in the canine left ventricle during diastole and systole, Circulation Research
24(3): 339–347.

Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically,
Nature 118: 558–560.

Wach P., Killmann R., Dienstl F. & Eichtinger C. (1989). A computer model of human
ventricular myocardium for simulation of ecg, mcg, and activation sequence
including reentry rhythms, Basic Research in Cardiology 84(4): 404–413.

Wurz, M. & Schuldt, H. (n.d.). Dynamic Parallelization of Grid-Enabled Web Services,
European Grid Conference, Amsterdam .

Xiao, X., Shao, S.-H. & Chou, K.-C. (2006). A probability cellular automaton model for hepatitis
b viral infections., Biochem. Biophys. Res. Commun. 342(2): 605–10.

528 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Cellular Automata - Simplicity Behind Complexity

Edited by Dr. Alejandro Salcido

ISBN 978-953-307-230-2

Hard cover, 566 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Cellular automata make up a class of completely discrete dynamical systems, which have became a core

subject in the sciences of complexity due to their conceptual simplicity, easiness of implementation for

computer simulation, and their ability to exhibit a wide variety of amazingly complex behavior. The feature of

simplicity behind complexity of cellular automata has attracted the researchers' attention from a wide range of

divergent fields of study of science, which extend from the exact disciplines of mathematical physics up to the

social ones, and beyond. Numerous complex systems containing many discrete elements with local

interactions have been and are being conveniently modelled as cellular automata. In this book, the versatility

of cellular automata as models for a wide diversity of complex systems is underlined through the study of a

number of outstanding problems using these innovative techniques for modelling and simulation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Bernhard Pfeifer (2011). Biophysical Modeling using Cellular Automata, Cellular Automata - Simplicity Behind

Complexity, Dr. Alejandro Salcido (Ed.), ISBN: 978-953-307-230-2, InTech, Available from:

http://www.intechopen.com/books/cellular-automata-simplicity-behind-complexity/biophysical-modeling-using-

cellular-automata

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

